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Background: Brain age has historically been investigated primarily at the
whole brain level. The ability to deconstruct the brain into its composite parts
and explore brain age at the sub-structure level offers unique advantages.
These include the exploration of dynamic and interconnected relationships
between different brain structures in healthy and pathologic aging. To achieve
this, individual brain structures can be rendered as surface representations
on which morphologic analysis is carried out. Combining the advantages
of deep learning with the strengths of surface analysis, we investigate the
aging process at the individual structure level with the hypothesis being that
pathologic aging does not uniformly affect the aging process of individual
structures.

Methods: MRI data, age at scan time and diagnosis of dementia were collected
from seven publicly available data repositories. The data from 17,440 unique
subjects were collected, representing a total of 26,276 Tl-weighted MRI
accounting for longitudinal acquisitions. Surfaces were extracted for the
cortex and seven subcortical structures. Deep learning networks were trained
to estimate a subject’s age either using several structures together or a single
structure. We conducted a cross-sectional analysis to assess the difference
between the predicted and actual ages for all structures between healthy
subjects, individuals with mild cognitive impairment (MCI) or Alzheimer's
disease dementia (ADD). We then performed a longitudinal analysis to assess
the difference in the aging pace for each structure between stable healthy
controls and healthy controls converting to either MCI or ADD.

Findings: Using an independent cohort of healthy subjects, age was well
estimated for all structures. Cross-sectional analysis identified significantly
larger predicted age for all structures in patients with either MCI and ADD
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compared to healthy subjects. Longitudinal analysis revealed varying degrees
of involvement of individual subcortical structures for both age difference
across groups and aging pace across time. These findings were most notable
in the whole brain, cortex, hippocampus and amygdala.

Conclusion: Although similar patterns of abnormal aging were found related
to MCI and ADD, the involvement of individual subcortical structures varied
greatly and was consistently more pronounced in ADD patients compared

to MCI patients.

geometric deep learning, brain shape, brain mapping, brain age, human aging,
dementia, Alzheimer's disease

Introduction

The concept of brain age has been evolving since its
introduction in the late 1960s (Oeriu, 1969). Advances
in computational techniques and resources over the past
10 years have facilitated a dynamic expansion not only of our
understanding of what brain age represents but how it can
contribute to our understanding of healthy and disordered
human aging. In the last 40 years, numerous studies have
examined the relationship between neuroimaging-defined brain
features and age using mass-univariate tests across brain
voxels or regions. Hippocampal atrophy in both normal and
pathologic aging patterns has been described across numerous
investigations (Seab et al., 1988; Fox et al., 1996; Laakso et al,,
1996; Jack et al., 1998). The temporal evolution of this atrophy
may track age-related memory loss and aid in the diagnosis
of various dementias, including Alzheimer’s disease dementia.
Additionally, regional volume loss of the thalamus and putamen
have been described in individuals with impaired memory (de
Jong et al., 2008) while volume loss of peri-ventricular structures
including the caudate, amygdala and thalamus have also been
described (Ferrarini et al., 2006). Within the cortex, the regions
suffering from volume loss are varied and include much of the
neocortical regions involved in learning, memory and attention
with cortical regions included in the default mode network
the most consistently described as suffering from progressive
atrophy in aging individuals (Kalpouzos et al., 2012).

Contrasted against the studies above that use age as an
independent variable, brain age algorithms are trained to
predict chronologic age based on features from thousands
of individuals’ brain recordings or images. Many machine
learning methods have been employed to predict age including
linear and kernel regressions and deep learning. Examples for
each include elastic net regression, relevance vector regression,
or convolutional neural networks (CNN). Most prior brain
age algorithms have used features derived from structural
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T;-weighted MR images (Franke et al.,, 2010; Gaser et al., 2013;

Jalizadeh et al., 2017; Wang J. et al., 2019). Less commonly,
studies have predicted brain age with diffusion-weighted MRI
(Mwangi et al., 2013; Tonnesen et al., 2020; Beck et al., 2021),
functional MRI (Liem et al, 2017), MR angiography (Nam
et al, 2020), FDG PET (Goyal et al, 2019), EEG (Sun et al,
2019; Paixao et al.,, 2020), or MEG (Engemann et al., 2020;
Xifra-Porxas et al., 2021).

