Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

μ-Oxalato-bis[(2,2'-bipyridyl)copper(II)] bis(perchlorate) dimethylformamide disolvate monohydrate

Alexander N. Boyko,^a Matti Haukka,^b Irina A. Golenya,^a* Svetlana V. Pavlova^a and Natalia I. Usenko^a

^aKiev National Taras Shevchenko University, Department of Chemistry, Volodymyrska str. 64, 01601 Kiev, Ukraine, and ^bDepartment of Chemistry, University of Joensuu, PO Box 111, 80101, Joensuu, Finland Correspondence e-mail: igolenya@ua.fm

Received 29 July 2010; accepted 5 August 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.005 Å; disorder in solvent or counterion; R factor = 0.047; wR factor = 0.129; data-to-parameter ratio = 13.9.

The title compound, $[Cu_2(C_2O_4)(C_{10}H_8N_2)_4](ClO_4)_2 \cdot 2C_3H_7-NO \cdot H_2O$, contains doubly charged centrosymmetric dinuclear oxalato-bridged copper(II) complex cations, perchlorate anions, and DMF and water solvate molecules. In the complex cation, the oxalate ligand is coordinated in a bis-bidentate bridging mode to the Cu atoms. Each Cu atom has a distorted tetragonal-bipyramidal environment, being coordinated by two N atoms of the two chelating bipy ligands and two O atoms of the doubly deprotonated oxalate anion. Pairs of perchlorate anions and water molecules are linked into rectangles by $O-H \cdot \cdot O$ bonds in which the perchlorate O atoms act as acceptors and the water molecule as donors. Methyl groups of the DMF solvent molecule are disordered over two sites with occupancies of 0.453 (7):0.547 (7), and the water molecule is half-occupied.

Related literature

For use of oxalic acid and its derivatives in molecular magnetism and supramolecular chemistry, see: Kahn (1987); Ojima & Nonoyama (1988); Fritsky *et al.* (1998); Świątek-Kozłowska *et al.* (2000). For use of oxalic acid for the preparation of mixed-ligand polynuclear complexes, see: Strotmeyer *et al.* (2003). For related structures, see: Krämer & Fritsky (2000); Kovbasyuk *et al.* (2004); Wörl *et al.* (2005); Tomyn *et al.* (2007); Moroz *et al.* (2010).

Experimental

Crystal data

 $[Cu_2(C_2O_4)(C_{10}H_8N_2)_4](ClO_4)_2 2C_3H_7NO\cdotH_2O$ $M_r = 1202.94$ Triclinic, PIa = 9.6872 (5) Åb = 11.0080 (8) Åc = 12.2449 (5) Åa = 97.928 (3)°

Data collection

Bruker Kappa APEXII DUO CCD diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2009)

 $T_{\rm min} = 0.802, T_{\rm max} = 0.923$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.047$ $wR(F^2) = 0.129$ S = 1.044993 reflections 359 parameters

Z = 1Mo K\alpha radiation $\mu = 1.02 \text{ mm}^{-1}$ T = 100 K $0.23 \times 0.12 \times 0.08 \text{ mm}$

 $\beta = 99.565 \ (2)^{\circ}$

 $\gamma = 91.924 \ (2)^{\circ}$

V = 1273.16 (12) Å³

10051 measured reflections 4993 independent reflections 3955 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.023$

27 restraints H-atom parameters constrained $\Delta \rho_{max} = 1.43$ e Å⁻³ $\Delta \rho_{min} = -0.70$ e Å⁻³

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$\begin{array}{c} O1W - H1W \cdots O5^{i} \\ O1W - H2W \cdots O5 \end{array}$	0.91 0.85	2.45 2.04	3.311 (13) 2.882 (14)	159 169
		1.0		

Symmetry code: (i) -x + 2, -y + 1, -z + 2.

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Bradenburg, 2006); software used to prepare material for publication: *SHELXL97*.

The authors thank the Ministry of Education and Science of Ukraine for financial support (grant No. M/263–2008).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2192).

References

Bradenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

metal-organic compounds

Fritsky, I. O., Kozłowski, H., Sadler, P. J., Yefetova, O. P., Świątek-Kozłowska, J., Kalibabchuk, V. A. & Głowiak, T. (1998). J. Chem. Soc., Dalton Trans. pp. 326–3274.

