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Abstract

Reverse engineering approaches to constructing gene regulatory networks (GRNs) based on genome-wide mRNA
expression data have led to significant biological findings, such as the discovery of novel drug targets. However, the
reliability of the reconstructed GRNs needs to be improved. Here, we propose an ensemble-based network aggregation
approach to improving the accuracy of network topologies constructed from mRNA expression data. To evaluate the
performances of different approaches, we created dozens of simulated networks from combinations of gene-set sizes and
sample sizes and also tested our methods on three Escherichia coli datasets. We demonstrate that the ensemble-based
network aggregation approach can be used to effectively integrate GRNs constructed from different studies – producing
more accurate networks. We also apply this approach to building a network from epithelial mesenchymal transition (EMT)
signature microarray data and identify hub genes that might be potential drug targets. The R code used to perform all of
the analyses is available in an R package entitled ‘‘ENA’’, accessible on CRAN (http://cran.r-project.org/web/packages/ENA/).
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Introduction

With the advent of high-throughput technologies such as

microarrays, next generation sequencing, and other state-of-the-

art techniques, huge datasets have been generated in a variety of

contexts (e.g., cancer and aging) in order to identify novel

biomarkers and drug targets [1]. However, the utility and

interpretation of those collected data remains challenging and

needs to be improved. Recently, reconstructions of gene regulatory

networks (GRNs) from high-throughput data have been widely

used to identify novel drug targets or therapeutic compounds [1–

4]. GRNs provide new information regarding gene-gene interac-

tions and how they work in networks to regulate cellular functions,

allowing for a systematic understanding of the molecular and

cellular mechanisms underlying specific biological functions and

processes [5–10]. For GRNs in particular, genes that have many

interactions with other genes (called ‘‘hub genes’’) are likely to be

‘‘drivers’’ of disease status, based on their GRN regulatory roles.

An analysis of hub genes is thus a promising approach for

identifying key tumorigenic genes for both basic and clinical

research [11–15].

Although accurate reconstruction of GRNs has proven valuable

to a myriad of areas throughout biomedical research, the method

remains only moderately satisfactory [7–10]. Researchers have

previously used approaches such as Bayesian Network- [16,17],

Correlation- [18], and Partial-Correlation-based approaches

[19,20], all of which have demonstrated various strengths and

weaknesses under different biological/simulation settings, with no

one method excelling under all conditions [21]. Additionally,

leveraging gene expression data from multiple datasets to construct

gene networks is often difficult, due to discrepancies in microarray

platform selection as well as in normalization and data processing

techniques [22–24]. In this study, we propose an Ensemble-based

Network Aggregation (ENA) approach to integrate gene networks

derived from different methods and datasets, to improve the

accuracy of network inference.

For the construction of our ENA, we used a non-parametric,

inverse-rank-product method to combine networks reconstructed

from the same set of genes. The rank-product method, introduced

by Breitling et al [21,25,26], is effective for detecting differentially

expressed genes in microarray studies. Because the rank-product

method is both powerful and computationally efficient, it has now

been extended for use in other fields, such as RNAi screening [27]

and proteomics [28]. Additionally, this method can be directly

related to linear rank statistics [29]. In this study, we show three

ways to leverage this approach to generate ensemble-based

networks: 1) samples in a dataset can be ‘‘bootstrapped’’ to

reconstruct multiple networks out of a single original dataset using

a single reconstruction method, which can then be aggregated into

a more accurate and reproducible network; 2) networks produced

by various reconstruction methods can be aggregated into a single

network that is more accurate than the network provided by any

individual method; and 3) networks reconstructed from different

studies that contain the same genes can be combined into a single,

more accurate network, despite differences in platforms or

normalization techniques. Because this approach requires few
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resources, it can be applied efficiently to dozens or hundreds of

networks reconstructed on the same set of genes. We show here

that this approach has the ability to improve the accuracy of GRN

reconstruction in all three of the above-described applications,

based on simulated gene expression data as well as on Escherichia
coli (E. coli) datasets [30–33].

