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Abstract: The therapeutic potential of mesenchymal stromal cells (MSCs) is largely attributed to their
immunomodulatory properties, which can be further improved by hypoxia priming. In this study,
we investigated the immunomodulatory properties of MSCs preconditioned with hypoxia-mimetic
Vadadustat (AKB-6548, Akebia). Gene expression analysis of immunomodulatory factors was
performed by real-time polymerase chain reaction (real-time PCR) on RNA isolated from six human
bone-marrow derived MSCs populations preconditioned for 6 h with 40 µM Vadadustat compared
to control MSCs. The effect of Vadadustat preconditioning on MSCs secretome was determined
using Proteome Profiler and Luminex, while their immunomodulatory activity was assessed by
mixed lymphocyte reaction (MLR) and Culturex transwell migration assays. Real-time PCR revealed
that Vadadustat downregulated genes related to immune system: IL24, IL1B, CXCL8, PDCD1LG1,
PDCD1LG2, HIF1A, CCL2 and IL6, and upregulated IL17RD, CCL28 and LEP. Vadadustat caused a
marked decrease in the secretion of IL6 (by 51%), HGF (by 47%), CCL7 (MCP3) (by 42%) and CXCL8
(by 40%). Vadadustat potentiated the inhibitory effect of MSCs on the proliferation of alloactivated
human peripheral blood mononuclear cells (PBMCs), and reduced monocytes-enriched PBMCs
chemotaxis towards the MSCs secretome. Preconditioning with Vadadustat may constitute a valuable
approach to improve the therapeutic properties of MSCs.

Keywords: mesenchymal stem cells; Vadadustat; AKB-6548; preconditioning; priming;
immunomodulation; secretome; chemotaxis

1. Introduction

Human mesenchymal stromal cells (MSCs) therapy has shown a promising potential in the
treatment of diseases associated with immune-mediated disorders (reviewed in [1]). Despite the
lack of sufficient data explaining the native, physiological function of MSCs in the human body,
existing experimental results demonstrate their multipotency [2] and considerable paracrine-mediated
immunosuppressive and inflammation resolving activity (reviewed in [3]). As progenitor cells with
nonhematopoietic origin, MSCs are isolated from various adult tissues, but the most commonly used
source for preclinical and clinical studies is bone marrow, which constitutes the primary niche for this
population [4]. Once isolated, MSCs are readily expanded and differentiated in cell culture conditions
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into several different lineages. Recently, a fundamental shift was made from the initially proposed
paradigm of reparative function of MSCs, to the paradigm of MSCs modulating activity, manifested
by secretion of numerous bioactive compounds regulating immune response and contributing to
tissue regeneration. Encouraging issues favoring the use of MSCs in regenerative therapy are:
low immunogenicity, lack of ethical concerns regarding they isolation and use, and an overall minimal
risk of their malignant transformation. Moreover, the outstanding potential of MSCs lies in their
ability to home to the site of damage and crosstalk with other types of cell in order to limit cell death,
diminish an excessive inflammatory response and facilitate the intrinsic tissue regeneration capacity.
The therapeutic activity of MSCs seems to be strongly associated with the production of trophic and
immunomodulatory factors. A growing number of research indicates, that treatment with MSCs
secretome reveals a similar therapeutic effect to MSCs transplantation itself, avoiding the main risks
related to allogeneic cell transplantation (reviewed in [5]). Therefore, many attempts have been made
to optimize MSCs culture conditions to obtain their most preferred secretory profile. Oxygen tension
is one of the major factor closely related to the proliferation, differentiation and stemness of MSCs.
However, MSCs are routinely cultured under 21% oxygen pressure conditions that several times
exceeds the physiological level available in their natural niches (which ranges from 1% to 7% O2) [6–8].
There are several reports confirming the beneficial effect of hypoxia and hypoxic preconditioning
on migration, regenerative potential, proangiogenic activity and expanded survival of MSCs [9–14].
However, culturing cells under low oxygen conditions is demanding, has some limitations and
multiplies the costs of MSCs culture. Therefore, the opportunity of using hypoxia mimetic agents for
preconditioning of MSCs seems a highly promising approach. The concept is simple. It assumes the use
of a drug targeted at cellular hypoxia sensors, which by switching them off triggers cellular response
to hypoxia under normoxic conditions. This response is manifested in a number of transcriptional and
translational changes leading to regulation of metabolic, proliferation, transport and survival pathways.
Detection of oxygen availability occurs in cells mainly through the prolyl-hydroxylase domain family
of enzymes (PHDs), which require molecular oxygen to their biological activity. When enough
oxygen is present, PHDs are active and hydroxylate specific proline residues (Pro402 and Pro564) in
hypoxia inducible factors alpha (HIF-α)—a three isoforms of transcription factor responsible for the
expression of hypoxia adaptation genes, of which HIF-1α and HIF-2α are the most important [15].
Hydroxylation of HIF-α proline residues determines its inactivation, being a signal to its ubiquitination
and proteasomal degradation. When the oxygen supplies are low, PHDs are inactivated, which results
in stabilization of HIF-α and initiation of mechanisms that adapt cells to hypoxia. Several studies
have been made to examine the effects of preconditioning MSCs with PHDs inhibitors (reviewed
in [16]). To date, various PHDs inactivation strategies have been used in MSCs research (including
gene silencing), but only few studies have been performed using selective PHDs inhibitors. Here,
we report for the first time how treatment with Vadadustat—a selective HIF PHDs inhibitor—affects
paracrine functions and immunomodulatory properties of MSCs. Our findings reveal new aspects of
MSCs preconditioning with pharmacologically induced hypoxia, and we strongly believe that may
contribute to the improvement of MSCs-based therapies in the treatment of immune disorders.