Kahn, O. (1987). Struct. Bond. 68, 89–167.

- Kovbasyuk, L., Pritzkow, H., Krämer, R. & Fritsky, I. O. (2004). Chem. Commun. pp. 880–881.
- Krämer, R. & Fritsky, I. O. (2000). Eur. J. Org. Chem. pp. 3505-3510.
- Moroz, Y. S., Szyrweil, L., Demeshko, S., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2010). *Inorg. Chem.* 49, 4750–4752.
- Ojima, H. & Nonoyama, K. (1988). Coord. Chem. Rev. 92, 85-111.

- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Strotmeyer, K. P., Fritsky, I. O., Ott, R., Pritzkow, H. & Krämer, R. (2003). Supramol. Chem. 15, 529–547.
- Świątek-Kozłowska, J., Fritsky, I. O., Dobosz, A., Karaczyn, A., Dudarenko, N. M., Sliva, T. Yu., Gumienna-Kontecka, E. & Jerzykiewicz, L. (2000). J. Chem. Soc. Dalton Trans. pp. 4064–4068.
- Tomyn, S. V., Gumienna-Kontecka, E., Fritsky, I. O., Iskenderov, T. S. & Światek-Kozłowska, J. (2007). Acta Cryst. E63, m438–m440.
- Wörl, S., Pritzkow, H., Fritsky, I. O. & Krämer, R. (2005). Dalton Trans. pp. 27–29.

Acta Cryst. (2010). E66, m1101-m1102 [doi:10.1107/S1600536810031569]

μ -Oxalato-bis[(2,2'-bipyridyl)copper(II)] bis(perchlorate) dimethylformamide disolvate monohydrate

A. N. Boyko, M. Haukka, I. A. Golenya, S. V. Pavlova and N. I. Usenko

Comment

Oxalic acid and its amide derivatives are widely used in molecular magnetism and supramolecular chemistry for preparation of various bi- and polynuclear complexes as well as exchange clusters of high nuclearity (Kahn, 1987; Ojima & Nonoyama, 1988; Fritsky *et al.*, 1998; Świątek-Kozłowska *et al.*, 2000). Use of additional bridging ligands sometimes results in increase of nuclearity of the target mixed ligands compounds (Strotmeyer *et al.*, 2003). However, use of this synthetic strategy is often restricted by formation of complex species containing only one of the used bridging ligands. Herein we report a compound (I) isolated as a result of an attempt to obtain a mixed ligand complex containing both oxalate and pyridine-2-hydroxamate ligands.

In (I), the Cu atom has a distorted tetragonal-bipyramidal environment, with one oxygen atom of the oxalate (O2), three nitrogen atoms of the 2,2'-bipyridine ligand (N1, N2 and N4) occupying the base of the pyramid, and the second oxygen atom of the oxalate (O1) and one of the bipyridine nitrogen atoms (N3) in the apical positions (Fig. 1). The planar μ_4 -oxalato group lies in a center of symmetry and bridges the two copper atoms in a bis(chelating) mode, each copper atom being bound to two oxygens from the two different carboxylic groups. The Cu···Cu separation in the dimer is 5.6032 (9)Å which is slightly longer than the intermetallic separation observed in a related μ_4 -oxalato-bridged dicopper complex with (1-(pyridin-2-yl)ethylidene)hydrazine (5.449 (1) Å) (Tomyn *et al.*, 2007). The C-N and C-C bond lenths in the 2,2'-bipyridine ligands are normal for 2-substituted pyridine derivatives (Krämer *et al.*, 2000; Kovbasyuk *et al.*, 2004; Wörl *et al.*, 2005; Moroz *et al.*, 2010).

In the crystal packing, the dimeric complex cations are organized in layers disposed parallel to the xy plane. The neighboring cations are linked by stacking interactions between the pyridine rings (both along x and y directions) and by van der Waals forces. The perchlorate anions and solvate water molecules are disposed between the cationic layers. Two pairs of the translational perchlorate anions and water molecules form rectangles due to H-bonds where perchlorate O atoms act as acceptors and H₂O molecules as donors (Fig. 2, Table 1).