An important application of network reconstruction is to

identify hub genes in a network that might be biologically and

pharmaceutically interesting. When we applied ENA to micro-

array data that was previously used to delineate an epithelial-

mesenchymal transition (EMT) signature [34], we built a network

for the identification of hub genes that had been experimentally

validated to be EMT-relevant, thus representing potential drug

targets. Though our demonstration is focused on microarray data

for consistency purposes, ENA should be easily implemented in

the analysis pipeline of next-generation sequencing (NGS) data,

such as RNA-Seq. Cutting-edge technology enables the simulta-

neous measurement of millions of cellular data points and sheds

light on a brand-new pattern in drug discovery, where medication

is viewed in the context of pathways and networks rather than

individual proteins or genes [1]. In the near future, in combination

with patient-specific genomic profile and drug-target interaction

knowledge, GRNs could be used to facilitate both the prediction

and treatment of personalized therapy [2].

Materials and Methods

Overview of the inverse-rank-product network
aggregation approach

Reconstructed gene networks are often returned as a weighted

undirected graph G~(N,V), where G is a reconstructed graph,

N~f1,:::,n g
V~½vij �i,j[N is referred to as the adjacency matrix, in which vij

represents the confidence score of the interaction between genes i

and j. A larger (absolute) value of vij indicates a stronger

interaction or higher confidence in the edge between genes i and j,

while vij~0 indicates no interaction or conditional independence

between genes i and j. Some techniques, such as Sparse PArtial

Correlation Estimation (SPACE) [19], return a sparse matrix in

which many of the possible interactions are 0; other techniques

return complete graphs in which all edges are assigned non-zero

weightings. Additionally, the distribution of vi can vary drastically

among reconstruction techniques. For this reason, aggregating

networks that were reconstructed using different techniques or

different datasets is challenging. However, the rank-based method

offers a non-parametric approach that does not depend on the

actual distribution of scores of edges derived from different

methods [35]. In this study, we used a rank-product method to

combine networks to overcome the problem of different distribu-

tions observed in this approach.

Specifically, suppose G~fGkg is a set of networks constructed

on the same set of genes N, wherek~f1,:::,Kg is the index of a

particular network. For each single network Gk~(N,Vk), we

calculate rk
ij , the rank of vk

ij for fi,j[N and ivjg. Since the

adjacency matrix V of an undirected graph is symmetric, we only

need to calculate the rank of the N � (N{1)=2 elements in vij ,

constituting the lower triangle (i,j) of V. In this study, we assign

the lower rank to the higher confidence interaction. For example,

the interaction with the highest confidence will have rank 1. This

operation is performed on each individual graph Gk indepen-

dently. After the rank of rk
ij has been computed for each network

Gk, we calculate the rank of a particular edge between genes i and

j in the aggregated network by taking the product of the ranks of

the same edge across all networks in G , according to: ~rrij~ P
K

k~1
rk

ij .

This function is iterated over all possible edges to construct the

aggregated network ~GG~(N,~rrij), in which the confidence scores of

the edges in the new network are based on the aforementioned

rank-product calculation.

This algorithm can be efficiently applied to large networks with

many reconstructed networks in G . The complexity of the

algorithm is that O K :DN D log DN Dð Þð Þ, as
DN D2{DN D

2
~O(N2)

elements must be sorted for each network in Gk.

Three applications of our ENA approach
The initial application was to leverage the rank-product method

to ‘‘bootstrap’’ samples. Each time, we constructed the gene

network using a randomly selected subset of the available samples.

By repeating this process B times, we created a set G consisting of

B graphs, each reconstructed using only randomly selected

bootstrap samples in the dataset. For example, here is the

procedure to generate the bootstrapping network from a

microarray dataset designated MD:

MD
Bootstrap

8><
>:

MD1?G1~fN,V1g?r1
ij (for 1ƒivjƒn)

..

. ..
. ..

.

MDB?GB~fN,VBg?rB
ij (for 1ƒivjƒn)

:
?

8
RankProduct? ~GG

Of course, this bootstrapping procedure inflates the computa-

tional complexity of GRN reconstruction by several orders of

magnitude, as GRNs must be reconstructed B times rather than

just once. Because each graph in G can be reconstructed

independently, it is possible to take advantage of the ‘‘paralleliz-

ability’’ of these simulations by utilizing multiple cores or

computers, as we discuss below. Note also that the complexity of

GRN reconstruction does scale on the order of samples included,

so that each permuted GRN can be constructed slightly more

quickly than a single global GRN. For the reconstruction

techniques employed in this study, however, the performance

did not vary greatly based on the number of samples included.