Despite the vast array of approaches used to determine
brain age, most prior investigations have yielded a single per-
participant prediction of brain age at the whole brain level,
using an aggregate of all brain features at once. Popular
approaches have used all structural MRI gray matter segmented
voxels (Franke et al., 2010; Beheshti et al., 2018), while other
studies have used regional thickness, surface area, and volume
measurements (Kaufmann et al., 2019). More recent work have
proposed morphological analysis using isosurfaces of functional
brain imaging and successfully characterized neuropathologic-
related features (Castillo-Barnes et al., 2020).

The ability to offer brain structure-specific analysis has been
limited by the methods employed in previous investigations,
specifically the analysis of the brain as a single structure yielding
whole brain level predictions. This whole brain approach to
aging has limited our ability to not only investigate the unique
contribution of each individual brain structure or region to the
aging process but also the role time plays in each structure’s
contribution to aging.

Considering the brain not as a single structure but as a
composite unit of multiple, dynamically interacting structures
can offer a higher degree of granularity of exploration and
understanding. The ability to deconstruct the brain into its
component parts requires a different approach to analysis.
Doing so requires the ability to extract information about each
structure in isolation. Rendering individual brain structures
as surface representations of their outer contour offers that
opportunity. The investigation of brain morphology is a
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long-standing field of neuroscience. Van Essen posited that the
brain’s shape, its fundamental sulcal and gyral patterns, are
directly related to brain function due to underlying neuronal
connectivity mounting similarly functioning brain regions into
gyri and separating disparately functioning brain regions by
sulci (Van Essen, 1997). Brain surface morphology has since
been implicated in a variety of traits including personality,
cognition and functional status (Whittle et al., 2009; Jockwitz
et al, 2017; Cachia et al,, 2018). Combining the advantages of
CNN architectures with the strengths of brain surface analysis
to advance Defferard’s graph CNN (gCNN) method into the
neuroimaging domain (Defferrard et al., 2016; Besson et al,
2021), we developed surface based deep learning (SBDL) to fill
this gap. Only a single prior investigation has explored structure-
specific investigation of brain age and does so at a largely proof-
of-concept level (Wachinger et al, 2015). In this pioneering
work, which relied on the extraction of the eigenvalues of the
Laplace-Beltrami operator calculated on the cortical surfaces
and a selection of subcortical surfaces, the authors demonstrated
that age could be accurately predicted using shape descriptors of
individual brain structures.

Here, expanding our novel gCNN approach, we investigated
individual structure age using a cross-sectional study design to
assess structure age difference between healthy controls, MCI
and ADD patients, and using a longitudinal study design to
monitor the aging process of each structure and assess their
dynamic implication in pathologic aging.

Materials and methods

Subjects

MRI data, age at scan time and diagnosis of dementia
were collected from seven publicly available data repositories.
Data used in the preparation of this article were obtained
from seven publicly available repositories of neuroimaging
data, including the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database?, the details of which can be found in Table 1.

Subjects were included in this study if: (1) a diagnosis
on dementia status was available: healthy, mild cognitive
impairment or dementia, (2) if the presence of other
neuropathologies could be excluded, (3) if their age at scan time
was over 40 years old. Supplementary Table 1 lists the exclusion
conditions of patients form the United Kingdom Biobank (Cox
et al,, 2019). The data of a total of 17,440 unique subjects were
collected, which represented a total of 26,276 T1-weighted MRI
accounting for longitudinal acquisitions. Table 1 summarizes
the number of unique subjects, scans, and their age for each
dataset. A diagnosis was assigned for each MR acquisition and

1 https://adni.loni.usc.edu
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TABLE 1 Repartition of included subjects across datasets.

