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Abstract: Alzheimer’s disease (AD) is the most common type of dementia and is the leading cause of
disability in elderly people worldwide. Current pharmacological therapies do not cure the disease,
and for this reason, some pharmacotherapy studies have investigated preventive treatments focused
on modifiable nutritional factors such as diet. Quercetin (Qc) is a flavonoid found in fruits and
vegetables that has several biological properties. In this study, we evaluated the effect of chronic oral
quercetin administration (100 mg/kg) on neurodegeneration markers and cognitive and emotional
deficits in a triple transgenic Alzheimer’s disease (3xTg-AD) mouse model using histological and
behavioral analyses. Our results suggest that long-term (12 months) oral preventive treatment with
quercetin has significant effects on β-amyloidosis reduction and tends to decrease tauopathy in the
hippocampus and amygdala. These decreases positively affected the cognitive functional recovery
(without modifying the emotional skills) of 3xTg-AD mice. These findings suggest that preventive
and chronic administration of Qc might help to delay the development of histopathological hallmarks
and cognitive function deficits in AD.
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1. Introduction

The life expectancy has been increasing worldwide, and it is estimated that by 2030 there will
be almost 1.4 billion people over the age of 60 [1]. Due to the increased population of this age group,
Alzheimer’s disease (AD) and other types of dementias have become more frequent because their main
risk factor is increasing age. According to the World Health Organization, there are approximately
47.5 million people suffering from dementia, and there are 9.9 million new cases each year [1]. Dementia
of Alzheimer’s type is a progressive neurodegenerative disorder characterized by a decreased cognitive
function that usually begins with memory impairment. It is characterized by the accumulation of beta
amyloid (βA) and the hyperphosphorylation of tau, resulting in the formation of amyloid plaques and
neurofibrillary tangles, respectively [2]. These neuropathological markers induce the loss of synaptic
connections in specific regions of the brain, neuroinflammation and a high rate of oxidative stress
that triggers protein oxidation, lipid peroxidation, and DNA oxidation, thereby activating neuronal
apoptosis [3–6]. Despite an understanding of these cell death mechanisms and several years of invested
research, no drug has been successfully approved for the treatment of AD [7]. In addition, recent
research suggests that changes in people’s lifestyles, such as their diet, could also affect the incidence
of dementia [8–10].
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The majority of potential AD therapies that have been evaluated in animal models do not work or
have limited action when they are transferred to humans due to several types of comorbidities associated
with the cause and progression of AD [11]. Quercetin (Qc) is a molecule with a broad range of biological
properties impacting several diseases. It has been attributed to have anticancer, anti-inflammatory,
anti-atherosclerotic, antithrombotic, and antihypertensive activities, and it modulates the resistance to
different drug [12–16]. Flavonoids are powerful eliminators of reactive oxygen and nitrogen species,
which are associated with oxidative stress [16]. Although the mechanisms of neuroprotection by Qc are
not completely elucidated, its neural effect has been demonstrated in in vitro and in vivo models [17,18].
For example, in our previous study, we demonstrated that Qc administered for 3 months by IP injection
decreases extracellular β-amyloidosis and tauopathy and protects the cognitive and emotional function
in old triple-transgenic model mice with Alzheimer’s disease (3xTg-AD) [19]. However, it has not
been evaluated whether long-term oral treatment with quercetin might prevent cognitive impairments
prior to the development of histopathological hallmarks. The main aim of the current study was to
investigate this question to validate the translational potential of the therapy to humans.