The second application of the rank-product network merging

method was to reconstruct an aggregated GRN, based on the

output of multiple different reconstruction techniques. We have

observed that reconstruction techniques perform differently based

on different simulation settings [21], with no one method

outperforming the others on all metrics. Thus, we were interested

to see whether or not merging these GRNs would improve

performance. In this application, the set of graphs Gconsist of one

graph per network reconstruction technique employed. In our

analysis, we leveraged GeneNet [20], Weighted Correlation

Network Analysis (WGCNA) [18], and SPACE, creating a set of

three graphs which could then be aggregated. GeneNet and

SPACE are partial-correlation-based inference algorithms. Gene-

Net uses the Moore-Penrose pseudoinverse [36] and bootstrapping

to estimate the concentration matrix. The SPACE algorithm

creates a regression problem when trying to estimate the

concentration matrix and then optimizes the results with a

symmetric constraint and an L1 penalization, while WGCNA is

a correlation-based approach that can identify sub-networks using

hierarchical clustering. Conceptually, the aggregated graph should

place higher confidence on those edges that consistently rank

highly across the three methods and lower confidence on those

edges that ranked highly in only one graph. The following

procedure is used to derive the ensemble network, based on M

Ensemble-Based Network Aggregation
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different methods within the same dataset MD:

MD

� method1
G1~fN,V1g?r1

ij (for 1ƒivjƒn)

..

. ..
. ..

.

methodM
GM~fN,VMg?rM

ij (for 1ƒivjƒn)

:
?

8
RankProduct? ~GG

The final application evaluated in this study was in the merging

of networks constructed from different datasets. Historically, gene

expression datasets have been collected from various sites on

different microarray platforms with different procedures for tissue

collection, which creates incompatibilities and difficulties when

performing analyses on data from different datasets simultaneous-

ly. Because the rank-product method makes no assumptions about

the distribution of the data at any point, we employ it to combine

GRNs produced from different datasets, yielding a single

aggregated GRN which aims to capture the consistencies in

network topology from the GRNs produced on different datasets.

We thus derive the aggregated network from datasets MD1,

MD2…. MDD as follows:

MD1 ? G1~fN,V1g ? r1
ij (for 1ƒivjƒn)

..

. ..
. ..

.

MDD ? GD~fN,VDg ? rD
ij (for 1ƒivjƒn)

:
?

8
RankProduct? ~GG

Software
The code used to bootstrap samples and aggregate the resultant

networks was written in the R programming language. We created

an R Package entitled ‘‘ENA’’ and made it available on CRAN

(http://cran.r-project.org/web/packages/ENA/index.html), from

which the compiled binaries, as well as all original source code, are

also available for download.

Because of the parallelization opportunities in this algorithm, we

ensured that our software would be able to distribute the

bootstrapping process across multiple cores and multiple nodes

using MPI [37]. Thus, if 150 CPU cores were available

simultaneously, a bootstrapping of 150 samples could run in

approximately the same amount of wall-clock time as a single

reconstruction using all the samples. The ENA package includes

robust documentation and (optionally) leverages the RMPI

package to allow for parallel execution of the bootstrapping

simulations, where such a computational infrastructure is avail-

able.

Additionally, we leveraged the Git revision control system via

GitHub (http://github.com) to control not only the R code

developed for the ENA package, but also all code, reports, and

data used in the aforementioned simulations and reconstruction

techniques; all of this code is freely available at https://github.

com/QBRC/ENA-Research. All the data analysis code used to

generate the results in this study was compiled into a single report

and can be reproduced easily using the knitr R package [38,39].

Due to the computational complexity involved in reconstructing

this quantity of gene regulatory networks, the execution may take

some time to analyze larger networks if the process is not

distributed across a large computing cluster.

Reproducibility
Our analysis code and results were structured in reproducible

reports, which are publicly available at https://github.com/

QBRC/ENA-Research. The results in this study can be regener-

ated by a simple mouse click to make everything transparent to

researchers.