Dataset Number of Number Age atscan
unique of scans (mean =+ SD)
subjects

ADNI 1,835 9,122 72.5+59

https://adni.loni.usc.edu

CamCan 455 455 622+ 134

https://camcan-archive.mrc-

cbu.cam.ac.uk/dataaccess/

CoRR 176 176 61.6 9.7

http://fcon_1000.projects.

nitrc.org/indi/CoRR/html/

DLBS 187 187 63.6 + 13.7

http://fcon_1000.projects.

nitrc.org/indi/retro/dlbs.html

IXI 275 275 57.3+10.4

http://brain-development.

org/ixi-dataset/

OASIS3 1,093 2,154 70.8 9.0

https://www.oasis-brains.org

United Kingdom Biobank 13,419 13,907 63.6 7.5

https://www.ukbiobank.ac.uk

therefore there is as many diagnosis labels as scans. Subjects
were healthy for 19,610 scans, were diagnosed as MCI for 4,505
scans and diagnosed with Alzheimer’s disease dementia (ADD)
for 5,206 scans.

To ensure a good generalization of brain age predictions,
all included subjects were split into three independent datasets.
A training set, composed of 11,523 unique healthy subjects
picked at random among the subjects who had only one
acquisition, a validation set containing 2,881 unique healthy
subjects who also had only one acquisition, and the testing
set included all remaining subjects. The split was performed
at the subject level to prevent data leakage contamination
(Wen et al., 2020).

The training and validation sets were solely used for training
our networks. Once networks reached an accuracy that was
deemed satisfactory, brain age was estimated for each scan of the
testing which appeared as new, never seen data to our networks.

The testing set was solely used to generate Structure Age
statistics (see Table 2). This set included 3,036 unique subjects
for a total of 11,872 scans. Structure Age was assigned to each
scan independently.

Data preparation
The overall steps for the data preparation were detailed
in our previous work (Wu et al, 2020; Besson et al.,, 2021).

All T1-weighted MRI were processed with Freesurfer (v6.0%)
using Northwestern University’s High Performance Computing

2 https://surfer.nmr.mgh.harvard.edu
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TABLE 2 Composition of the testing set, which was independent of
the training set and was used to generate all results.

Diagnosis Number of Age at scan
scans (mean =+ SD) [range]
Healthy 5,206 71.75 £ 9.0 [42.66-95.70]
MCI 4,505 74.5 £ 7.7 [50.29-97.02]
AD 2,161 76.1 £ 7.6 [50.35-95.58]

Cluster (QUEST?®). Preprocessing steps included bias field
correction, intensity normalization, spatial normalization, skull
stripping and tissue segmentation (Dale et al, 1999). The
inner cortical surface, matching the white matter/gray matter
junction, and the outer cortical surface, matching the gray
matter/cerebro-spinal fluid interface, were then extracted. The
surfaces were corrected for possible topological defects, inflated
and parameterized (Fischl et al, 1999). Seven subcortical
structures per hemisphere were automatically segmented
using Freesurfer (amygdala, nucleus accumbens, caudate,
hippocampus, pallidum, putamen, thalamus) and then modeled
into surface meshes using SPHARM-PDM*. These structures
were selected based on their size and contrast profile on
T1 weighted imaging. All surfaces (inner and outer cortical
surfaces and subcortical surfaces) were inflated, parameterized
and registered to a corresponding surface template using a
rigid-body registration to preserve the anatomy of the cortex
and subcortical structures (Besson et al., 2014). This method
was selected due to its demonstrated efficacy for morphological
analyses (Castillo-Barnes et al., 2022).

Surface templates were converted to graphs based on their
triangulation scheme (see Supplementary Figure 1). Nodes
of the graphs were surface vertices, and edges of the graphs
were segments across vertices. Overall, the graphs including all
structures had 47,616 nodes, 32,768 from the cortical surfaces
and 14,848 from the subcortical surfaces (see Table 3 for the
number of nodes for each structure). Input features of the

3 https://www.it.northwestern.edu/research/user-services/quest/

4 https://www.nitrc.org/projects/spharm-pdm/

TABLE 3 Number of nodes for each structure.

