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Abstract: Exposure to high altitudes generates a decrease in the partial pressure of oxygen, triggering
a hypobaric hypoxic condition. This condition produces pathophysiologic alterations in an organism.
In the lung, one of the principal responses to hypoxia is the development of hypoxic pulmonary vaso-
constriction (HPV), which improves gas exchange. However, when HPV is exacerbated, it induces
high-altitude pulmonary hypertension (HAPH). Another important illness in hypobaric hypoxia is
high-altitude pulmonary edema (HAPE), which occurs under acute exposure. Several studies have
shown that inflammatory processes are activated in high-altitude illnesses, highlighting the impor-
tance of the crosstalk between hypoxia and inflammation. The aim of this review is to determine the
inflammatory pathways involved in hypobaric hypoxia, to investigate the key role of inflammation in
lung pathologies, such as HAPH and HAPE, and to summarize different anti-inflammatory treatment
approaches for these high-altitude illnesses. In conclusion, both HAPE and HAPH show an increase
in inflammatory cell infiltration (macrophages and neutrophils), cytokine levels (IL-6, TNF-α and
IL-1β), chemokine levels (MCP-1), and cell adhesion molecule levels (ICAM-1 and VCAM-1), and
anti-inflammatory treatments (decreasing all inflammatory components mentioned above) seem to be
promising mitigation strategies for treating lung pathologies associated with high-altitude exposure.
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1. Introduction

Studies have shown a strong relationship between the inflammatory process and the
progression or aggravation of different pathologies [1–4], and there is evidence for crosstalk
between hypoxia and inflammation that shows positive feedback between the stabiliza-
tion and expression of hypoxia-inducible factor-1α (HIF-1α) and several inflammatory
molecules [5,6]. Specifically, in response to hypobaric hypoxia, which is generated by
high altitude exposure (>2500 m) and the decrease in the partial pressure of oxygen, the
inflammatory process is rapidly activated in human subjects and animal models [7,8].

One of the principal responses in the lung to hypobaric hypoxia conditions is hypoxic
pulmonary vasoconstriction (HPV). The physiological effects of HPV include pulmonary
artery vasoconstriction, which redistributes the blood stream toward more ventilated areas
of the lung, improving ventilation/perfusion matching and oxygen uptake [9,10]. However,
when HPV is permanent, it activates molecular pathways that trigger pulmonary artery
remodeling and, consequently, high-altitude pulmonary hypertension (HAPH). HAPH
is classically defined as an increase in the mean pulmonary artery pressure (mPAP) of
30 mmHg or more [11,12].

Another pathology related to exacerbated HPV and subsequent HAPH under hypo-
baric hypoxic conditions is high-altitude pulmonary edema (HAPE), which is a noncar-
diogenic, acute, and potentially lethal pulmonary alteration [13]. HAPE is characterized
by an increase in pulmonary arterial pressure and vasoconstriction. These conditions
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increase vascular permeability in alveolar capillaries and ultimately aggravate hypoxic
conditions [14–16].

The central effector mechanism of HPV is found within pulmonary artery smooth
muscle cells (PASMCs) [10]. Recent work summarizes the alterations in molecular pathways
in PASMCs that are related to HAPH, and inflammatory pathways seem to be important
contributors to PASMC proliferation and pulmonary hypertension [17]. In addition to
HAPH, HAPE may also be related to the inflammatory process; however, the latter exhibits
some controversies, because some studies showed that inflammation could play a role
in lung permeability in patients with HAPE [18], while others studies indicated that in
humans, inflammation may be a secondary response to alveolar-capillary barrier disruption
or edema [19].

Based on these findings, different studies have been performed to investigate preven-
tative approaches for these pathologies related to high-altitude exposure, and the role of
inflammation in response to these conditions was also examined [20–22]. Therefore, the
aims of this review are to highlight the inflammatory pathways associated with hypobaric
hypoxia, emphasize the key role of inflammation in lung pathologies, such as HAPH and
HAPE, contribute to the understanding and identification of new biomarkers related to these
high-altitude illnesses, and summarize different current anti-inflammatory approaches.