2. Materials and Methods

2.1. Isolation and Culture of Human Bone Marrow-Derived Mesenchymal Stromal Cells (BM-MSCs)

BM-MSCs were isolated from bone marrow aspirates of patients without chronic diseases collected
during orthopedic surgery (the age and sex profile of donors is provided in Supplementary Table S1).
The procedure was performed in accordance with the approval of the Local Bioethics Committee
(number KB/115/2016) after receiving informed consent from each patient. Cells were isolated as
previously described [17,18]. Briefly, mechanically disassociated bone marrow samples were washed,
centrifuged, suspended and seeded on a plastic culture dish (BD Primaria™, BD Biosciences, San Jose,
CA, USA) in growth medium composed of low glucose DMEM (Biowest, Riverside, MO, USA)
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supplemented with 10% FBS (Biowest, Riverside, MO, USA) and antibiotic-antimycotic solution
(1% penicillin–streptomycin; 0.5% amphotericin B, Invitrogen, Thermo Fisher Scientific, Waltham,
MA, USA). The medium was replaced at day 4, when the first fibroblastic-like colonies of cells were
observed do be adhered on a dish. Cells were grown in 5% CO2/95% humidified air at 37 ◦C and
the medium was replaced every other day. All experiments were performed on at least 6 individual
populations (each population isolated from separate donor), between passage 4–6 and fulfilled currently
acknowledged criteria for identification of mesenchymal stromal cells (which we previously described
in [19]).

2.2. Human BM-MSCs Identification

2.2.1. Phenotyping of BM-MSCs by Flow Cytometry

BD Stemflow™ hMSC Analysis Kit (BD Biosciences, San Jose, CA, USA) was used to perform
BM-MSCs phenotypic characterization. For the purpose of MSCs characterization, cells at passage 4
were stained with antibodies of surface markers CD105 (PerCP-Cy™ 5.5), CD73 (APC), CD90 (FITC)
as well as negative expression markers CD45, CD34, CD11b, CD19, HLA-DR (PE) according to the
protocol provided by the manufacturer. Flow cytometry analysis was performed on BD FACS Canto II
using BD FACS Diva Software (BD Biosciences, San Jose, CA, USA).

2.2.2. Adipogenic Differentiation

To confirm the ability of isolated BM-MSCs to adipogenic differentiation, cells were grown
for 3 weeks in differentiating medium consisting of DMEM-high glucose (Biowest, Riverside, MO,
USA) supplemented with 10% FBS (Biowest, Riverside, MO, USA) and 1% penicillin–streptomycin
(Invitrogen, Thermo Fisher Scientific, Waltham, MA, USA), 10 µg/mL insulin, 60 µM indomethacin,
1 µM dexamethasone and 500 µM 3-isobutyl-1-methylxanthine (IBMX) (all MilliporeSigma, St. Louis,
MO, USA). The differentiation medium was replaced every third day. Accumulation of lipid droplets
in cells was visualized under a light microscope after the Oil Red O (MilliporeSigma, St. Louis, MO,
USA) staining procedure previously described in [19]).

2.2.3. Osteogenic Differentiation

Confirmation of the osteogenic differentiation ability was achieved by culturing cells for three
weeks in an osteogenic medium containing DMEM-low glucose (Biowest, Riverside, MO, USA)
supplemented with 10% FBS (Biowest, Riverside, MO, USA) and 1% penicillin–streptomycin (Invitrogen,
Thermo Fisher Scientific, Waltham, MA, USA), with 100 nM dexamethasone, 10 mMβ-glycerophosphate,
50 µM L-ascorbic acid 2-phosphate (all MilliporeSigma, St. Louis, MO, USA). The medium was replaced
every third day. Osteogenic differentiation of cells was evaluated by the visualization of calcium
deposits by Alizarin Red staining on fixed with 4% paraformaldehyde cells under light microscope.
Additionally, the activity of alkaline phosphatase was evaluated using the colorimetric method as
previously described in [19].

2.2.4. Chondrogenic Differentiation

Chondrogenic differentiation was achieved in three-dimensional culture of pelleted cells
performed in a 15 mL Falcon tube. Chondrogenic medium was composed of DMEM-high glucose
(Biowest, Riverside, MO, USA) supplemented with 0.5% FBS (Biowest, Riverside, MO, USA) and
1% penicillin-streptomycin (Invitrogen, Thermo Fisher Scientific, Waltham, MA, USA), with 100 nM
dexamethasone, 1% insulin-transferrin-selenium solution (ITS), 10 ng/mL TGFβ2, 100 µM l-ascorbic
acid 2-phosphate and 100 µg/mL sodium pyruvate (all MilliporeSigma, St. Louis, MO, USA).
1 × 106 cells suspended in a chondrogenic medium was pelleted by centrifugation and incubated with
differentiation medium for three weeks. Until day two, a spheroid cell structure was observed at the
bottom of the tube. The medium was changed every third day. The chondrogenic differentiation was
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conducted for 3 weeks. Then, the microsphere was fixed with 4% paraformaldehyde and underwent a
standard histological procedure of paraffinizing, microtome cutting and hematoxilin and eosin as well
as Masson trichrome and toluidine blue staining.

2.3. Preconditioning of Human BM-MSCs with Vadadustat

In the presented study “pharmacological” hypoxia was achieved by culturing cells with the
selective PHDs inhibitor, Vadadustat (AKB-6548, Akebia, Cambridge, MA, USA). Based on preliminary
data (Western blot analysis of HIF-1α stabilization and the MTT test) we decided to select the Vadadustat
concentration of 40 µM for further studies. Vadadustat was dissolved and stored in −80 ◦C as 5 mM
stock solution in DMSO according to the manufacturer instruction. Notably, no more than 0.8% (v/v) of
DMSO was finally present in the culture medium, which did not cause any noticeable cytotoxic effect
(MTT analysis presented in Supplementary Figure S1). The control group of MSCs was incubated with
the same dose (0.8% v/v) of DMSO alone.

2.4. BM-MSCs RNA Isolation

For isolation of RNA, cells from 6 donors were cultured in 60 mm dishes until approximately
70% confluency was reached. MSCs were then exposed to experimental conditions. Both, control cells
and 40 µM Vadadustat-treated cells were incubated at an atmospheric O2 concentration. After 6 h
treatment all cells were washed and disrupted in 350 µL of RLT buffer from the Qiagen RNeasy Mini
Kit (Qiagen, Hilden, Germany). Samples were then stored in −80 ◦C until further use. RNeasy Mini
Kit was used for total RNA extraction from MSCs according to the manufacturer’s isolation protocol.
The concentration and integrity of collected RNA samples were determined spectrophotometrically
using NanoDrop 1000 (NanoDrop Technologies, Thermo Fischer Scientific, Waltham, MA, USA) and
Bioanalyzer Chip RNA 7500 series II (Agilent Technologies, Santa Clara, CA, USA).