Structure Number of nodes per hemisphere
Accumbens 256

Amygdala 512

Caudate 1,024

Hippocampus 2,048

Pallidum 512

Putamen 1,024

Thalamus 2,048

Cortex 16,384
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network were defined as the Cartesian coordinates of surface
vertices in subjects’ native space resampled into the surface
templates, centered around the origin (0, 0, 0) and divided
by 100. Consequently, cortical nodes were assigned 6 features
(X, Y, Z of both the inner and outer cortical surface vertices)
and subcortical nodes had 3 features (X, Y, Z of subcortical
surface vertices).

Graph convolutional neural networks

Cortical and subcortical meshes were converted to graphs,
which provide a convenient representation of their shape. This,
however, comes at the expense of using special convolutional
operators capable of handling data mapped on graphs instead of
traditional regular grids as it is the case with 2D or 3D images.
For this purpose, and similarly to our previous work (Wu et al,,
2020; Besson et al., 2021), we used the graph convolutional layers
introduced in Defferrard et al. (2016). In brief, this approach
allows convolution filters to be learnt on unstructured data
such as graphs using finite support recursive Chebychev filters
applied to underlying Laplacian matrix. This approach presents
the advantage to be computationally efficient and uses local
information in the same way as traditional 2D or 3D CNNs.

Using these convolutional layers, the principal difference
with traditional CNN architectures is the pooling operator
since unstructured data such as graphs don’t possess a natural
arrangement such as images. To overcome this issue, we used
a multiscale binary partitioning of the cortical and subcortical
meshes (Wu et al., 2020). This ensures that, for all scales S, graph
nodes 1;—1 and n; with 1 < i < Ns/2 and N is the number of
graph nodes at scale S, are neighbors and to be pooled together
using a 1D pooling operator (more details in Supplementary
Figure 2). The total number of graph nodes at scale 0, Ny, is
therefore a parameter of the network and was picked so that
it can be successively divided by 2 and the average Euclidean
distance across neighbor nodes was less than 3 mm for the
cortical meshes and less than 2 mm for the subcortical meshes.

Network architecture

The architecture of our graph convolutional neural network
was based on the Residual Network architecture (He et al., 2016).
Such architectures generally provide good performances, avoid
the problem of vanishing gradients, and allow the training of
very deep networks. We recently demonstrated that shortcut
connections, as in Residual Networks architectures, improved
the performances of gCNNs for the shape analysis of the
subcortical structures (Azcona et al., 2021). The overall network
architecture is illustrated in Figure 1A whereas the details
about residual blocks are shown in Figure 1B. Our network
uses a standard residual architecture with skipped connections

frontiersin.org
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in the residual blocks. Similarly to the Inception architecture
(Szegedy et al, 2015) a first convolutional layer with a large
receptive field is immediately followed by a pooling layer to
reduce the dimension of the input and accelerate the training
process without loss of performance. This was followed by three
residual blocks, then by batch normalization, convolutional
and global average pooling layers (GAP). Two independent
dense layers used the output of the GAP layer: a dense layer
followed by a ReLU activation aimed assigning ages to bins,
whereas a dense layer followed by a Softmax activation aimed
at assigning probabilities to the bins. This is in line with the
recently published state-of-the-art network to estimate brain age
(Peng et al,, 2021), except that in our case we also made the
centers of the bins learnable. Finally, the results obtained after
the ReLU and Softmax activations were multiplied together and
linearly combined using a last dense layer to provide the brain
age estimate. The networks were implemented using Keras and
Tensorflow 2.1 backend and Python 3.6.