2. Hypoxia and Inflammation

In general, hypoxia can cause inflammation in an organism primarily by stimulating
nuclear factor kappa B (NF-κB) gene transcription and the production of proinflammatory
cytokines. Moreover, the reverse is also true since inflamed tissue can also become hy-
poxic [23]. The primary molecular responses to hypoxia are mediated by the transcription
factor hypoxia-inducible factor (HIF). HIF regulates more than 200 genes and is present
in several isoforms. Under hypobaric hypoxic conditions, the most studied isoform is
HIF-1α [24,25].

Under normoxic conditions, HIF is hydroxylated at two proline residues through
the prolyl hydroxylase (PHD) enzyme, where the Von Hippel–Lindau (VHL) ubiquitin
ligase complex induces prolyl-hydroxylated HIF subunit degradation. However, under
any hypoxic conditions, PHD hydroxylation activity is inhibited. This stabilizes HIF in
the specific tissue or organism and contributes to the hypoxic mechanism [26]. Moreover,
HIF-1α can also be stabilized by inflammatory molecules, such as IL-1β, NF-κB and TNF-α.
NF-κB has been considered the master regulator of inflammation under hypoxic conditions
since NF-κB can stabilize HIF-1α when it is released from inhibitory kinase b (IKb) through
nuclear factor kinase subunit b (Ikkβ) activation [27]. Furthermore, a study showed that
the regulatory protein of HIF, prolyl hydroxylase domain enzymes 2 (PHD2), serves as a
coactivator of NF-κB in a HIF-1-independent fashion [28].

There is also evidence of crosstalk between HIF and the glucocorticoid receptor (GR).
Glucocorticoids (GCs) are steroid hormones that play an important role in inflammation since
they limit the production of most cytokines, such as IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-8, IL-12,
IL-18, TNF-α, and interferon-γ (INF-γ), to maintain homeostasis [29,30]. A study showed
the upregulation of GR in human proximal tubular epithelial cells might occur through the
binding of HIF-1α to one or more hypoxia responsive element (HRE) sites in the nuclear
receptor subfamily 3, group C, member 1 (NR3C1) promotor, and it thereby enhances GR
transcription [31]. However, in human alveolar epithelial cells exposed to hypoxia, there
was a downregulation of both the mRNA and protein levels of GR [32] and the inhibition of
the nuclear translocation of GR [33]. Interestingly, a study conducted by Vettori et al. [34]
showed that GC can stabilize HIF-1α through inactivation of the VHL complex.

Moreover, hypoxia also increases the production of ROS and thus oxidative stress,
and this condition is closely related to the inflammatory process [3]. For example, studies
under normobaric hypoxic conditions showed that pulmonary artery hypertension is
induced by an increase in NF-κB through the activation of ERK-1/2, which produces
oxidative stress via Nox4-generated H2O2. In this process, ERK1/2, NF-κB, and H2O2
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contribute to the inhibition of peroxisome proliferator-activated receptor y (PPARγ), which
triggers pulmonary hypertension [35]. Under hypobaric hypoxic conditions, the crosstalk
between oxidative stress and inflammation is important. Studies have demonstrated
positive feedback between oxidative stress and inflammation, which recently has been
coined “oxinflammation” [36,37]. Therefore, based on the mentioned evidence, there is an
important role of inflammation under hypoxic conditions that could affect different tissues
and organs, including the lung (Figure 1), which will be discussed below.
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3. Lung Inflammation under Hypobaric Hypoxia

High-altitude or hypobaric hypoxia exposure can affect the immune homeostatic
mechanism and immunoregulatory activities that may lead to several pathologies asso-
ciated with this hypoxic condition [38]. Additionally, there is evidence that exposure to
hypobaric hypoxia induces an inflammatory response [7]. Moreover, a study demonstrated
an increase in the levels of IL-6 and the inflammatory biomarker IL-1 receptor antagonist in
the serum of subjects exposed to high altitude, with a peak increase at Day 2 of exposure.
Additionally, C-reactive protein (CRP) was increased in serum after 3 days of exposure [7].
In addition, a recent study in rats exposed to hypobaric hypoxic conditions for 72 h showed
an increase in IL-1β in serum levels [21]. Therefore, it is important to highlight that there is
an early inflammatory response after exposure to hypobaric hypoxia.