2. Results

2.1. Preventive Quercetin Treatment Decreases Neurodegeneration Markers in 3xTg-AD Mice

Because tau and β-amyloid are the main neurodegeneration hallmarks in AD and develop
progressively in humans and in the 3xTg-AD mouse model, we analyzed the preventive effect of
quercetin in the apparition of these markers after 1 year of oral administration. When the Qc treatment
was finished, brain sections were selected in the Bregma −2.46 mm to analyze these neurodegeneration
markers by immunohistochemistry in the hippocampus, amygdala, and entorhinal cortex (Figures 1
and 2). The data showed thatβ-amyloid immunoreactivity increased significantly in CA1 of the hippocampus
and in the amygdala of 3xTg-AD mice, with a slight tendency at the entorhinal cortex (EC) in comparison
with non-Tg mice, with and without Qc. Interestingly, oral treatment with the flavonoid strongly prevented
β-amyloid aggregation in the CA1 and amygdala, without changes in the EC (Figure 1). Additionally, Qc
treatment did not generate changes in the weights of the mice (data not shown).
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Figure 1. Quercetin oral administration effect on the prevention of β-amyloid plaques in triple
transgenic Alzheimer’s disease (3xTg-AD) mice. (A) Representative images of βA immunoreactivity
in the CA1 region of the hippocampus, the amygdala, and the entorhinal cortex of 19-month-old
3xTg-AD and non-Tg mice treated with vehicle and quercetin. Magnification: 4x. Scale bar: 50 µm.
The values in the immunoreactivity graphs are expressed in relative densitometric units (RU) in CA1 of
the hippocampus (B) Amyg: amygdala (C) and EC: entorhinal cortex (D). Veh: vehicle (DMSO 0.5%).
n = 3. * p: < 0.05, **p: < 0.001, ***p: < 0.0001.
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Figure 2. Quercetin oral administration effect on the prevention of hyperphosphorylation of tau.
Representative images of the AT-8 immunoreactivity in the CA1 region of hippocampus, the amygdala
and the entorhinal cortex of 3xTg-AD mice and non-Tg 19-month-old mice treated with vehicle and
quercetin (A). Magnification: 10x. Scale bar: 50 µm. The values in the immunoreactivity graphs are
expressed in relative densitometric units (RU) in the CA1 of the hippocampus (B) Amyg: amygdala (C)
and EC: entorhinal cortex (D). Veh: Vehicle (DMSO 0.5%), Qc: quercetin. n = 3. * p: < 0.05.

Complementing the above findings, the AT-8 antibody showed a significant increase of
hyperphosphorylated tau in the CA1 region of the hippocampus and in the amygdala of 3xTg-AD Qc
mice. These effects were partially prevented by Qc, showing a similar aspect and densitometry as the
control groups. The EC did not present AT-8 changes in the groups (Figure 2).

2.2. Preventive Quercetin Treatment Protects Cognitive Function in 3xTg-AD Mice

It has been described that 3xTg-AD animals have a higher escape latency in the Morris water
maze (MWM) [19,20], which was supported by a longer trajectory of the 3xTg-AD mice in the pool in
trials one, five, and ten (Figure 3A), and a slight but significantly reduced latency is observed when
comparing Qc-treated 3xTg-AD mice with untreated animals (Figure 3B). These learning processes
may be related to the decreased plaques of βA and hyperphosphorylated tau in the CA1 area of the
hippocampus. In addition, Qc alone improved the learning task performance of the non-Tg mice
compared with the untreated control group (Figure 3B), mainly in the last four trials. However, the
memory tasks did not show a complete recovery after the treatment in the AD mice, only showing a
weak tendency to reduce the escape latency in the treated non-Tg and 3xTg-AD groups with respect to
the untreated groups (Figure 3C).
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Figure 3. Effect of quercetin oral administration on the spatial learning test in 3xTg-AD mice.
(A) Representative images of the trajectory in the MWM in one of the four positions in trials 1, 5, and
10. (B) Exhaust latency in the spatial learning test. (C) Latency of passing through the platform in the
learning retention test. The time is expressed in seconds. Data are represented as the mean ± SEM.
n = 8–19. * p: < 0.05; ** p: < 0.01; *** p: 0.001. * Differences between non-Tg Veh and non-Tg Qc; -
Differences between non-Tg Veh and 3xTG-AD Veh; + Differences between non-Tg Qc and 3xTG-AD
Veh; # Differences between non-Tg Qc and 3xTG-AD Qc.