Results

Simulation
We first tested the ENA methods on a wide array of simulated

datasets. We simulated the gene expression datasets based on

previously observed protein-protein interaction networks [40,41]

from the human protein reference database (HPRD), while the

expression data were simulated from conditional normal distribu-

tions [42]. We extracted five different network sizes in an

approximately scale-free topology: 17 genes with 20 connections,

44 genes with 57 connections, 83 genes with 114 connections, 231

genes with 311 connections, or 612 genes with 911 connections by

varying the number of publications required for each connection.

For example, if we required each connection to be supported by at

least 7 publications (the most reliable connections), it resulted in a

very small network with 17 connections; while if we required each

connection to be supported by at least 3 publications, it led to a

very large network with 911 connections. For each network size,

we simulated datasets with differing numbers of samples (micro-

arrays): 20, 50, 100, 200, 500, and 1,000. Finally, we varied the

noise by setting the standard deviation of the expression values to

0.25, 0.5, 1.0, or 1.5. In total, we generated 120 datasets to cover

all possible arrangements of the above variables.

To test the effect of integrating networks derived from different

datasets, we generated three different datasets of 200 samples each

from the 231-gene networks with noise values (standard deviation

of the distribution of gene expression) of 0.25, 1, and 2. We used

the methods described above to reconstruct three networks (one

from each dataset) and then aggregated those networks. For

comparison, we also combined all three datasets into a single

dataset containing these 600 samples and then reconstructed a

single network from this larger dataset.

The performance of methods in this setting can be represented

by a Receiver Operating Characteristic (ROC) Curve, which plots

the True Positive Rate against the False Positive Rate, demon-

strating the performance of the method at all relevant edge

confidence score thresholds. The performance of a method can be

quantified by calculating the Area Under the ROC Curve (AUC).

The greater the AUC, the better the performance of the method

represented. A perfect reconstruction would have an AUC of 1,

while a random guess would obtain an AUC of 0.5. An alternative

approach to evaluating gene regulatory network reconstruction is

the Area Under the Precision Recall curve (AUPR). In a precision

recall curve, recall (also known as sensitivity) is plotted against

precision (positive predictive value).

ENA of bootstrapping samples
We found that bootstrapping samples can increase the accuracy

of network inference. In our study, we randomly selected 70% of

all samples and rebuilt networks and repeated the abovementioned

process more than 100 times for each dataset to get the

bootstrapping results. For example, the networks reconstructed

from the dataset on the 231-gene network with a noise value of

0.25 can be compared to demonstrate variations in performance

(Figures 1 and 2).

Figure 1 (left) shows that by bootstrapping samples using the

SPACE algorithm, the AUC of the reconstructed network can

improve from 0.748 to 0.816. In order to evaluate the precision of

ENA, we also plotted the Precision-Recall Curve (Figure 1, right);

the area under the precision-recall curve improved from 0.249 to

Ensemble-Based Network Aggregation
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0.273. Figure 2 shows the degree of AUC improvement with each

iteration of bootstrapping in SPACE, WGCNA and GeneNet with

sample sizes of 20, 50 and 100 (left, middle and right panels). As

shown in this figure, the bootstrapping method increases the

performance of SPACE substantially, improves GeneNet slightly

(when the number of microarrays is small), but does not noticeably

improve the performance of WGCNA. The AUC improvements

for different sample sizes and different network sizes are plotted in

Figures S1–S4 in File S1. From these figures, we can see that

SPACE benefits from bootstrapping in 80% of all simulated

networks and in 89% of ‘‘large’’ network simulations. Figure 3

shows the average performance increase achieved by bootstrap-

ping SPACE on different network sizes. The improvement

increases as the network size increases. Based on this evidence,

we suggest employing the bootstrapping approach when using the

SPACE algorithm, but not when using the others evaluated in this

study.

ENA of different methods
Aside from optimizing individual reconstruction techniques, we

found that combining different network reconstruction techniques

that were executed on the same dataset also has the power to

significantly improve the accuracy of the reconstructed networks.

Using the dataset from the 83-gene network with 200 samples and

a noise value of 0.25, we evaluated the comparative performance

of each reconstruction technique, as well as that of the aggregated

network. Figure 4 shows that the aggregated network outper-

formed all of the individual constituent reconstruction techniques.