2.5. Gene Expression Analysis by Real-Time PCR

Reverse transcription was performed using a High Capacity cDNA Reverse Transcription Kit
(Applied Biosystems, Thermo Fisher Scientific, Waltham, MA, USA). A quantity of 2 µg of total RNA
was converted to cDNA according to producer’s instruction. Real-time PCR was conducted using
SYBR Select Master Mix (Applied Biosystems, Thermo Fisher Scientific, Waltham, MA, USA) in a
7500 Real-Time PCR System (Applied Biosystems, Thermo Fisher Scientific, Waltham, MA, USA). In each
20µL reaction 100 ng of cDNA template and 0.5µM forward and reverse primers was used. PCR reaction
was started with two initial steps at 50 ◦C and 95 ◦C each for 2 min, followed by 40 cycles of 95 ◦C for 15 s
and 60 ◦C for 1 min respectively. Standard curves were run on each plate to determine the amplification
efficiency. Primer pairs were purchased from the Laboratory of DNA Sequencing and Oligonucleotide
Synthesis, Institute of Biochemistry and Biophysics (IBB), Polish Academy of Sciences, Warsaw, Poland
(oligo.pl) and -MilliporeSigma, St. Louis, MO, USA). Primer pairs sequences of examined genes are:
IL1B FRD: 5′-CCACAGACCTTCCAGGAGAATG-3′, REV: 5′-GTGCAGTTCAGTGATCGTACAGG -3′;
IL24 FRD: 5′-CTTCTCTGGAGCCAGGTATCAG-3′, REV: 5′-GGCACTCGTGATGTTATCCTGAG-3′;
CCL28 FRD: 5′-CTGGAAAGAGTGAATATGTGTC-3′, REV: 5′-CTTGACATGAAGGATGACAG-3′;
ICAM1 FRD: 5′-ACCATCTACAGCTTTCCG-3′, REV: 5′-TCACACTTCACTGTCACC-3′; IL1R1 FRD:
5′-ATTTAAGCAGAAACTACCCG-3′, REV: 5′-TTGCAATCCTTATACCACTG-3′; LIFR FRD:
5′-AAGTTTATCCCCATACTCCTAC-3′, REV: 5′-CCTGGTAAATGCCAAGAAAG-3′; HIF1A FRD:
5′-GAAACTACTAGTGCCACATC-3′, REV: 5′-GGAACTGTAGTTCTTTGACTC-3′; IL6 FRD:
5′-GCAGAAAAAGGCAAAGAATC-3′, REV: 5′-CTACATTTGCCGAAGAGC-3′; CCL2 FRD:
5′-AGACTAACCCAGAAACATCC-3′, REV: 5′-ATTGATTGCATCTGGCTG-3′; TGFB3 FRD:
5′-TGTTGAGAAGAGAGTCCAAC-3′, REV: 5′-ATCACCTCGTGAATGTTTTC-3′; IL23A FRD:
5′-AGATAAATCTACCACCCCAG-3′, REV: 5′-CACATGTCAGTCAGTATTGG-3′; CXCL8 FRD:
5′-GTTTTTGAAGAGGGCTGAG-3′, REV: 5′-TTTGCTTGAAGTTTCACTGG-3′; IL17RD FRD:
5′-AGTAGCTTCAAAAGAACTGG-3′, REV: 5′-CTCGGGTTCTAAAGAAGAAAG-3′; PDCD1LG1 FRD:
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5′-GGCATCCAAGATACAAACTCAA -3′, REV: 5′-CAGAAGTTCCAATGCTGGATTA-3′; PDCD1LG2
FRD: 5′-GAGCTGTGGCAAGTCCTCAT-3′, REV: 5′-GCAATTCCAGGCTCAACATTA-3′; B2M FRD:
5′-TGGAGGCTATCCAGCGTACT-3′, REV: 5′-CGGATGGATGAAACCCAGAC-3′. Primer pairs for
LEP (Cat. no. qHsaCID0017538) and TNF (Cat. no. qHsaCED0037461) were purchased from Bio-Rad
Laboratories, Inc (Hercules, CA, USA). The relative quantification of a fold change in gene expression
was calculated using the Pffafl method based on ∆Ct and amplification efficiency of the transcripts
normalized to the B2M (β2-microglobulin) reference gene [20]. The expression of each gene in control
samples was appointed as 1. The analysis was performed in triplicate on cell populations from at least
6 BM-MSCs donors.

2.6. Analysis of BM-MSCs Cytokine Secretion by Antibody Array Proteome Profiler

The relative changes in secretory activity of Vadadustat treated BM-MSCs compared to control
cells were examined using the Proteome Profiler Human XL Cytokine Array (Cat. no. ARY022B,
R&D Systems, Bio-Techne, Minneapolis, MN, USA). The Proteome Profiler membrane-based antibody
array enables to simultaneously measure the relative level of 102 human cytokines in a single sample.
For the purpose of this assay, BM-MSCs from 6 donors were grown in a standard growth medium on a
6-well plates until approximately 80% confluency was achieved. 24 h before the start of the experiment,
all cells were primed with IFNγ (25 ng/mL, MilliporeSigma, St. Louis, MO, USA). Next day, cells were
washed and culture medium was replaced with OptiMEM Medium, no phenol red (Gibco, Thermo
Fischer Scientific, Waltham, MA, USA) with reduced FBS content to 4% and supplemented with
1.0% penicillin–streptomycin with/without Vadadustat 40 µM. Cells of each population were treated
in triplicate. After 24 h treatment cells supernatants were collected in an Eppendorf tube (1.5 mL),
centrifuged at 4500 rpm for 5 min, transferred to new tubes, mixed and divided into 200 µL aliquots
and frozen in −80 ◦C. Prior to the analysis, cell supernatants from 6 donors were thawed on ice and
pooled. The analysis was performed according to the manufacturer’s instruction. Chemiluminescence
of membranes was detected with ChemiDoc MP Imaging System (Bio-Rad Laboratories Inc., Hercules,
CA, USA) and the integrated optical density of each spot was measured and quantified using Image
Lab software (Bio-Rad Laboratories Inc., Hercules, CA, USA).