A moderate increase in circulating cytokine levels may reflect substantial inflammation
in specific tissues, such as the lungs. Studies have demonstrated that under acute hypobaric
hypoxia (3 h; 7620 m), there is an increase in the serum levels of proinflammatory cytokines
(IL-1β, IL-6 and TNF-α) and neutrophil infiltration in the lungs of rats [39]. This is corrobo-
rated by a recent study that demonstrated an increase in inflammatory cell infiltration in
the lungs of mice exposed to acute hypobaric hypoxia (7000 m; 7 days) [40]. Moreover, a
recent study showed that the expression of inflammation-related genes (MMP8, MMP9,
IL-17β, and Timp1) was upregulated in the lungs of rats exposed to the same conditions of
hypoxia (acute hypobaric hypoxia) [21].

Additionally, the levels of inflammatory cytokines (TNF-α, IL-1β, and IL-6) were
higher in the bronchoalveolar lavage of rats exposed to acute hypobaric hypoxia (6 h;
5000 m) plus inflammation induced by administration of lipopolysaccharides (LPS) than
in that for each stimulus alone. Moreover, RT-qPCR data suggested that the combined
stimulation of LPS and hypobaric hypoxia had a synergistic effect on gene expression levels
in acute lung injury. This finding indicates that the promoter activity of toll-like receptor
4 (TLR4) was higher in the LPS plus hypobaric hypoxia group. Additionally, the inhibition
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of HIF-1α increased the promoter activities of the TLR4 gene, showing the importance of the
crosstalk between the HIF-1α and TLR4 pathways. The synergistic effect of inflammation
and hypoxia exposure may be critical in the development of HAPE. Therefore, people with
upper respiratory tract infections should avoid high-altitude exposure [41].

Regarding chronic hypobaric hypoxia, a study in rats also determined an increase in
TNF-α expression in the lung tissue [42]. Additionally, a study in mice showed an increase
in macrophages in the lung over the course of hypobaric hypoxia exposure, with a peak
at Day 21 [43]. In fact, based on epidemiological studies of hypobaric hypoxia, there is
an increase in both the genetic and protein levels of inflammatory biomarkers, such as
IL-6, TNF-α, IL-1β, and IL-1α, and these biomarkers are present in different populations
exposed to high altitudes (Andean and Tibetans) [44,45].

Particularly, the expression of IL-8 under this condition is controversial. Studies
involving humans exposed to hypobaric hypoxia showed no changes in IL-8 levels in
serum [38], but a previous study in endothelial cell cultures demonstrated an increase in
this cytokine after 16 hours of exposure to hypobaric hypoxia [46]. Additionally, a study
using rats exposed to chronic hypobaric hypoxia showed that the level of IL-8 was increased
in lung tissue from the first day of exposure. This expression decreased over time, but it
was still higher than that in the control group [47]. Therefore, the expression of IL-8 might
depend on the time of exposure and type of tissue analyzed.

An interesting study in rats exposed to chronic hypobaric hypoxia showed an increase
in 12(s)-hydroxyeicosatetraenoic acid (12(s)-HETE) expression in the lung, which was pro-
duced by leukocyte-type 12 lipoxygenase (12-LO) activation. This activation contributes to
inflammatory pathways and the activation of ERK1/2 and p38 MAPK in smooth muscle
cells (SMCs). Then, the proliferation process is stimulated, and HAPH subsequently devel-
ops [48]. Therefore, both acute and chronic exposure to high altitudes activate inflammatory
pathways that contribute to the development of pulmonary high-altitude illnesses such as
HAPE and HAPH (Figure 2), which will be discussed in the following sections.
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4. High Altitude Pulmonary Edema

HAPE is a noncardiogenic pulmonary edema caused by pulmonary blood–gas barrier
leakage in the lung. It can occur in rapidly ascending non-acclimatized individuals after
arrival at altitudes above 2500 m, and profound hypoxemia and death may occur if the
condition is not treated [49].