Experimental

 $Cu(ClO_4)_2.6H_2O$ (0.371 g, 1 mmol) was dissolved in water (5 ml) and added to the dimethylformamide solution of pyridine-2-hydroxamic acid (0.138 g, 1 mmol) and 2,2'-bipyridine (0.156 g, 1 mmol), and then a powder of $K_2C_2O_4.H_2O$ (0.092 g, 0.5 mmol) was added to the obtained solution. The resulting mixture was being stirred at 60 C° during 15 min and filtered. Turquoise crystals suitable for X-ray analysis were obtained by slow diffusion of diethyl ether vapour to the resulting solution at room temperature within 72 hours. They were filtered off and washed with diethyl ether. Yield: 57%.

Refinement

Methyl groups of the dimethylformamide solvent molecule were disordered over two sites with occupancies 0.45/0.55. The N-C distances in the dimethylformamide molecules were restrained to to be similar and the anisotropic displacement parameters of the methyl carbons were constrained to be equal. The water of crystallization was refined with occupancy of 0.5. The H₂O hydrogen atoms were located from the difference Fourier map but constrained to ride on their parent atom, with $U_{iso} = 1.5 U_{eq}$ (parent atom). Other hydrogen atoms were positioned geometrically and were also constrained to ride on their parent atoms, with C—H = 0.95-0.98 Å, and $U_{iso} = 1.2-1.5 U_{eq}$ (parent atom). The highest peak is located 0.58 Å from atom C22B and the deepest hole is located 0.60 Å from atom O7.

Figures

Fig. 1. A view of compound (1), with displacement ellipsoids shown at the 30% probability level. H atoms are drawn as spheres of arbitrary radii. [Symmetry code: (i)1-x,1-y,1-z].

Fig. 2. A packing diagram of the title compound. Hydrogen bonds are indicated by dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.

µ-Oxalato-bis[(2,2'-bipyridyl)copper(II)] bis(perchlorate) dimethylformamide disolvate monohydrate

Crystal data

$[Cu_2(C_2O_4)(C_{10}H_8N_2)_4](ClO_4)_2 \cdot 2C_3H_7NO \cdot H_2O$	Z = 1
$M_r = 1202.94$	F(000) = 618
Triclinic, <i>P</i> T	$D_{\rm x} = 1.569 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 9.6872 (5) Å	Cell parameters from 3860 reflections
b = 11.0080 (8) Å	$\theta = 2.3 - 27.4^{\circ}$
c = 12.2449 (5) Å	$\mu = 1.02 \text{ mm}^{-1}$
$\alpha = 97.928 \ (3)^{\circ}$	T = 100 K
$\beta = 99.565 \ (2)^{\circ}$	Block, turquoise
$\gamma = 91.924 \ (2)^{\circ}$	$0.23\times0.12\times0.08~mm$
$V = 1273.16 (12) \text{ Å}^3$	
Data collection	

Bruker Kappa APEXII DUO CCD

4993 independent reflections

diffractometer

Radiation source: fine-focus sealed tube	3955 reflections with $I > 2\sigma(I)$
curved graphite crystal	$R_{\rm int} = 0.023$
Detector resolution: 16 pixels mm ⁻¹	$\theta_{\text{max}} = 26.0^{\circ}, \theta_{\text{min}} = 1.7^{\circ}$
ϕ scans and ω scans with κ offset	$h = -11 \rightarrow 11$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2009)	$k = -13 \rightarrow 13$
$T_{\min} = 0.802, \ T_{\max} = 0.923$	$l = -10 \rightarrow 15$
10051 measured reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.047$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.129$	H-atom parameters constrained
<i>S</i> = 1.04	$w = 1/[\sigma^2(F_o^2) + (0.0663P)^2 + 2.0663P]$ where $P = (F_o^2 + 2F_c^2)/3$
4993 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
359 parameters	$\Delta \rho_{max} = 1.43 \text{ e} \text{ Å}^{-3}$
27 restraints	$\Delta \rho_{min} = -0.70 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	Fractional	atomic	coordinates	and	isotropic d	or equival	lent isotropic	c displac	cement	parameters	(Å	2
--	------------	--------	-------------	-----	-------------	------------	----------------	-----------	--------	------------	----	---