We also observed this trend to hold true across most of the

datasets (Figure S5 and Figure S6 in File S1) that we tested: the

aggregated method typically outperformed any single reconstruc-

tion technique. This is especially beneficial in scenarios in which

the top-performing individual network reconstruction technique

may vary based on the context, e.g., some methods perform well

on larger networks, while others excel in datasets containing few

samples. Thus, to have an aggregation technique that consistently

outperforms or matches the best performing individual method

eliminates the need to choose a single reconstruction technique

based on the context.

In addition, we compared our method with the method used in

Marbach et al. The result (Figure S8 in File S1) indicates the

proposed ENA method performs better in the simulation settings.

ENA of different datasets
Finally, we found the ENA approach to work very well when

attempting to integrate various datasets, especially among

heterogeneous datasets containing different distributions of

expression data. After generating three datasets from the 231-

gene network, each with 200 samples and noise values of 0.25, 1,

and 2, we reconstructed each network using bootstrapped SPACE,

GeneNet, and WGCNA, and then aggregated the resultant

networks into a single network for each of the three datasets.

We then used the ENA approach to consolidate these three

networks into a single network representing the underlying

network behind the three distinct datasets. We also compared

this approach to the alternative of simply merging all three

datasets into a single 600-sample dataset and using the same

approach to reconstruct a single network. As shown in Figure 5,

the proposed ENA approach outperformed the alternative

approach of simply combining the expression data into a single

dataset. Reconstructing on each dataset independently produced

AUCs of 0.96, 0.96, and 0.89 from noise values of 0.25, 1, and 2,

respectively. ‘‘Naı̈vely’’ merging the datasets by combining them

into one large dataset yielded an AUC of 0.96. The network

aggregation approach, however, yielded the best performance,

with an AUC of 0.98.

Figure 1. Receiver Operating Characteristic (ROC) curves and the Precision Recall Curve both demonstrate the performance of the
SPACE algorithm on the 231-gene network with 20 samples and a noise value of 0.25 when performing a single iteration (i.e., ‘‘non-
bootstrapped’’) or bootstrapping the dataset using the Ensemble Network Aggregation approach. In this case, the Area Under the ROC
Curve (AUC) of the non-bootstrapped SPACE method was 0.748, while that of the bootstrapped SPACE method was 0.816. The Area Under the
Precision-Recall (AUPR) curve also improves from 0.249 (SPACE) to 0.273 (bootstrapping).
doi:10.1371/journal.pone.0106319.g001
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Evaluating ENA approach in E. coli datasets
We then tested the ENA approach on three Escherichia coli (E.

coli) datasets: 1) the Many Microbe Microarrays Database

(‘‘M3D’’) [30] containing 907 microarrays measured under 466

experimental conditions using Affymetrix GeneChip E. coli
Genome arrays; 2) the second dataset (‘‘Str’’) of expression data

from laboratory evolution of E. coli on lactate or glycerol

(GSE33147) [31], which contains 96 microarrays measured under

laboratory adaptive evolution experiments using Affymetrix E. coli

Antisense Genome Arrays; and 3) the third dataset [32,33] (‘‘BC’’)

containing 217 arrays measuring the transcriptional response of E.
coli to different perturbations and stresses, such as drug treatments,

UV treatments and heat shock. The RegulonDB database [43,44],

which contains the largest and best-known information on

transcriptional regulation in E. coli, was thus used as a ‘‘gold

standard’’ to evaluate the accuracy of the variously constructed

networks.

We were able to obtain similarly positive results by employing

these approaches on the E. coli data (Figure 6). Bootstrapping and

aggregating the three methods on each dataset independently

produced AUCs of 0.574, 0.616, and 0.599 for the BC, Str, and

MD3 datasets respectively. By merging the three networks

produced on each dataset using ENA, we were able to produce

a network with an AUC of 0.655, larger than the AUC of any

network produced by any of the datasets independently. Because

the performance of ENA in the real dataset was evaluated based

on our current biological knowledge, which may only be a partial

Figure 2. Comparison of the Area Under the Curves (AUCs) of the re-constructed networks from the 231-gene network with a noise
value of 0.25 and different sample sizes (20, 50 or 100) for SPACE (a.), GeneNet (b.), and WGCNA (c.). In these plots, the y-axis shows the
performance of the reconstructed network, measured by the AUCs; a horizontal line is drawn to represent the AUC of the non-bootstrapped
reconstruction (a single reconstruction using all available samples). The x-axis represents the number of iterations in the bootstrapping process.
Points below the horizontal line represent a loss in accuracy of the reconstructed networks, and points above the horizontal line represent a gain of
AUC (i.e., an increase in model performance).
doi:10.1371/journal.pone.0106319.g002
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truth, the overall network reconstruction accuracy observed in the