Inflammation might contribute to the pathogenesis of HAPE in susceptible individ-
uals [7]. Although, Swenson et al. [50] claimed that HAPE is not related to inflammation
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since there were no significant differences in the bronchoalveolar lavage levels of leukocytes,
cytokines (IL-1β, IL-8 and TNF-α), and eicosanoids between subjects resistant or suscepti-
ble to HAPE at high altitudes. However, subsequent studies have analyzed cytokines to
assess the underlying mechanisms of the development of HAPE. Patients with HAPE have
increased TNF-α and IL-6 levels in serum [51]. Then, Sharma et al. [18] determined that the
levels of TNF-α were increased in the blood of individuals with HAPE, and this alteration
could have a role in lung permeability in patients with HAPE.

Studies in animal models also showed that cytokine levels were increased by hypoxia.
Rats exposed to acute hypobaric hypoxia with signs of HAPE showed a 13-fold increase
in NF-κB levels (nuclear fraction), and NF-κB regulated the increase in inflammatory
molecules (IL-1, IL-6, and TNF-α) in lung tissue under this hypoxic condition, highlighting
an increase in the levels of the cell adhesion molecules ICAM-1 and VCAM-1 [13].

Additionally, another study in rats with HAPE due to acute hypobaric hypoxia (9142 m
for 5 h) also showed that the levels of proinflammatory molecules, such as TNF-α, monocyte
chemoattractant protein-1 (MCP-1), INF-γ, IL-6, and TNF-β, in the bronchoalveolar lavage
were increased, and the levels of NF-κB in lung nuclear extracts were increased [52]. MCP-
1 and macrophage inflammatory protein-1α (MIP-1α) are important immune response
modulators that can be altered by high-altitude exposure [38].

A subsequent study demonstrated that the levels of soluble urokinase-type plasmino-
gen activator receptor (suPAR), a biomarker of inflammation, were increased along with
CRP and IL-6 levels in the plasma of subjects exposed to acute hypobaric hypoxia [53].
However, since not all cases of HAPE had evidence of inflammation in the alveolar lavage
fluid, inflammation could be a secondary response to alveolar–capillary barrier disruption
or edema [19]. This topic still needs further study.

The results of studies in HAPE-susceptible subjects showed an increase in proinflam-
matory chemokines (MIP-1α and MCP-1) compared with control subjects at sea level. In
addition, an elevation of these molecules was demonstrated in HAPE-susceptible sub-
jects before exposure to high altitudes (basal line). Moreover, the level of IL-8 was not
significantly different in HAPE-susceptible subjects [38]. Additional studies have also
demonstrated that suPAR plasma concentration levels were high in HAPE-susceptible
subjects, suggesting that suPAR could serve as a possible biomarker of HAPE susceptibility.
Moreover, the level of suPAR indicated that the subject susceptible to HAPE has a low-
grade inflammatory condition; therefore, inflammation seems to modulate but not be the
cause of HAPE [53].

At the genetic level, a study in Han Chinese subjects with and without HAPE reported
12 single nucleotide polymorphisms (SNPs) in the NR3C1 gene between these groups;
NR3C1 encodes human GR. Moreover, it is important to note that these polymorphisms
were significantly associated with the risk of HAPE [54].

The inflammatory basis of HAPE pathophysiology is still debatable; thus, studies with
a larger number of subjects are recommended for better understanding [55]. Therefore,
although the role of inflammation in HAPE is unclear, there is an important increase in
proinflammatory cytokines and chemokines that might modulate the development of
HAPE (Figure 3). Different treatment approaches have been studied to diminish these
factors and will be discussed later.
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5. High-Altitude Pulmonary Hypertension

As previously mentioned, one of the principal pathologies occurring under hypobaric
hypoxia is HAPH. HAPH is a consequence of sustained hypoxic pulmonary vasoconstric-
tion and the remodeling of pulmonary arteries mainly through proliferation of SMCs [12].
Pulmonary hypertension generates an increase in pressure load on the right ventricle,
leading to right heart failure and eventually death [56].