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
Cu1	0.29558 (4)	0.30820 (4)	0.41931 (4)	0.01694 (15)	
Cl1	0.71283 (9)	0.33716 (9)	0.90518 (8)	0.0256 (2)	
O1	0.5313 (3)	0.3455 (2)	0.5049 (2)	0.0206 (6)	
O2	0.3249 (2)	0.4898 (2)	0.4286 (2)	0.0176 (5)	
O3	0.7943 (4)	0.3548 (3)	0.8209 (3)	0.0517 (9)	
O4	0.7375 (3)	0.2198 (3)	0.9423 (3)	0.0351 (7)	
O5	0.7470 (4)	0.4320 (3)	0.9976 (3)	0.0534 (10)	
O6	0.5683 (3)	0.3377 (4)	0.8567 (3)	0.0523 (10)	
07	0.3074 (6)	0.0419 (7)	0.7731 (7)	0.138 (3)	

N1	0.3182 (3)	0.1260 (3)	0.4105 (3)	0.0199 (7)	
N2	0.3572 (3)	0.2758 (3)	0.2693 (3)	0.0176 (6)	
N3	0.0654 (3)	0.3071 (3)	0.3574 (3)	0.0190 (6)	
N4	0.2160 (3)	0.3330 (3)	0.5640 (3)	0.0177 (6)	
N5	0.0955 (5)	0.0617 (5)	0.7989 (5)	0.0720 (17)	
C1	0.2978 (4)	0.0562 (4)	0.4883 (4)	0.0293 (9)	
H1	0.2670	0.0932	0.5542	0.035*	
C2	0.3199 (4)	-0.0685 (4)	0.4759 (4)	0.0321 (10)	
H2	0.3052	-0.1160	0.5325	0.039*	
C3	0.3636 (4)	-0.1221 (3)	0.3802 (4)	0.0287 (9)	
H3	0.3776	-0.2076	0.3694	0.034*	
C4	0.3870 (4)	-0.0508 (3)	0.3001 (4)	0.0256 (8)	
H4	0.4179	-0.0863	0.2338	0.031*	
C5	0.3646 (3)	0.0738 (3)	0.3182 (3)	0.0186 (7)	
C6	0.3871 (3)	0.1588 (3)	0.2378 (3)	0.0180 (7)	
C7	0.4363 (4)	0.1248 (4)	0.1392 (3)	0.0269 (9)	
H7	0.4560	0.0418	0.1176	0.032*	
C8	0.4568 (4)	0.2125 (4)	0.0723 (3)	0.0292 (9)	
H8	0.4916	0.1906	0.0045	0.035*	
C9	0.4265 (4)	0.3320 (4)	0.1045 (3)	0.0267 (9)	
Н9	0.4406	0.3939	0.0599	0.032*	
C10	0.3753 (4)	0.3601 (3)	0.2029 (3)	0.0233 (8)	
H10	0.3520	0.4421	0.2245	0.028*	
C11	-0.0050 (4)	0.2868 (4)	0.2522 (3)	0.0259 (8)	
H11	0.0470	0.2737	0.1928	0.031*	
C12	-0.1495 (4)	0.2839 (4)	0.2259 (4)	0.0279 (9)	
H12	-0.1961	0.2686	0.1503	0.033*	
C13	-0.2244 (4)	0.3038 (4)	0.3131 (4)	0.0275 (9)	
H13	-0.3239	0.3025	0.2979	0.033*	
C14	-0.1538 (4)	0.3256 (3)	0.4223 (3)	0.0210 (8)	
H14	-0.2038	0.3397	0.4829	0.025*	
C15	-0.0077 (4)	0.3266 (3)	0.4419 (3)	0.0177 (7)	
C16	0.0767 (4)	0.3479 (3)	0.5566 (3)	0.0177 (7)	
C17	0.0176 (4)	0.3815 (3)	0.6520 (3)	0.0233 (8)	
H17	-0.0802	0.3919	0.6458	0.028*	
C18	0.1027 (4)	0.3992 (4)	0.7553 (3)	0.0274 (9)	
H18	0.0641	0.4226	0.8209	0.033*	
C19	0.2450 (4)	0.3828 (4)	0.7632 (3)	0.0273 (9)	
H19	0.3052	0.3939	0.8339	0.033*	
C20	0.2973 (4)	0.3496 (3)	0.6654 (3)	0.0218 (8)	
H20	0.3947	0.3381	0.6703	0.026*	
C21	0.5591 (4)	0.4576 (3)	0.5219 (3)	0.0168 (7)	
C22A	0.0103 (10)	0.0664 (11)	0.7051 (11)	0.049 (2)	0.453 (7)
H22A	-0.0851	0.0770	0.7202	0.074*	0.453 (7)
H22B	0.0119	-0.0101	0.6540	0.074*	0.453 (7)
H22C	0.0402	0.1359	0.6707	0.074*	0.453 (7)
C23A	0.075 (2)	0.1244 (19)	0.9138 (14)	0.107 (4)	0.453 (7)
H23A	-0.0240	0.1429	0.9113	0.161*	0.453 (7)
H23B	0.1336	0.2010	0.9343	0.161*	0.453 (7)