2.7. Quantitative Analysis of BM-MSCs Cytokine Secretion by Luminex Multiplex Immunoassay

The quantitative analysis of selected cytokines by the Luminex method was performed on cell
supernatants, the preparation of which was described above. Samples were not pooled in this analysis,
so supernatants from six populations were analyzed separately. The custom Luminex Multiplex kit
was purchased in R&D Systems (Bio-Techne, Minneapolis, MN, USA) and contained IL6, CXCL8, IL4,
IL10 and HGF analytes. The procedure was performed according to the manufacturer’s instructions.
The flow based magnetic beads reading was performed on Luminex LX-200 Instrument (Thermo Fisher
Scientific, Waltham, MA, USA). All samples were analyzed in duplicate.

2.8. Isolation and Identification of Peripheral Blood Mononuclear Cells (PBMCs)

Human PMBCs used in this study were freshly isolated from buffy coats each time. Buffy
coats were purchased at the Regional Blood Donation and Blood Treatment Centre in Warsaw as
medical waste from whole blood, which was centrifuged without a density gradient. The isolation
of PBMCs was performed within 4 h of collecting whole blood. Buffy coats were first diluted in
PBS (without calcium and magnesium) in 50 mL Falcon tubes, and then cells were separated by
density gradient centrifugation on Histopaque-1077 (MilliporeSigma, St. Louis, MO, USA). PBMCs
were collected from a plasma/Ficoll interface with a Pasteur pipette and transferred to a new 50 mL
falcon tube. Isolated PBMCs were then washed four times in PBS to rinse cells pellets and to reduce
platelet contamination. Finally, cells were suspended in growth medium composed of RPMI-1640
(Thermo Fischer Scientific, Waltham, MA, USA) with 10% human serum (Biowest, Riverside, MO,
USA) and 1% penicillin-streptomycin solution (Invitrogen, Thermo Fisher Scientific, Waltham, MA,
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USA) and counted. To obtain the monocyte-enriched population used in the migration assay, isolated
PBMCs were seeded on Primaria™ Tissue Culture Dishes at a density of 75 × 104/mL in RPMI-1640
(Biowest, Riverside, MO, USA) without serum. After two hours, the plates were vigorously washed
five times with PBS, then the adherent cells remaining on the dishes were scraped off and suspended
for further processing. The flow cytometric analyses of the PBMCs and monocyte-enriched were
performed by CD3 (PerCP Mouse anti Human Clone SP34-2), CD14 (FITC Mouse Anti-Human Clone
M5E2) and CD16 (PE-Cy™7 Mouse Anti-Human Clone 3G8) staining (all BD Biosciences, San Jose, CA,
USA) on BD FACS Canto II using BD FACS Diva Software (BD Biosciences, San Jose, CA, USA) and
analyzed by FCSExpress7 (De Novo Software, Glendale, CA, USA).

2.9. Mixed Lymphocyte Reaction (MLR) Assay

For the purpose of MLR assay human PBMCs were isolated from buffy coats from 6 healthy
blood donors. The assay was performed in three independent sets of experiments on two donors each.
Supernatants from 6 populations of IFNγ (25 ng/mL) primed BM-MSCs treated for 24 h with/without
Vadadustat 40 µM were used to determine the effect of Vadadustat pretreatment on immunomodulatory
activity of MSCs secretome. In this study, half of the isolated PBMCs were inactivated for 90 min with
γ-irradiation. Next, 1 × 105 both responder (active) and irradiated (stimulatory) PBMCs were seeded
into wells of 96-well plates in a combination of auto- (AAir, BBir) and allo- (ABir, BAir) stimulation.
Cells were maintained in RPMI-1640 (Thermo Fischer Scientific, Waltham, MA, USA) supplemented
with 10% FBS (Gibco, Thermo Fisher Scientific, Waltham, MA) and antibiotic–antimycotic solution
(1% penicillin-streptomycin; 0.5% amphotericin B, Invitrogen, Thermo Fisher Scientific, Waltham, MA).
The MLR assay were performed using 96-well plates. In the part of the wells where the direct effect of
Vadadustat on auto- and allostimulated PBMCs as well as its effect on the interaction between MSCs
and PBMCs were studied, 40 µM Vadadustat was added to the experimental wells daily as a stock
solution. Control wells were treated daily with equivalent volumes of DMSO. In the remaining wells, in
which the indirect effect of Vadadustat pre-conditioning on the interaction between MSCs and PBMCs
was studied, a 1:1 mixture of RPMI-1640 growth medium and supernatants from 24 h cell culture
of control or Vadadustat preconditioned MSCs was added once at the beginning of the experiment.
Plates were then cultured for 5 days at 37 ◦C in a humidified atmosphere with 5% CO2. After 5 days
of cell culture, PBMCs were pulsed with 1 µCi/well of 3H-thymidine (113 Ci/nmol, NEN) for the last
18 h of incubation and then harvested with an automated cell harvester (Skatron). The 3H-thymidine
incorporation into cells was measured based on the level of radioactivity reported as ‘Corrected Counts
per Minute’ (CCPM) using a scintillation counter (Wallac, PerkinElmer, Inc., Waltham, MA, USA).
All treatments were performed in triplicate.

2.10. Transwell Migration Assay

The effect of 40 µM Vadadustat preconditioning on the chemotactic properties of the BM-MSCs
secretome was investigated using a “96 Well Cell Migration Assay” reagent kit from Cultrex® (cat. no.
3465-096-K) (R&D Systems, Bio-Techne, Minneapolis, MN, USA), which utilize a simplified design of a
Boyden chamber with polyethylene terephthalate (PET) membrane with pores of 8 µm size. For the
migration test, we used monocyte-enriched PBMCs (n = 4) suspended in RPMI (Biowest, Riverside,
MO, USA) containing 0.5% human serum (Biowest, Riverside, MO, USA) at a density of 4 × 106/mL.
50 µL of cell suspension from each donor were applied to the upper chambers of the plate (2 × 104 cells
per well), each in duplicate. Quantities of 150 µL per well of growth medium (RPMI with 0.5% human
serum) or freshly thawed, pooled supernatants from cultures of 7 MSCs populations were applied to
the bottom chambers of the plate. Each of three treatments: growth medium alone, supernatants from
control MSCs and MSCs preconditioned with Vadadustat was applied in duplicate. Plates were then
incubated under standard conditions (37 ◦C, 5% CO2) for 48 h. After incubation, the upper chambers
were carefully aspirated and the cells that migrated to the bottom compartments of the plate were
detached using a cell dissociation solution with calcein acetomethylester (calcein-AM). Afterwards,
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plates were incubated at 37 ◦C for 30 min. During this time, cells internalized calcein-AM, and cellular
esterases then cleaved it into free calcein. Released calcein possess strong fluorescence, that was used
to estimate the number of migrated cells. After incubation, plates were disassembled and bottom
chambers were fluorescently read at 485 nm excitation and 520 nm emission on Perkin Elmer Victor X4
plate reader (PerkinElmer, Inc., Waltham, MA, USA). The degree of cell migration was assessed by
comparing fluorescence in the wells with MSCs culture supernatants to fluorescence in wells with
growth medium alone, and expressed as the ratio of migrating cells.