2.3. Quercetin Tends to Improve Active Behaviors of 3xTG-AD Mice

The emotional behavior was evaluated to analyze the effect of Qc on the amount of time spent in
typical behaviors, such as stretching, grooming, rearing, and head-dipping, in the 3xTg-AD mice by
the elevated plus maze (EPM) and open-field (OP) tests. We observed that the frequency and time were
very similar, so only the time spent in each behavior is presented. In the EPM test, the 3xTG-AD Veh
animals tended to spend more time in the open arm (Figure 4A), and the 3xTG-AD Qc mice had values
very similar to the non-Tg Veh and non-Tg Qc mice, without changes in risk assessment behaviors
such as rearing, stretching, and head-dipping (Figure 4B–D). However, the 3xTG-AD Qc animals spent
more time grooming than the 3xTG-AD Veh group, which had similar times to the non-Tg Veh mice
in this behavior (Figure 4E). Additionally, the 3xTG-AD Veh mice spent more time freezing, which
was reduced by Qc treatment (Figure 4F), similar to the results obtained for the control groups. These
data were supported by more time spent in grooming (Figure 4J), and a tendency for increased rearing
(Figure 4I) and decreased freezing (Figure 4K) by the 3xTg-AD Qc mice in the open field test, without
significant changes in the other evaluated behaviors (Figure 4 G–I).
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Figure 4. Effect of quercetin oral administration on the emotional behavior of 3xTg-AD mice. Elevated
plus maze: Time spent on the open arms (A). Time spent rearing (B), head-dipping (C), stretching (D),
grooming (E), and freezing (F). Open field: Time in the center (G). Time spent on rearing (H), stretching
(I), grooming (J), and freezing (K). The measurement of time is expressed in seconds. The data are
represented as the mean ± SEM. n = 4–19. * p: < 0.05; ** p: < 0.01; *** p < 0.001.

3. Discussion

In this study, for the first time, we propose a primary prevention strategy for reducing the
neurodegeneration hallmarks and cognitive impairment of aged 3xTg-AD mice through the one-year
oral administration of quercetin, starting before β-amyloid spreading in the hippocampus and without
the presence of tauopathy at 6 months [21]. This finding implies that the molecule prevents amyloid
aggregation and PHF formation and/or its accumulation over the studied time period. The results
support that the use of this early therapy for AD could provide promising results [22], not only through
reversing the markers in late-stage AD in the 3xTgAD mice model (as we previously observed when
applying intraperitoneal administration [19]), but also by maintaining its protective properties, as
has been suggested by Dajas, 2015 [23]. Moreover, in vitro studies have demonstrated that quercetin
protects neurons against the cytotoxicity, protein oxidation, lipid peroxidation, and apoptosis caused
by βA and regulates the activity of antioxidant genes [24,25], supporting its action as an antioxidant,
anti-inflammatory, anticancer, anti-stress, and antidiabetic compound [16,23,26,27].

It is probable that these beneficial effects are reflected in the improved learning performance of
the non-Tg mice treated with quercetin compared to that achieved in the 3xTgAD group. Although we
detected better learning in the AD mice, there were no changes in the retention test, which evaluates
memory, maybe because consolidation is dependent on the interactions of the hippocampus with
other areas such as the amygdala and entorhinal cortex [28], which were less able to be recovered by
the treatment.

The amygdala is part of the limbic system and is involved in attention, perception, emotional
memory, declarative memory, and explicit memory [29]; although there was a significant reduction of
β-amyloid in the amygdala, which could partially explain the weak effect of Qc on the emotional tasks,
only a tendency toward more active behaviors (i.e., less freezing, more rearing, and more grooming)
similar to that of the control groups was observed, suggesting better neuronal connectivity in the
3xTg-AD mice. There were no AT-8 immunoreactivity changes in the amygdala and EC in mice,
which is in agreement with previous studies [19,30]. Therefore, the anxiolytic role of quercetin is not
conclusive, in contrast to other studies [19,27,31,32]. The findings of the previous studies probably
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resulted from decreased targeting of the molecule in the EC in the animal model, thus showing the
main action in the CA1 hippocampal region.

The neuroprotective mechanisms of quercetin are controversial because the in vitro results are
very clear but the in vivo results are not; in some investigations, quercetin causes neuroprotection, but
others do not show neuroprotection even after long-term oral administration [23]. One of the variables
related to this issue could be the age of the animals upon quercetin administration. As in humans,
when AD is in an advanced stage, it is very difficult to reverse the neurodegeneration process. It is
highly probable that Qc treatment does work in humans, considering that this compound has similar
bioavailability properties in rats and humans and it has no differences by sex [33]. However, previous
studies report that the natural powder extract of foods enriched in Qc have better availability than
dihydrate powder [33], and also work better in the food matrix [34]. In addition, chronic administration
and daily doses should be specifically analyzed because some side effects have been reported, showing
predisposition to primary renal damage and breast cancer susceptibility [35]. Therefore, studies
controlling those variables, specifying doses per type of comorbidity, and clinical trials including
middle cognitive impairment patients should be developed.