H23C	0.1010	0.0697	0.9696	0.161*	0.453 (7)
C22B	0.0510 (8)	0.0191 (9)	0.6636 (8)	0.049 (2)	0.547 (7)
H22D	-0.0497	0.0275	0.6410	0.074*	0.547 (7)
H22E	0.0726	-0.0668	0.6447	0.074*	0.547 (7)
H22F	0.1036	0.0711	0.6241	0.074*	0.547 (7)
C23B	-0.0322 (15)	0.1000 (16)	0.8376 (15)	0.107 (4)	0.547 (7)
H23D	-0.1106	0.0875	0.7745	0.161*	0.547 (7)
H23E	-0.0206	0.1872	0.8694	0.161*	0.547 (7)
H23F	-0.0517	0.0512	0.8950	0.161*	0.547 (7)
C24	0.2302 (8)	0.0497 (10)	0.8262 (7)	0.100 (3)	
H24	0.2637	0.0475	0.9034	0.121*	
O1W	0.9215 (13)	0.6412 (13)	0.9750 (10)	0.119 (4)	0.50
H1W	1.0104	0.6270	0.9637	0.179*	0.50
H2W	0.8765	0.5737	0.9756	0.179*	0.50

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.0187 (2)	0.0152 (2)	0.0193 (3)	0.00275 (16)	0.00795 (17)	0.00502 (17)
Cl1	0.0245 (5)	0.0333 (5)	0.0202 (5)	0.0044 (4)	0.0052 (4)	0.0060 (4)
01	0.0211 (13)	0.0159 (13)	0.0269 (15)	0.0031 (10)	0.0067 (11)	0.0074 (11)
02	0.0161 (12)	0.0166 (12)	0.0217 (14)	0.0036 (9)	0.0059 (10)	0.0043 (10)
03	0.059 (2)	0.058 (2)	0.049 (2)	0.0059 (18)	0.0366 (18)	0.0171 (18)
O4	0.0452 (17)	0.0316 (16)	0.0297 (17)	0.0101 (13)	0.0065 (14)	0.0069 (13)
05	0.091 (3)	0.0350 (18)	0.0285 (18)	0.0096 (18)	-0.0034 (18)	-0.0029 (15)
O6	0.0277 (16)	0.072 (3)	0.062 (2)	0.0046 (16)	-0.0021 (16)	0.035 (2)
07	0.070 (4)	0.139 (6)	0.236 (9)	0.031 (4)	0.044 (5)	0.107 (6)
N1	0.0209 (15)	0.0146 (15)	0.0249 (17)	-0.0006 (12)	0.0043 (13)	0.0058 (13)
N2	0.0170 (14)	0.0155 (14)	0.0210 (16)	0.0020 (11)	0.0037 (12)	0.0039 (12)
N3	0.0193 (15)	0.0214 (16)	0.0181 (16)	0.0022 (12)	0.0057 (12)	0.0058 (13)
N4	0.0165 (14)	0.0169 (15)	0.0214 (17)	0.0007 (11)	0.0050 (12)	0.0070 (13)
N5	0.038 (3)	0.060 (3)	0.117 (5)	0.011 (2)	0.032 (3)	-0.015 (3)
C1	0.038 (2)	0.023 (2)	0.030 (2)	-0.0007 (17)	0.0105 (18)	0.0074 (17)
C2	0.039 (2)	0.021 (2)	0.036 (3)	-0.0037 (17)	0.0019 (19)	0.0133 (18)