2.11. Statistical Analysis

The results were statistically analyzed using STATISTICA 13.1 software (Tibco, Palo Alto, CA, USA).
Shapiro-Wilk test was used to analyze the data distribution within groups. Wilcoxon matched-pairs
signed-rank test was used to determine statistical significance between two groups of related data with
abnormal distribution. Student’s t-test was used to evaluate significance between two groups of related
data with confirmed normal distribution. A p-value of < 0.05 (*) was considered statistically significant,
and p < 0.01 (**), or p < 0.001 (***) as highly significant. Graphs are presented as mean ± SEM (standard
error of the mean) unless otherwise indicated.

3. Results

3.1. Isolation and Characterization of Human BM-MSCs

MSCs isolated from bone marrow were identified according to the International Society for
Cell and Gene Therapy (ISCT) statement established in 2006 [21]. All isolated cell populations
were proven to form colonies and adhere to a plastic culture surface (a representative population
is shown in Figure 1b). The mean expression of surface markers from the 7 BM-MSCs population
was: CD73—99.5%, CD90—98.8%, CD105—99.4%, and no antigens CD45, CD34, CD11b, CD19 and
HLA-DR were detected on 97.6% cells (Supplementary Table S2). Figure 1a shows a representative
panel of BM-MSCs phenotyping results using flow cytometry (full panel in Supplementary Table S3).
Tri-lineage differentiation capability was confirmed as shown in Figure 1c–e.
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(hBM-MSCs). (a) Flow cytometry analysis of representative MSCs population. MSCs were positive
for CD73, CD90, CD105 and negative for CD34, CD45, CD11b, CD19, HLA-DR. (b) Representative
image of undifferentiated BM-MSCs morphology cultured under standard growth condition (21%
O2 and 5% CO2). Light microscopy, image scale 200 µm (c) chondrogenic differentiation of
BM-MSCs. Hematoxylin-eosin (HE) and Toluidine blue staining of BM-MSCs microsphere section.
Light microscopy, HE staining scale 200 µm, Toluidine blue staining scale 20 µm. (d) Osteogenic
differentiation of BM-MSCs. Control and differentiated cells stained with Alizarin red. Light microscopy,
scale 50 µm. (e) Adipogenic differentiation of BM-MSCs. Oil Red O staining of control and differentiated
cells. Light microscopy, scale 20 µm.

3.2. Vadadustat Preconditioning of BM-MSCs Affected the Expression of Genes Associated with the Regulation
of Immune Responses

Due to our particular interest in the regulation of immune functions by MSCs, we analyzed the
expression of genes related to their immunomodulatory properties. The list of examined genes was
based on our previous study evaluating Vadadustat-induced changes in the MSCs transcriptome
obtained by RNA sequencing (currently under review). The list included genes encoding factors
secreted by MSCs in response to immune stimuli (CCL2, IL6, CXCL8 and TNF), proteins involved in
signaling pathways activated by cytokines (e.g., IL17RD, LIFR, IL6R and ICAM1) and other immune
regulatory molecules PDCD1L1, PDCD1L2 or LEP (genes listed in Figure 2). We performed real-time
PCR analysis of selected genes on the 6 BM-MSCs populations incubated for 6 h under standard grown
conditions (control) or with 40 µM Vadadustat (Figure 2).
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Figure 2. Relative expression of chosen immune system-related genes performed by real-time PCR on
6 bone marrow-derived mesenchymal stromal cells (BM-MSCs) populations incubated for 6 h with
Vadadustat or under standard culture conditions (control). Results are presented as fold change in gene
expression in MSCs cultured with Vadadustat versus control MSCs ± SEM (standard error of the mean),
calculated by the Pfaffl method [20]. * indicates the statistically significant (p < 0.05), ** (p < 0.01) and
*** (p < 0.001) highly statistically significant differences obtained by Student’s paired t-test (for data with
normal distribution) or Wilcoxon matched-pairs signed rank test (for data with abnormal distribution)
of ∆Ct values of Vadadustat-treated samples in relation to ∆Ct of control samples.
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The results clearly demonstrate, that Vadadustat strongly down-regulated the expression of IL24
(−6.71), IL1B (−4.53), CXCL8 (−3.96) and slightly PDCD1LG1 (−2.35), PDCD1LG2 (−2.19), CCL2 (−2.03),
HIF1A (−1.83), ICAM1 (−1.61) and IL6 (−1.54), and up-regulated the expression of IL17RD (1.94), CCL28
(2.93) and LEP (4.86) compared with control cells. The results obtain for TNF (−1.05), IL23A (1.01),
IL1R1 (1.06), TGFB3 (1.21), IL6R (1.27), LIFR (1.39) did not differ significantly between control cells and
treated with Vadadustat.

3.3. Functional Activity of BM-MSCs Preconditioned with 40 µM Vadadustat

Genes expression analysis of Vadadustat-preconditioned BM-MSCs showed promising results
due to its potential influence on MSCs immunomodulatory properties. At the next stage, it was crucial
to determine whether these changes are reflected in the functional activity of MSCs. Several analyzes
related to MSCs activity were performed to determine whether this method of MSCs preconditioning
could enhance their immunosuppressive potential.