Significant proliferation of vascular smooth muscle cells (VSMCs) has been observed
within 24 h of hypoxic exposure [57]. This proliferation process could be conditioned
by inflammation. A proteomic study in rats exposed to intermittent hypobaric hypoxia
(5500 m) showed that heat shock protein 70 (HSP70) and protein disulfide isomerase
associated 3 (PDIA3), regulators of inflammation, modulate the development of vascular
remodeling that occurs due to HAPH [58]. Moreover, PDIA3 has been related to an increase
in inflammatory molecules (IL-1β, IL-6, and TNF-α) in the brain [59] and lung [60].

Moreover, HSP70 presents anti-inflammatory properties and plays a protective role
in lung injury and fibrosis by inhibiting proinflammatory cytokine expression [61]. Pre-
conditioning with a low dose of hypobaric hypoxia increased HSP70 in rats, and this
attenuated the increase in inflammatory biomarkers in serum (TNF-α, IL-1β, E-selectin,
and ICAM-1) [62]. It is important to note that these results have also been described in
HAPE under the same experimental conditions [63].

Another important proinflammatory cytokine is macrophage migration inhibitory
factor (MIF), which was upregulated in the lungs of rats with chronic hypobaric hypoxia-
induced pulmonary hypertension. Interestingly, MIF stimulates rat PASMC proliferation.
This probably occurs through the ERK1/2 and JNK pathways, without the involvement of
p38 MAPK [64]. Other studies in rats with pulmonary hypertension induced by similar
hypobaric hypoxia conditions showed an important infiltration of neutrophils in the lung
and robust expression of phosphorylated NF-κB, IL-6, IL-1β, TNF-α, and VEGF. All these
factors were decreased after resveratrol treatment [65], and these treatments (Table 1) will
be discussed in the next section.
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Table 1. Anti-inflammatory treatments for lung alterations due to hypobaric hypoxia.

Treatment Lung Injury Animal Model Anti-Inflammatory Effects References

Cobalt HAPE Sprague
Dawley rats

Decrease TNF-α, TNF-β,
NF-κB, MCP-1, and

IL-6/Increase HO-1 and
MT

Shukla et al. [52]

Curcumin HAPE Sprague
Dawley rats Decrease NF-κB Sarada et al. [13]

Nanocurcumin HAPE Sprague
Dawley rats

Decrease TNF-α, TNF-β,
IL-6, and ET-1 Nehra et al. [66]

Quercetin HAPE Sprague
Dawley rats

Downregulate NF-κB and
TNF-α

Decreased ICAM-1,
VCAM-1, and P-selectin
Increase TGF-β and IL-4

Tripathi et al. [67]

Potentilla anserina
L polysaccharide HAPE Wistar rats

Decrease IL-1β, TNF-α,
IL-6

Inhibition HIF-1α and
NF-κB

Shi et al. [68]

Hypobaric
hypoxia

preconditioning
HAPE Sprague

Dawley rats Increase HSP70 Lin et al. [63]

Netrine-1 HAPI Mice
Reduced neutrophil

infiltration
Decrease MIP-2

Ko et al. [69]

Cerium oxide
nanoparticles HAPI Sprague

Dawley rats
Decrease IL-1β, IL-6, and

TNF-α Arya et al. [39]

Tadalafil HAPH Wistar rats
Decrease TNF-α

Decrease inflammatory
cells infiltration

Rashid et al. [42]

Magnesium
lithospermate B HAPH Sprague

Dawley rats
Downregulated HIF-1α

MCP-1 and NF-κB Wang et al. [70]

Intermittent
Hypobaric

hypoxia treatment
HAPH Sprague

Dawley rats

Decrease NF-κB, TNF-α,
and IL-6 and macrophage

infiltration
Gao et al. [71]

Resveratrol HAPH Sprague
Dawley rats

Decrease IL-6, IL-1β,
TNF-α, VEGF, and HIF-1α Xu et al. [65]