C3	0.031 (2)	0.0142 (18)	0.037 (2)	0.0020 (16)	-0.0067 (18)	0.0056 (17)
C4	0.0266 (19)	0.0194 (19)	0.029 (2)	0.0046 (15)	0.0007 (17)	-0.0002 (16)
C5	0.0144 (16)	0.0192 (18)	0.0200 (19)	-0.0001 (13)	-0.0033 (14)	0.0030 (15)
C6	0.0130 (16)	0.0188 (18)	0.0208 (19)	0.0018 (13)	0.0003 (14)	0.0006 (15)
C7	0.032 (2)	0.025 (2)	0.024 (2)	0.0060 (16)	0.0081 (17)	-0.0021 (16)
C8	0.032 (2)	0.036 (2)	0.021 (2)	0.0026 (18)	0.0107 (17)	0.0004 (18)
C9	0.029 (2)	0.028 (2)	0.025 (2)	-0.0008 (16)	0.0087 (17)	0.0088 (17)
C10	0.0278 (19)	0.0192 (18)	0.025 (2)	0.0029 (15)	0.0094 (16)	0.0057 (16)
C11	0.0257 (19)	0.030 (2)	0.023 (2)	0.0024 (16)	0.0068 (16)	0.0051 (17)
C12	0.027 (2)	0.032 (2)	0.024 (2)	-0.0016 (16)	-0.0008 (16)	0.0056 (17)
C13	0.0189 (18)	0.030 (2)	0.033 (2)	0.0015 (16)	0.0027 (16)	0.0049 (18)
C14	0.0208 (17)	0.0181 (18)	0.026 (2)	0.0016 (14)	0.0077 (15)	0.0051 (15)
C15	0.0198 (17)	0.0132 (16)	0.0215 (19)	0.0017 (13)	0.0072 (15)	0.0032 (14)
C16	0.0188 (17)	0.0148 (17)	0.0213 (19)	-0.0001 (13)	0.0068 (14)	0.0055 (14)

C17	0.0205 (18)	0.0253 (19)	0.026 (2)	0.0008 (15)	0.0103 (16)	0.0030 (16)
C18	0.028 (2)	0.034 (2)	0.023 (2)	0.0019 (17)	0.0125 (17)	0.0038 (17)
C19	0.026 (2)	0.035 (2)	0.022 (2)	-0.0014 (17)	0.0053 (16)	0.0073 (17)
C20	0.0188 (17)	0.0252 (19)	0.023 (2)	0.0006 (15)	0.0053 (15)	0.0062 (16)
C21	0.0198 (17)	0.0185 (18)	0.0159 (18)	0.0044 (14)	0.0093 (14)	0.0070 (14)
C22A	0.011 (3)	0.039 (4)	0.098 (6)	0.002 (3)	0.005 (3)	0.021 (4)
C23A	0.083 (6)	0.126 (7)	0.107 (7)	0.019 (5)	0.019 (5)	-0.007 (6)
C22B	0.011 (3)	0.039 (4)	0.098 (6)	0.002 (3)	0.005 (3)	0.021 (4)
C23B	0.083 (6)	0.126 (7)	0.107 (7)	0.019 (5)	0.019 (5)	-0.007 (6)
C24	0.050 (4)	0.178 (10)	0.066 (5)	-0.029 (5)	-0.004 (4)	0.017 (5)
O1S	0.095 (8)	0.155 (12)	0.110 (10)	-0.004 (8)	0.015 (7)	0.032 (9)

Geometric parameters (Å, °)