real dataset was much lower than those in the simulated datasets,

where the full truth was known. On the other hand, simulated data

might also partially reflect the true situation by simplifying aspects

of an over-complicated biological process. However, the ENA

approach consistently improved the network reconstruction

accuracy in both simulated and real datasets.

Network reconstruction via ENA to identify potential
drug targets

Network reconstruction of gene expression data helps identify

hub genes that might be novel drug targets because of their role in

engaging multiple molecules, a process that has been used to

identify gene sets predictive of benefit for adjuvant chemotherapy

in non-small-cell lung cancer [13]. Here we applied ENA to a

dataset consisting of 76 genes from 54 non-small-cell lung cancer

(NSCLC) cell lines that were previously identified to comprise an

epithelial-mesenchymal transition (EMT) ‘‘signature’’ for NSCLC

[34]. This signature consisted of genes whose expressions were

either positively or negatively correlated with at least 1 of 4

putative EMT markers, including E-cadherin (CDH1), vimentin

(VIM), N-cadherin (CDH2) and/or fibronectin 1 (FN1), and

followed a bimodal distribution pattern across the cell lines [34].

Overall, we attempted to identify hub genes clinically interesting

for NSCLC treatment. We thus employed multiple methods to

build GRN networks and combined them via ENA. As shown in

Figure 7, we identified three major nodes. Of these, ZEB1, which

had the highest degree in the resulting ENA network, is a well-

known EMT activator and tumor promoter that represses

stemness-inhibiting microRNAs [45] and mediates the loss of E-

cadherin expression to allow cell detachment [46]. MARVELD3 is

known as a tight junction molecule and has been shown to be

downregulated during Snail-induced EMT [47]. Finally, EPHA1,

the first member of the erythropoietin-producing hepatocellular

(Eph) family of receptor tyrosine kinases, was recently shown to

potentially play a role in carcinogenesis and the progression of

several cancer types [48]. EPHA1 is also frequently mutated in

NSCLC patients, along with other known ‘‘driver’’ mutations

[49].

Discussion

The ability to aggregate networks using the rank-product

merging approach has proven to be a valuable contribution in

Figure 3. The effect of network size on ENA performance. The y-axis represents the improvement in AUC of the bootstrapped SPACE
networks vs. the non-bootstrapped SPACE networks. Different bars represent different sizes of networks in the simulation study.
doi:10.1371/journal.pone.0106319.g003
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reconstructing gene regulatory networks – and likely in other

fields, as well. By bootstrapping a single dataset using a single

approach such as SPACE, we were able to significantly improve

the performance of the algorithm. By aggregating the networks

produced by different reconstruction techniques on a single

dataset, we were able to consistently match or outperform the

best-performing technique for that dataset, regardless of fluctua-

tions in the performance of any one algorithm. By aggregating

networks constructed independently on different datasets captur-

ing similar biological environments, we were able to reconstruct

the network more accurately than would be possible using any one

dataset alone. So far, the study of integration of gene regulatory

networks has been continuously advancing. Both Marbach D. et

al. 2012 [50] and Hase T. et al. 2013 [51] have devised methods

for integrating gene regulatory networks. The former is based on

integration through rescoring gene-gene interaction according to

average ranks across multiple methods, while the latter is focused

on combining the confidence of each gene-gene interaction by

multiple algorithms through leveraging the diversity of the

different techniques. ENA is able to integrate networks from

multiple algorithms. In addition, ENA performs bootstrapping

within single dataset and also takes advantage of integrating

multiple datasets to improve the performance. In this study, we

showed that when integrating bootstrapped samples, different

algorithms and data sets could achieve the best performance

(Figure 6).