3.3.1. Preconditioning with Vadadustat Changed the Secretory Profile of BM-MSCs

The effect of Vadadustat preconditioning on BM-MSCs cytokine and chemokine secretion profile
was determined after 24 h cells treatment with 40 µM Vadadustat by the antibody based Proteome
profiler array (Figure 3a,b).Cells 2020, 9, x 10 of 19 
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Figure 3. Analysis of the secretome from 6 populations of human bone marrow-derived mesenchymal
stromal cells (hBM-MSCs) pretreated with Vadadustat for 24 h. (a,b) Proteome profiler analysis of
cytokines and chemokines whose secretion by MSCs: (a) increased or (b) decreased by at least 20% as a
result of 24 h pretreatment with 40 µM Vadadustat. Bars represent IOD (integrated optical density)
of antibodies-dots measured by chemiluminescent detection. The values above the bars show what
percentage of control MSCs secretion (indicated as 100%) are values obtained after incubation with
Vadadustat. Samples from 6 MSCs populations were pooled for the analysis. (c–g) Quantitative
evaluation of (c) IL6, (d) CXCL8, (e) HGF, (f) IL4 and (g) IL10 level in the secretome of 6 BM-MSCs
populations cultured under control conditions or preconditioned with Vadadustat, conducted using
Luminex assay. The samples were not pooled for analysis. Boxes show quartiles of secreted cytokine
amount in pg/mL with median, whiskers represent “min to max” values. * indicates the statistically
significant difference (p < 0.05) by Wilcoxon matched-pairs signed-rank test in the groups of related
data with abnormal distribution, and by Student’s t-test in the groups of related data with confirmed
normal distribution.

The analysis of cytokines and chemokines found in the pooled supernatants of 6 BM-MSCs
populations treated with Vadadustat showed a number of factors whose secretion changed when
compared to the control cell supernatants. The observed changes concerned both compounds whose
secretion increased (Figure 3a) as well as those whose secretion decreased (Figure 3b). Analysis of
the results indicated that among compounds whose secretion was downregulated by Vadadustat
treatment, the most prominent decrease was observed among the cytokines secreted in large quantities
by MSCs. The marked decrease in secretion was noted for myeloperoxidase (to 42% of the control
value), IL6 (to 49%) and CCL7 (to 58%). A decrease in secretion was also noted among compounds
secreted by MSCs in smaller amounts: lipocalin 2 to 51%, IL5 to 53%, LIF to 57%, Cripto1 to 59%,
CXCL8 to 60%, IL3 to 61% and IL24 to 64%. In addition, the level of five flagship cytokines related to
MSC immunomodulation: IL6, CXCL8, HGF, IL4, IL10 was measured in MSCs secretome using the
Luminex method. MSCs preconditioning with Vadadustat resulted in a reduction of IL6 secretion from
an average of 199 pg/mL to 103 pg/mL (49% decrease, Figure 3c). The CXCL8 secretion decreased on
average from 24.59 pg/mL in control cells to 15.46 pg/mL in those treated with Vadadustat (Figure 3d).
HGF secretion was reduced from an average of 128 pg/mL to 68 pg/mL (47% decrease, Figure 3e).
There were no statistically significant changes in the secretion of IL4 (14 ng/mL vs. 11 pg/mL, Figure 3f)
and IL10 (3.7 pg/mL vs. 3.1 pg/mL, Figure 3g) related to Vadadustat pretreatment.

3.3.2. Vadadustat Significantly Increased the Inhibitory Effect of MSCs on Proliferation of
Allostimulated PBMCs

A series of MLR assays were performed to evaluate the effect of Vadadustat preconditioning on the
inhibitory properties of BM-MSCs on PBMCs. The assays examined both the direct effect of Vadadustat
on the PBMCs and MSCs–PBMCs interaction as well as the indirect effect of incubating PBMCs
with supernatants from Vadadustat-preconditioned MSCs. PBMCs were obtained from 6 donors
and 6 BM-MSC populations were used. The results presented in Figure 4a clearly demonstrate that
Vadadustat enhanced an immunosuppressive activity of MSCs on PBMCs.
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auto-responsiveness of leukocytes. (a,b) Assessment of peripheral blood mononuclear cells (PBMCs)
activation and proliferation capacity in response to direct and indirect effects of Vadadustat by MLR.
MLR was performed on freshly isolated PBMCs from 6 donors, 6 populations of bone marrow-derived
mesenchymal stromal cells (BM-MSCs) and supernatants pooled from the culture of 6 BM-MSCs
populations. The experiment was conducted for 5 days. Results are presented as: (a) Effect of
Vadadustat on PBMCs alloreactivity and PBMCs–MSCs interaction, and (b) effect of Vadadustat on
PBMCs autoreactivity. Both assessed by measuring radioactivity of 3H-thymidine-incorporated cells
and reported as mean ‘Corrected Counts per Minute’ (CCPM) ± SEM (standard error of the mean).
** indicates the statistically significant difference for p < 0.01, *** for p < 0.001, **** for p < 0.0001 by
Friedman test with Dunn’s multiple comparison of mean rank of each group with a mean rank of an
alloactivated PBMC (control) in the groups of related data with abnormal distribution. ## indicates
statistically significant (p < 0.01) and ### (p < 0.001) highly significant differences between the two
treatment groups analyzed by Wilcoxon matched-pairs signed-rank test in the groups of related data
with abnormal distribution, and by Student’s t-test in the groups of related data with confirmed
normal distribution.

The PBMCs co-culture with control MSCs resulted in a statistically highly significant 22% decrease
in PBMCs proliferation compared to the value of allostimulated PBMCs (control). Furthermore,
five-day treatment of PBMCs-MSCs culture with Vadadustat resulted in a greater, 28% decrease in
allostimulated PBMCs proliferation compared to control cells. When the same PBMCs were cultured
for 5 days with the MSCs secretome (1:1 mixture of MSCs supernatants and RPMI growth medium),
a significant inhibition of PBMCs proliferation was also noted. The secretome of control MSCs caused
a decrease in PBMCs alloreactivity by 9%, and of MSCs preconditioned with Vadadustat by 16%
compared to allostimulated PBMCs. However, in both direct and indirect Vadadustat treatments,
a similar percentage decrease in PBMCs proliferation between the MSCs alone and preconditioned with
Vadadustat was determined (6–7%). In both treatments, the effect of Vadadustat was statistically highly
significant. Due to the very short half-life of Vadadustat (4.5 h according to the manufacturer [22]) in
the collected secretome of Vadadustat preconditioned MSCs (24 h incubation) there should no longer be
an active inhibitor. We noted lack of HIF-1a stabilization after 24 h MSCs incubation with Vadadustat,
confirmed by Western blot analysis (data not shown). Thus, we argue that the observed suppressive
effect of secretome from Vadadustat preconditioned MSCs was related only to the secretory activity of
cells and not to Vadadustat itself. However, in some part Vadadustat possess the direct effect on PBMCs
proliferation as well. Treatment of allostimulated PBMCs with Vadadustat caused a 5% decrease in
their proliferation. A much larger decrease in proliferation resulting from Vadadustat was noted in
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autostimulated PBMCs (Figure 4b), which reached 18%. However, it should be noted that PBMCs
autoresponsiveness remained at a much lower level. To summarize, the observed suppressive effect of
Vadadustat on the reactivity of PBMCs was both, associated with the changes in MSCs activity as well
as the direct effect on PBMCs.