Cu1—O2	1.995 (2)	С8—Н8	0.9500
Cu1—N2	2.015 (3)	C9—C10	1.378 (5)
Cu1—N1	2.015 (3)	С9—Н9	0.9500
Cu1—N4	2.036 (3)	C10—H10	0.9500
Cu1—N3	2.232 (3)	C11—C12	1.381 (5)
Cu1—O1	2.346 (3)	C11—H11	0.9500
Cl1—O5	1.417 (3)	C12—C13	1.383 (6)
Cl1—O6	1.428 (3)	C12—H12	0.9500
Cl1—O3	1.428 (3)	C13—C14	1.382 (6)
Cl1—O4	1.442 (3)	С13—Н13	0.9500
O1—C21	1.236 (4)	C14—C15	1.395 (5)
O2—C21 ⁱ	1.265 (4)	C14—H14	0.9500
O7—C24	1.065 (9)	C15—C16	1.486 (5)
N1—C1	1.339 (5)	C16—C17	1.395 (5)
N1—C5	1.348 (5)	C17—C18	1.375 (6)
N2—C10	1.340 (5)	C17—H17	0.9500
N2—C6	1.348 (4)	C18—C19	1.384 (5)
N3—C11	1.339 (5)	C18—H18	0.9500
N3—C15	1.346 (5)	C19—C20	1.385 (5)
N4—C20	1.340 (5)	С19—Н19	0.9500
N4—C16	1.354 (4)	С20—Н20	0.9500
N5—C22A	1.313 (11)	C21—O2 ⁱ	1.265 (4)
N5—C24	1.305 (9)	C21—C21 ⁱ	1.573 (7)
N5—C23B	1.463 (14)	C22A—H22A	0.9800
N5—C23A	1.527 (14)	C22A—H22B	0.9800
N5—C22B	1.631 (11)	C22A—H22C	0.9800
C1—C2	1.387 (6)	C23A—H23A	0.9800
С1—Н1	0.9500	С23А—Н23В	0.9800
C2—C3	1.375 (6)	C23A—H23C	0.9800
С2—Н2	0.9500	C22B—H22D	0.9800
C3—C4	1.379 (6)	C22B—H22E	0.9800
С3—Н3	0.9500	C22B—H22F	0.9800
C4—C5	1.390 (5)	C23B—H23D	0.9800
C4—H4	0.9500	C23B—H23E	0.9800

C5—C6	1.485 (5)	C23B—H23F	0.9800
C6—C7	1.380 (5)	C24—H24	0.9500
С7—С8	1.379 (6)	O1W—H1W	0.9100
С7—Н7	0.9500	O1W—H2W	0.8500
C8—C9	1.377 (6)		
O2—Cu1—N2	92.86 (11)	C8—C9—C10	118.6 (4)
O2—Cu1—N1	165.61 (11)	С8—С9—Н9	120.7
N2—Cu1—N1	80.78 (12)	С10—С9—Н9	120.7
O2—Cu1—N4	89.79 (11)	N2	122.3 (4)
N2—Cu1—N4	174.69 (12)	N2—C10—H10	118.8
N1—Cu1—N4	97.65 (12)	С9—С10—Н10	118.8
O2—Cu1—N3	93.94 (10)	N3—C11—C12	123.2 (4)
N2—Cu1—N3	97.73 (11)	N3—C11—H11	118.4
N1—Cu1—N3	99.68 (12)	C12—C11—H11	118.4
N4—Cu1—N3	77.48 (11)	C11—C12—C13	118.1 (4)
O2—Cu1—O1	77.12 (9)	C11—C12—H12	121.0
N2—Cu1—O1	89.30 (11)	С13—С12—Н12	121.0
N1—Cu1—O1	89.83 (10)	C14—C13—C12	119.7 (4)
N4—Cu1—O1	95.78 (10)	C14—C13—H13	120.2
N3—Cu1—O1	168.94 (10)	С12—С13—Н13	120.2
O5—Cl1—O6	110.2 (2)	C13—C14—C15	118.8 (4)
O5—Cl1—O3	110.4 (2)	C13—C14—H14	120.6
O6—Cl1—O3	107.9 (2)	C15—C14—H14	120.6
O5—Cl1—O4	109.5 (2)	N3—C15—C14	121.6 (3)
O6—Cl1—O4	108.4 (2)	N3—C15—C16	115.9 (3)
O3—Cl1—O4	110.2 (2)	C14—C15—C16	122.5 (3)
C21—O1—Cu1	108.6 (2)	N4—C16—C17	121.1 (3)
C21 ⁱ —O2—Cu1	119.4 (2)	N4—C16—C15	116.2 (3)
C1—N1—C5	118.8 (3)	C17—C16—C15	122.7 (3)
C1—N1—Cu1	126.4 (3)	C18—C17—C16	119.2 (3)
C5—N1—Cu1	114.7 (2)	C18—C17—H17	120.4
C10—N2—C6	119.1 (3)	С16—С17—Н17	120.4
C10—N2—Cu1	125.8 (3)	C17—C18—C19	119.8 (4)
C6—N2—Cu1	115.0 (2)	C17—C18—H18	120.1
C11—N3—C15	118.6 (3)	C19-C18-H18	120.1
C11—N3—Cu1	129.3 (3)	C20—C19—C18	118.3 (4)
C15—N3—Cu1	112.0 (2)	С20—С19—Н19	120.9
C20—N4—C16	119.0 (3)	C18—C19—H19	120.9
C20—N4—Cu1	122.7 (2)	N4—C20—C19	122.7 (3)
C16—N4—Cu1	117.9 (2)	N4—C20—H20	118.7
C22A—N5—C24	134.7 (8)	C19—C20—H20	118.7
C22A—N5—C23B	78.1 (9)	O1—C21—O2 ⁱ	125.4 (3)
C24—N5—C23B	146.3 (9)	O1—C21—C21 ⁱ	117.5 (4)
C22A—N5—C23A	125.4 (9)	O2 ⁱ —C21—C21 ⁱ	117.1 (4)
C24—N5—C23A	96.1 (9)	N5—C22A—H22A	109.4
C23B—N5—C23A	49.9 (9)	N5—C22A—H22B	109.5
C24—N5—C22B	108.0 (6)	H22A—C22A—H22B	109.5
C23B—N5—C22B	105.5 (9)	N5—C22A—H22C	109.5