It is likely that SPACE was the only method to show consistent

and significant improvement from bootstrapping because the

SPACE algorithm models gene regulation using linear regression;

as a result, the network construction problem is converted to a

straightforward variable selection problem. In SPACE, the

variable selection problem is solved by sparse regression

techniques with a symmetric constraint. By solving all the

regression models simultaneously, SPACE attempts to accrue the

globally optimized results. However, due to the instability in

variable selection [52] caused by collinearity in the data, the

networks constructed by SPACE are sensitive to sampling. A small

change in the samples selected may lead to a relatively large

Figure 4. The performance in aggregating different methods. A comparison of the accuracy of the reconstructed networks using the datasets
containing 200 samples (left) and 1,000 samples (right) from the 83-gene network with a noise value of 0.25. As can be seen here, the ensemble
network aggregation approach performs better than any of the other individual techniques on these two networks.
doi:10.1371/journal.pone.0106319.g004

Figure 5. The ROC curves of different approaches to recon-
struct the gene network based on three simulated datasets.
The ENA approach outperformed the alternative approach of simply
combining the expression into a single dataset and individual network
with increasing noise of 0.25, 1, and 2. AUCs of all five approaches are
0.98, 0.96, 0.96, 0.96, and 0.89 respectively.
doi:10.1371/journal.pone.0106319.g005
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change in the network structure. As a result, the networks

constructed from bootstrapping samples are relatively ‘‘indepen-

dent’’, which leads to greater accuracy in the aggregated network.

As a sample application, we applied our approach to an EMT

signature data set, successfully building a gene regulatory network

and identifying hub genes with interesting therapeutic and

Figure 6. The AUCs of the generated networks when executed on the E. coli datasets. Note that the aggregating ENA networks from
SPACE, WGCNA and GeneNet increase the accuracy within each individual dataset, and aggregating results from three datasets further increases the
accuracy beyond that of any one dataset.
doi:10.1371/journal.pone.0106319.g006

Figure 7. Network reconstruction (based on a previous epithelial-to-mesenchymal transition gene signature) [34] via ENA identifies
potential drug targets for non-small-cell lung cancer (NSCLC). Microarray data from 54 NSCLC cell lines were analyzed using four different
methods and the results integrated via ENA. Identified hub genes ZEB1, MARVELD3 and EPHA1 have interesting clinical implications as novel drug
targets. Node color and size are proportional to the degree of connectivity (i.e., the number of edges connecting each node).
doi:10.1371/journal.pone.0106319.g007
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pharmacological implications (Figure 7). Our discovery has also

been experimentally validated in previous literature. Ingenuity

Pathway Analysis (IPA) (http://www.ingenuity.com/products/

ipa) is a pathway and network database based on curated

literatures. When we used IPA to analyze our data, ZEB1 was

identified as a hub gene, which confirmed our discovery using the

ENA approach. Additionally, predicted interactions such as the

CDH1–CDH3 interaction and the CLDN4-GRHL2 interaction

were also confirmed (Figure S7 in File S1). While here we showed

results only from microarray data analyses, ENA can also be

conveniently applied to next-generation sequencing techniques

such as RNA-Seq. Thus, combining individualized genomic

profiles with the reconstruction of gene regulatory networks might

facilitate personalized therapy (possibly using ‘‘hub genes’’ as

therapeutic targets).

To make ENA implementation user-friendly for the biological

research community, we provide a publically available R package

to allow others to use these techniques on their own datasets. By

leveraging the MPI framework, we were able to run the

bootstrapping process in parallel across many cores and nodes,

drastically reducing the amount of time it takes to run such

analyses. We include in this package a function that can permute

random networks and perform ENA in order to better estimate the

significance of any particular connection observed in a network.

This function can be used to reduce a continuous, complete graph

to an unweighted graph that includes only statistically significant

edges.

Finally, we went to great lengths to ensure that all of our

analysis would be as reproducible as possible by collating our

analysis code into reproducible reports – most of which can be

regenerated at the click of a button – and making all of these freely

available online at https://github.com/QBRC/ENA-Research.

We feel that this transparency is an important but uncommon step

in the scientific process and hope that other researchers may begin

incorporating such practices into their own investigations to foster

more open, collaborative research.

Supporting Information

File S1 Supplementary Figures (Figure S1–S8).
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