3.3.3. Secretome from Vadadustat Preconditioned MSCs Significantly Reduced PBMCs Migration

96 Well Cell Migration Assay was performed to assess the effect of Vadadustat preconditioning
on the chemotactic properties of BM-MSCs secretome. We quantified the degree of 5 donors’ PBMCs
migration through a 8 micron PET membrane in response to stimulating and/or inhibiting compounds
contained in pooled supernatants collected from 7 MSCs populations incubated for 24 h with Vadadustat,
under standard growth conditions or with growth medium alone. For the purpose of migration analysis,
we used PBMCs fraction with enriched monocyte content. We obtained the monocyte-enriched PBMCs
by pre-culturing the cells on plates for 2 h, and applying a 5× PBS wash to leave only adherent cells.
Phenotypic analysis of precultured PBMCs by flow cytometry showed that nearly 76% of the cells
used in the assay were monocytes (CD14+), of which 66.5% were activated monocytes (CD14+CD16+)
(Figure 5a).Cells 2020, 9, x 13 of 19 
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populations in peripheral blood mononuclear cells (PBMCs) isolated or precultured in plates based
on CD3 (PerCP), CD14 (FITC) and CD16 (PE-Cy7) staining. PBMCs were gated based on FSC and
SSC, percentages of monocytes (CD14+) and activated monocytes (CD14+CD16+) in PBMCs are shown
in quadrants. (b) The analysis of chemotactic properties of secretome from 6 BM-MSCs populations
cultured for 24 h under standard conditions (control) and with Vadadustat on the migration of
monocyte-enriched peripheral blood mononuclear cells (PBMCs) (precultured PBMCs). The rate
of cell migration is presented as the ratio of migrating cells ± SEM (standard error of the mean),
obtained by comparing the fluorescence of PBMCs migrated to the growth medium (denoted as 1)
with the fluorescence of PBMCs migrated into the secretome of control and Vadadustat pretreated
MSCs. * Indicates the statistically significant (p < 0.05) differences obtain by Wilcoxon matched-pairs
signed-rank test in the groups of related data with abnormal distribution, and by Student’s t-test in the
groups of related data with confirmed normal distribution.

Cell migration from the inserts to the basal compartment of plate wells was assessed after
48 h of monocyte-enriched PBMCs incubation. The results presented in Figure 5b show that
within 48 h of incubation there was a significant, 53% increase in PBMCs/monocytes migration
in wells containing secretome of control MSCs compared to wells with growth medium alone.
Conversely, there was a statistically significant 46% decrease in cell migration in wells with secretome
of Vadadustat-preconditioned MSCs compared to migration in wells with secretome of control MSCs.
Moreover, there was a slight (17%) decrease in cell migration by comparing Vadadustat supernatants
with the growth medium alone, although this effect was not statistically significant.