TNF-α, Tumor Necrosis Factor Alpha; TNF-β, Tumor Necrosis Factor Beta; HIF-1α, Hypoxia Inducible Factor-
1α; MCP-1, Monocyte Chemoattractant Protein-1; NF-κB, Nuclear Factor-kappa B; IL-6, Interleukin-6; MIP-2,
Macrophage Inflammatory Protein-2; IL-1β, Interleukin-1 beta; HO-1, Heme Oxygenase-1; MT, Metallothionein;
ET-1, Endothelin-1; ICAM-1, Intercellular Adhesion Molecule-1; VCAM-1, Vascular Cell Adhesion Molecule-1;
TGF-β, Transforming Growth Factor-beta; IL-4, interleukin-4; HSP70, Heat Shock Protein 70; HAPH, High Altitude
Pulmonary Hypertension; HAPE, High Altitude Pulmonary Edema; HAPI, High Altitude Pulmonary Inflammation.

Additionally, endothelin-1 (ET-1) is a relevant molecule that plays a crucial role in
promoting hypoxia-induced pulmonary hypertension, and ET-1 is a vasoconstrictor peptide
that is produced by endothelial cells [72,73]. A study in rats demonstrated that circulating
and lung ET-1 levels increased after acute hypobaric hypoxia exposure and were related
to hypoxic pulmonary vasoconstriction [66]. It is important to note that several studies
have demonstrated that ET-1 is strongly related to lung inflammation and fibrosis [74–76].
In vitro experiments showed that stimulation with ET-1 significantly enhanced IL-6 expres-
sion in pulmonary arterial endothelial cells [73]. Additionally, peroxisome proliferator-
activated receptor γ (PPARγ) inactivation showed increased ET-1-induced vascular injury,
probably through pro-oxidant and proinflammatory pathways (Figure 3) [77].

6. Treatments

The etiology of pulmonary hypertension is an important factor to consider when de-
veloping a treatment study. Interesting research has demonstrated that the administration
of cilostazol (a vasodilator inhibitor of phosphodiesterase-3) prevented the pulmonary
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hypertension induced by monocrotaline administration, but it was not effective in hypo-
baric hypoxia-induced pulmonary hypertension [78]. Additionally, it is important to note
that the age of the experimental animal should be considered, as one study shows that the
morphometric alterations in the lung induced by hypobaric hypoxia exposure are more
exacerbated in older rats (24 months old) than in young rats (4 weeks old) [79].

Regarding anti-inflammatory approaches, Arya et al. [39] showed that inflammation
signs in the lung of rats (increases in cytokines and neutrophil infiltration) were prevented
by the administration of cerium oxide nanoparticles prior to hypobaric hypoxia exposure
(7620 m; 6 h). In addition, pretreatment with netrine-1 (neuronal guidance protein-1)
reduces neutrophil infiltration in the lungs of mice exposed to acute hypobaric hypoxia
and attenuates the increase in macrophage inflammatory protein 2 (MIP-2) [69].

Dexamethasone is a synthetic glucocorticosteroid that is a potent anti-inflammatory
drug that has also been used as a traditional prophylaxis for HAPE and other high-
altitude illnesses, such as acute mountain sickness (AMS) and high-altitude cerebral edema
(HACE) [19,80]. However, because of its diverse side effects [67,81], researchers have been
proposing different anti-inflammatory approaches to reduce HAPE. A study determined
that preconditioning with cobalt attenuated the pulmonary vascular leakage induced by
hypobaric hypoxia in rats (9142 m; 5 h) and reduced inflammatory molecules, such as
TNF-α/β, NF-κB, MCP-1, and IL-6 [52]. Another rat study showed that the administration
of curcumin before hypobaric hypoxic exposure reduced signs of pulmonary edema and
inhibited hypoxia-induced elevations in NF-κB levels [13]. A subsequent study in rats
demonstrated that treatment with nanocurcumin was more effective than curcumin in
reducing HAPE and pulmonary vascular medial wall thickness, and these changes were
related to decreases in the levels of TNF-α, TNF-β, IL-6, and ET-1 in the plasma [66].