C23A—N5—C22B	154.7 (8)	H22A—C22A—H22C	109.5		
N1—C1—C2	122.2 (4)	H22B—C22A—H22C	109.5		
N1—C1—H1	118.9	N5—C23A—H23A	109.5		
C2—C1—H1	118.9	N5—C23A—H23B	109.4		
C3—C2—C1	118.8 (4)	H23A—C23A—H23B	109.5		
C3—C2—H2	120.6	N5—C23A—H23C	109.5		
C1—C2—H2	120.6	H23A—C23A—H23C	109.5		
C2—C3—C4	119.6 (4)	H23B—C23A—H23C	109.5		
С2—С3—Н3	120.2	N5—C22B—H22D	109.5		
С4—С3—Н3	120.2	N5—C22B—H22E	109.5		
C3—C4—C5	118.7 (4)	H22D—C22B—H22E	109.5		
C3—C4—H4	120.6	N5—C22B—H22F	109.5		
С5—С4—Н4	120.6	H22D—C22B—H22F	109.5		
N1—C5—C4	121.8 (3)	H22E—C22B—H22F	109.5		
N1—C5—C6	115.0 (3)	N5—C23B—H23D	109.5		
C4—C5—C6	123.2 (4)	N5—C23B—H23E	109.5		
N2—C6—C7	121.2 (3)	H23D—C23B—H23E	109.5		
N2—C6—C5	114.4 (3)	N5—C23B—H23F	109.4		
C7—C6—C5	124.4 (3)	H23D—C23B—H23F	109.5		
C8—C7—C6	119.3 (4)	H23E—C23B—H23F	109.5		
С8—С7—Н7	120.3	O7—C24—N5	128.6 (9)		
С6—С7—Н7	120.3	O7—C24—H24	115.7		
C9—C8—C7	119.4 (4)	N5—C24—H24	115.7		
С9—С8—Н8	120.3	H1W—O1W—H2W	110.2		
С7—С8—Н8	120.3				
Symmetry codes: (i) $-x+1, -y+1, -z+1$.					

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
O1W—H1W···O5 ⁱⁱ	0.91	2.45	3.311 (13)	159.
O1W—H2W···O5	0.85	2.04	2.882 (14)	169.
Symmetry codes: (ii) $-x+2, -y+1, -z+2$.				