4. Discussion

In recent years, great efforts have been made to develop methods for obtaining more effective and
safer MSCs for use in cell therapy. Many studies were carried out to determine the role of MSCs in the
regulation of the immune system, showing that their immunomodulatory capacity is a very plastic
feature [23]. The plasticity of MSCs immunomodulation is associated with the ability to elicit markedly
different modulatory responses, which results from the current state of inflammatory mediators in their
microenvironment. Development of a chronic inflammatory microenvironment, resulted from loss of
peripheral immune tolerance and excessive stimulation of innate and adaptive immune responses,
is associated with the course of autoimmune diseases. MSCs can target such an inflammatory
microenvironment by paracrine actions, demonstrating broad immunosuppressive, anti-fibrogenic,
anti-apoptotic and pro-angiogenic effects [24]. Immunomodulation attributed to the therapeutic
activity of MSCs is related to their function to modulate the proliferation, differentiation, adhesion,
and migration of immune cells under disease conditions. Since the immunosuppressive nature of MSCs
activity is generally therapeutically desirable, many approaches have been developed to modulate the
culture conditions of MSCs in order to obtain their inflammatory-resolving phenotype. While a number
of MSCs preconditioning strategies are currently being investigated, cytokine priming and recently
hypoxic pretreatment appear to be the major approaches used to increase MSCs immunomodulatory
properties [25,26]. Moreover, recent findings indicate that hypoxia inducible factor-1α (HIF-1α) is a
major regulator of the immunomodulatory functions of MSCs [27,28]. Although the effect of HIF-1α
stabilization by hypoxia mimetic agents on MSCs properties has already been studied (cobalt chloride,
deferoxamine, ciclopirox olamine, N-acetylcysteine, FG-4497, AKB-4924 [29–33], we used for the first
time Vadadustat (AKB-6548)—a novel oral PHD2 inhibitor tested in phase III clinical trials that works
through the mechanism of active site iron chelation in the submicromolar range [15]. Our research has
shown that Vadadustat pretreatment enhances the immunosuppressive potential of MSCs. Vadadustat
significantly enhanced the suppressive effect of MSCs on PBMCs proliferation (MLR test), and this
effect was partially associated with the modulation of MSCs secretome. However, the suppressive
capacity of MSCs was higher in direct contact with PBMCs. This may indicate that changes in both,
compounds secreted by MSCs and presented on their surface are responsible for enhancing the
immunosuppressive effect of MSCs pretreated with Vadadustat. Moreover, Vadadustat significantly
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diminished the chemotactic properties of the MSCs secretome, as assessed by the monocyte-enriched
PBMCs migration assay. It is difficult to discuss all factors whose regulation may have an effect on the
immunosuppressive capacity of Vadadustat-preconditioned MSCs, but some of them are of particular
importance. First of all, Vadadustat significantly decreased the expression of IL6 and the level of
secreted IL6 in relation to control MSCs. Considering that the level of IL6 can raise many thousand-fold
in the course of inflammation and autoimmune diseases, we believe that MSCs preconditioning with
Vadadustat may appear to be a very promising approach for the use in therapy of autoimmune diseases.
Another immune-related factor that is highly regulated by Vadadustat is CXCL8 (IL8). Preconditioning
with Vadadustat significantly reduces expression and secretion of CXCL8 by MSCs, as demonstrated
by real-time -PCR, proteome profiler and Luminex analyzes. CXCL8 is a chemokine considered to be
proinflammatory and chemotactic, especially to neutrophils. They are the most abundant group of
leukocytes, constituting the indispensable line of innate immune defense against infectious diseases and
their role in regulating the immune response is recently increasingly emphasized. However, neutrophils
infiltration and released neutrophil extracellular traps (NETs) are also mentioned as contributing to the
development of autoimmune diseases [34], especially rheumatoid arthritis (RA) [35], ANCA-associated
vasculitis (AAV) and systemic lupus erythematosus (SLE) [36]. Other chemotactic factors negatively
regulated in MSCs by Vadadustat were CCL7 (MCP-3) and CCL2 (MCP-1), that are both a potent
monocyte-attracting chemokines. The decrease in their secretion may constitute one of the factors
responsible for inhibiting monocyte-enriched PBMCs migration in the chemotaxis assay, especially
when considered together with the HGF, CCL11 and CCL17. It appears that the inhibitory effect of
Vadadustat preconditioning on the chemotactic properties of MSCs secretome may be therapeutically
positive, as abnormal infiltration and activation of monocytes and macrophages are observed in many
autoimmune diseases (reviewed in [37]). Conversely, real-time -PCR analysis showed a significant
increase in the expression of another chemokine—CCL28 after Vadadustat pretreatment. While CCL28
is responsible for the recruitment of various immune cells (which express CCR10 and CCR3) for
mucosal tissue and inflammatory sites, some data indicate that it is responsible for recruiting Treg,
maintaining tolerance of self antigens and preventing autoimmune diseases [38]. While there is a study
demonstrating that MSCs do not express TNF [39], we have received its expression and increase of TNF
secretion level by 237% in the secretome of Vadadustat-preconditioned MSCs (however, signal intensity
indicates that this level is extremely low). It seems that such small amounts may be responsible for
maintaining the MSCs immunosuppressive phenotype rather than providing wider pro-inflammatory
signaling. It should also be noted that detecting such small amounts of secreted factors might give
false results. Due to differences in the amount of secreted factors between MSCs populations, analyzes
of pooled samples may not reflect the true trend, especially when it comes to factors secreted in small
quantities. As demonstrated by Luminex, IL4 and IL10 are secreted by MSCs in very small amounts.
What is more, their level decreases after Vadadustat treatment—rather than increases as the proteome
profiler analysis showed—however, not statistically significantly. Therefore, the regulation of IL4 and
IL10 secretion by Vadadustat pretreated MSCs, described by many authors as one of the mechanisms
of MSCs immunomodulation, in this case does not seems to play a major role. It should be mentioned,
however, that Vadadustat was shown to significantly reduce the secretion of another member of the
IL10 family—IL24. The results obtained by real-time PCR as well as the proteome profiler showed a
significant decrease in its expression and secretion. Although this cytokine is involved in the process
of wound healing, the overproduction of IL24 underlies pro-inflammatory autoimmune diseases such
as psoriasis, allergic contact dermatitis, atopic dermatitis, rheumatoid arthritis and inflammatory
bowel disease [40,41]. Therefore, a decrease in the secretion of IL24 by MSCs as a result of Vadadustat
treatment seems to be a beneficial effect when considering the use of Vadadustat preconditioned MSCs
in the treatment of patients with autoimmune diseases.

In addition to soluble factors, contact-dependent signals are also responsible for MSCs
immunosuppressive activity. Our results showed that Vadadustat pretreatment caused a decrease in
ICAM1 expression, while after 24 h increase in secretion of its soluble form was noted. ICAM1 is an
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adhesion molecule ligand for LFA-1, leukocyte integrin crucial for T cell trafficking, activation and
proliferation [42]. Binding of ICAM1 with LFA-1 is involved in leukocyte endothelial transmigration.
Soluble ICAM1 binding to LFA-1 was shown to inhibit lymphocyte attachment to endothelial cells
(Rieckmann et al., 1995), and anti-ICAM1 or LFA-1 antibodies inhibit autoreactive T cell proliferation [43].
Therefore, the downregulation of ICAM1 expression together with increase in secretion of soluble
ICAM1 after Vadadustat may constitute another mechanism for MSCs immunosuppressive activity,
particularly promising in the context of inhibiting T cell autoreactivity. A more equivocal result
was a Vadadustat-mediated decrease in gene expression of another cell surface molecules: PD-L1
(PDCD1LG1) and PD-L2 (PDCD1L2). Both PD-L1 and PD-L2 represent cell surface ligands for the PD-1
receptor (programmed cell death protein-1) expressed on T and B cells as an immunological checkpoint
molecule. PD-1 is critical for modulating adaptive immunity by negatively regulating T-cell activation
and preventing excessive or self-oriented immune responses. It is known that licensing of MSCs with
proinflammatory cytokines (IFNγ, TNFα) increases the expression of PD-L1 and PD-L2 on their cell
surfaces [44,45]. MSCs inhibition of T cell proliferation was reported to function through the contact
dependent interaction of PD-1/PD-L1 [46–48]. The role of PD1 pathway in the immunomodulatory
activity of MSCs is even more complex, since secretion of soluble PD-L1 and PD-L2 by BM-MSCs
has also been reported [45]. We observed that the secretome from Vadadustat preconditioned MSCs
inhibited the alloreactivity of PBMCs more than the secretome from control cells. Therefore, we suppose
that despite the decrease in gene expression for PD-L1 and PD-L2 after pretreatment with Vadadustat,
MSCs may increase the secretion of their soluble forms. However, further research is needed to define
the role of Vadadustat in the by PD-L1 and PD-L2-mediated immunomodulatory function of MSCs.

In this study, we demonstrated that HIF-1 prolyl hydroxylase inhibition by Vadadustat positively
affects the immunomodulatory properties of hMSCs. Preconditioning with Vadadustat has several
particularly valuable features when considering the use of MSCs or MSCs secretome in the treatment
of autoimmune diseases. Vadadustat, which is currently being tested for the maintenance treatment of
patients with anemia secondary to chronic kidney disease in Phase III clinical studies (NCT02648347,
NCT02680574, NCT04313153), aspires to become an effective tool enhancing the therapeutic activity of
MSCs in the field of cell therapies.
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