Other phytocompounds have been evaluated for the ability to reduce HAPE. Quercetin
is a potent antioxidant and anti-inflammatory phytoflavonol. Administration of quercetin
to rats 1 h prior to hypobaric hypoxia (7620 m; 6 h) exposure attenuated transvascular
leakage after hypoxia exposure, downregulated NF-κB and TNF-α expression, decreased
the expression of cell adhesion molecules (ICAM-1, VCAM-1, and P-selectin), and increased
the expression of anti-inflammatory cytokines (TGF-β and IL-4) [67]. Pretreatment with
Potentilla anserina L. polysaccharide in rats exposed to hypobaric hypoxia (8000 m; 72 h)
ameliorated HAPE and decreased oxidative stress and the levels of proinflammatory
cytokines (IL-1β, TNF-α, IL-6). In addition, hypobaric hypoxia increased the levels of HIF-
1α and NF-κB, whereas pretreatment with this polysaccharide inhibited both transcription
factors [68].

Regarding pulmonary artery hypertension induced by hypobaric hypoxic conditions,
a study in rats under chronic hypobaric hypoxia determined that the oral administration of
tadalafil, a phosphodiesterase-5 inhibitor considered a potent antioxidant, reduced oxida-
tive stress, inflammation, and vasoconstriction. These three effects suggest that tadalafil
could be considered a promising treatment option for pulmonary hypertension induced
by hypobaric hypoxia [42]. A recent study in rats demonstrated that the administration of
magnesium lithospermate B derived from Salvia miltiorrhiza reduces high altitude-induced
pulmonary hypertension through the downregulation of HIF-1α, MCP-1, and NF-κB [70].

Furthermore, hypobaric hypoxia exposure could also be used as a treatment to min-
imize pulmonary pathologies. In a recent study, rats with monocrotaline-induced pul-
monary artery hypertension were treated with chronic intermittent hypobaric hypoxia
(6 h/day) for 4 weeks. In these rats, chronic intermittent hypobaric hypoxia attenuated
PAH and remodeling, which was probably achieved by inhibiting the NF-κB/p38 MAPK
pathway in the lung. In addition, the treatment reduced macrophage infiltration in lung
tissue and proinflammatory cytokine expression (TNF-α and IL-6) [71]. A different study
in rats showed that preconditioning with low doses of hypobaric hypoxia (1000 m, 5 h/day
for 5 consecutive days for 2 weeks) reduces the pulmonary pathologies induced by hypo-
baric hypoxia exposure (6000 m; 24 h), such as HAPE, through a decrease in inflammatory
molecules [63]. Therefore, we can hypothesize that preconditioning with low doses of hypo-
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baric hypoxia could be a good strategy to abolish high-altitude pulmonary pathologies, which
seems interesting and warrants further evaluation. Finally, it is important to note that anti-
inflammatory studies of human subjects exposed to hypobaric hypoxia are rather scarce, and
it is necessary to expand knowledge on this matter to improve treatment recommendations.

7. Conclusions

HAPE and HAPH induced by hypobaric hypoxia exposure are strongly related to in-
creases in lung inflammation due to increases in inflammatory cell infiltration (macrophages
and neutrophils), cytokine levels (IL-6, TNF-α and IL-1β), chemokine levels (MCP-1), and
cell adhesion molecule levels (ICAM-1 and VCAM-1). These effects are reflected in systemic
inflammation. The role of inflammation in the development of these diseases, specifically
in HAPE, is not very clear in human studies, which could be considered a limitation and
a new avenue for future research. Anti-inflammatory approaches, such as decreasing the
previously mentioned inflammatory components, may be promising mitigating strategies
for lung pathologies associated with high-altitude exposure and have been well evidenced
in animal models, but more human studies or clinical trials are necessary to improve the
prevention and treatment recommendations for these high-altitude illnesses. Therefore,
this review suggests inflammatory target molecules that are involved in HAPE and HAPH
pathologies, which could be considered as possible biomarkers in future studies. However,
additional studies are needed to improve the understanding of the role of inflammation in
high-altitude illnesses.
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