Nevertheless, with our present study, we are close to discovering a preventive intervention that
could be successful in decreasing the probability of βA or tau accumulation in the brain, and in this
way, prevent the toxic environment that initiates the neurodegeneration cascade. Further, AD is a
multifactorial disease where the toxic context could be the result of different insults to the body, and
quercetin has been shown to have beneficial effects in many diseases, such as hypertension, diabetes,
and atherosclerosis, as well as against oxidative stress and inflammation [12–16]. Therefore, this
molecule is a good candidate for the prevention of Alzheimer’s disease, but the availability of this
compound must be improved to achieve more general and conclusive results.

4. Materials and Methods

4.1. Animals

Homozygous triple-transgenic 3xTg-AD mice (PS1M146V knock-in, APPswe, taup301L) and PS1M146V

knock-in mice (named non-Tg) from the in-house colony at the University of Antioquia that were
maintained at the SIU (Sede de Investigación Universitaria) specific pathogen-free vivarium in Medellin,
Colombia, were used at 6 months old [21]. The mice were maintained on a 12:12 h dark:light cycle and
received food and water ad libitum. The animals were handled according to Colombian standards (law
84/1989 and resolution 8430/1993) and guidelines. Special care was taken to minimize animal suffering
and to reduce the number of animals used. The animals were weighed at 6, 10, 13, and 16 months,
and a genetic control was applied to all procedures that involved the 3xTG-AD mice. The genotype
was verified using liver and tail tissue, following the Antioquia Neuroscience Group’s genetic control
protocol for 3xTG-AD mice.

4.2. Quercetin Administration

Quercetin was obtained from a commercial source (Cayman Chemical, Cat: 10005169) and
dissolved at a concentration of 100 mg/kg in saline solution containing 0.5% dimethyl sulfoxide
(DMSO). The administration began when the animals were 6 months old and took place by gavage
every 48 h for 1 year.

4.3. Elevated Plus Maze

To evaluate anxiolytic activity, the animals were exposed to the elevated plus maze (EPM). The
EPM was composed of white Plexiglas and was illuminated at approximately 30–40 lux. The apparatus
consisted of two open arms (30 × 5 × 0.25 cm) and two closed arms (30 × 5 × 15 cm) extending from a
common central platform (5 × 5 cm). The entire apparatus was elevated on a single central support to
a height of 60 cm above the floor. Each mouse was placed in the middle section facing an open arm
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and was allowed to explore the maze for a single 5 min session during which the experimenter was
out of view. After each trial, the maze floor was wiped clean with 10% alcohol.

The following parameters were recorded: frequency of open and closed arm entries (arm entry
was defined as all four paws in the arm), total arm entries, and the amount of time spent by the
animals in the open and closed sections of the maze. These data were used to calculate the % open or
closed arm entries (e.g., open entries/total entries × 100) and the % time spent in the open or closed
arms (e.g., open time/300 × 100). The frequency and duration of standard behaviors were measured,
including rearing (all rearing occurred against the walls of the enclosed arms), as well as discrete
behaviors such as head dipping (exploratory movement of the head/shoulders over the side of the
maze), stretched attentive postures (stretching, an exploratory posture in which the mouse stretches
forward and retracts to the original position without traveling forward), grooming (a species-typical
sequence beginning with the snout, progressing to the ears and ending by grooming the entire body),
and freezing (remaining motionless). Each experiment was videotaped using a high-resolution video
camera. The data were collected and analyzed using X-Plo-Rat 2005 software.

4.4. Morris Water Maze

A white plastic tank 1 m in diameter and 30 cm in height was filled with water (22 ± 2 ◦C) to a
depth of 20 cm. A platform (7 cm diameter) was placed 1.5 cm below the surface of the water during
the spatial learning task and 1.5 cm above the surface of the water during the visible session. Extra
visual cues around the room remained in a fixed position throughout the experiment. Ten sessions or
trials were performed, two complete sessions per day, for five days (Figure 1). Each session consisted
of four successive subtrials (30 s intertrial interval), and each subtrial began with the mouse placed
pseudorandomly in one of four starting locations. The animals had been trained to stay on the platform
for 30 s prior to the initial trial. The latency to reach the platform was evaluated using a visible platform
to control for any difference in visual-motor abilities or motivation between the experimental groups. If
a mouse did not locate the platform after a maximum of 60 s, it was gently guided to the platform. The
animals were then given 48 h of retention time, followed by a probe trial of spatial reference memory
in which the animals were placed in the tank without the platform for 60 s (Figure 1). The latency to
reach the exact former platform location and the number of crossings of the platform target quadrant
were recorded during the probe trial. An automated system (Viewpoint, Lyon, France) recorded the
behavior of the animals.

4.5. Immunohistochemistry

The tissue sections were initially treated with methanol (50% v/v) and hydrogen peroxide (30% v/v)
in 0.1 M PBS (pH 7.4) for 20 min to inhibit endogenous peroxidase activity. Three washes with 0.1 M
PBS were then performed, and the nonspecific binding sites were blocked for 1 h using a preincubation
solution consisting of 0.1 M PBS containing BSA (1%) and Triton X-100 (0.3% v/v). Next, the sections
were incubated overnight at 4 ◦C in a primary antibody that was diluted in incubation solution (0.3%
BSA and Triton X-100 (0.3% v/v) in 0.1 M PBS). Anti-βA (monoclonal 1–16 (6E10), #SIG-39320, Covance,
1:500) and anti-phospho-PHF-tau (pSer202/Thr205 (AT8), #MN1020, Thermo Scientific, 1:500) antibodies
were used. The next day, the sections were washed three times in 0.1 M PBS for 5 min each and then
incubated for 1 h at room temperature with the secondary antibody (1:250 dilution, biotin-conjugated
goat anti-rabbit IgG (H + L), #31822; or biotin-conjugated goat anti-mouse IgG (H + L), #31800, Pierce),
depending on the host species from which the primary antibody was prepared.

After three washes with 0.1 M PBS, the tissues were incubated in avidin-biotin complex (1:250
reagents A and B, ABC Standard Peroxidase Staining Kit, #32020, Pierce) for 1 h. After the complex
was removed, three additional washes were performed, and diaminobenzidine (DAB) was used to
develop the reaction. Subsequently, the sections were dehydrated using an alcohol series, cleared with
xylene, and sealed using Consult-mount. The quantification of immunoreactivity in the examined
areas was determined using a 10× or 40× objective and was analyzed using Fiji ImageJ 1.45 software
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(NIH; Madison, WI, USA). The tissues incubated in the absence of a primary antibody did not display
immunoreactivity. The regions including the CA1 (hippocampus), the entorhinal cortex (EC), and the
amygdala were evaluated at Bregma −2.46 mm (Paxinos and Franklin, 2004).

4.6. Experimental Design

Quercetin (100 mg/kg) and 0.5% DMSO were administered orally every 48 h for one year to
6-month-old knock-in PS1 and 3xTG-AD (knock-in PS1, APP and tau) mice. When the mice were
18 months old, they were tested for EPM and OP (over the course of 4 days), and MWM (learning,
retention and visible test) was performed over the course of 9 days. The animals were then sacrificed
for histological analysis (Figure 5).
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4.7. Statistics

A total of 3 mice were used for each immunohistochemistry assessment, and 4–19 mice were used
for each behavioral assay. We applied the Shapiro–Wilk normality test to the data. The parametric data
were evaluated via analysis of variance (ANOVA) to compare the 4 groups, followed by Tukey’s test
for post hoc multiple comparison between-group analyses. The nonparametric data were evaluated
using the Kruskal–Wallis test. The escape latency in the training test was determined via two-way
ANOVA, followed by Tukey’s post hoc test for multiple comparisons. The statistical analyses were
performed using GraphPad Prism software (version 6.0), and the results were significant at p ≤ 0.05.
The values are expressed as the means ± SEM.

5. Conclusions

Our study proposes that quercetin could be a promising primary preventive strategy for
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