Network parameters and training

Ten structure-specific networks were trained: one network
using all the structures together as inputs (cortical and
subcortical), one network using only the cortex, one network
with all the subcortical structures together only, and one
network for each of the seven subcortical structures. Motivated
by previous work demonstrating the value of network ensemble
in brain age prediction (Levakov et al., 2020; Peng et al,, 2021),
twenty versions of each of the ten structure-specific networks
were obtained using different seeds, therefore the total number
of networks trained was 200. All networks had the same training
parameters: convolutional layers had 64 filters except the very
last convolutional layer which had 128 filters. Both dense layers
had 75 units. The loss function was the mean squared error
(MSE), the mean absolute error (MAE) was also monitored
during training and validation. The optimization was done with
the RMSprop algorithm with an initial learning rate set to 0.001.
The learning rate was divided by 10 whenever the MAE on
the validation set was not improved after 15 epochs, and the
training was stopped if no improvement was obtained after 30
epochs. Networks were regularized with their L2 norm (A, =
107!2) and a dropout of 0.75 was applied to the dense layer of
the Softmax branch.

To improve the generalizability of our models, we added
a data augmentation technique before inference by applying
randomized rotations within & 15 degrees during training,
and + 5 degrees during validation. Moreover, test time
augmentation (TTA) was set to 3 on the validation set to
improve the accuracy and robustness of the predictions (Wang
G. et al,, 2019). To account for prediction bias (Beheshti et al,,
2019; de Lange et al,, 2019; Smith et al,, 2019; Peng et al,

2021), prediction biases were estimated using local weighted
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regressions (LOWESS) for each structure using data from the
validation set. Then, LOWESS curves were parametrized using
piecewise smoothing splines (smoothing parameter set to 0.1).

Structure age prediction of the testing
set

Brain age was predicted independently for each scan of
the testing set, which have never been seen previously by the
networks. The accuracy and robustness of the predictions were
improved using TTA = 20 with the same data augmentation
parameters as for the validation set, so that 400 brain age
estimates were generated for each scan and each of the ten input
structure combinations. All age predictions were averaged, and
final age estimate was obtained after applying the piece-wise
linear regression. The accuracy of structure age predictions was
obtained by calculating the mean absolute error, the median
absolute error, and the Person’s coeficients of correlation (r)
between the predicted and actual age of the first acquisitions of
healthy subjects in the testing set.

Statistical analysis

Cross-sectional analysis of baseline scans

A linear fixed effect was implemented to determine the effect
of cognitive status on structure age prediction. Structure-wise
age prediction along with diagnosis of all baseline scans were
included in this analysis to fit the following model:

PASJ = ,BS,O + /)’s,lAge,- + ﬁ5,3Dl’agHOSl'Si + é&s,i

Where PAg ; is the predicted age for the structure S, patient
i; Age; is the real age at the baseline acquisition of patient i
Diagnosis; is the diagnosis (healthy, MCI or ADD) of patient i
at baseline acquisition; fs ¢, fs,1 and fs 3 are structure-specific
fixed effects coefficients and &g ; the residuals. This model seeks
to answer the following question: given two subjects with the
same real age, how does the diagnosis affect predicted age? All
p-values were corrected for multiple comparisons using false
discovery rate (FDR) (Benjamini and Hochberg, 1995).

Longitudinal analysis of structure age

A linear mixed effect model was implemented to examine
the effect of cognitive status change (healthy subject, MCI or
ADD) on the pace of structure aging from a morphological
appearance perspective. The linear model aimed at answering
the question: is there a relationship between the pace of structure
aging and change in cognitive status over time, i.e., do structures
age slower/faster in healthy subjects converting to MCI or ADD,
as defined by their morphological appearance over time? For this
purpose, we only included subjects with repeated scans, whose
diagnosis at baseline scan was healthy and the age at last scan

frontiersin.org


https://doi.org/10.3389/fnagi.2022.895535
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/

Besson et al.

10.3389/fnagi.2022.895535

PESVE]

Block
x3

Graph representation
of input mesh

k=5

——> Brain Age

®
i

—>» Softmax /

k=1 k=6 k=I

X2

Layers
B Graph convolution

B Average pooling

FIGURE 1

B Batch normalization

(A) Overall architecture of the network. (B) Detail of Residual Blocks. For each convolutional layer (red), the kernel size k is indicated.

B Global average pooling
O Dense

PReLU

was at least 70 years old. For these subjects, all other scans along
with the diagnosis were collected and subjects were grouped into
one of the three categories: (1) Non-converters: baseline and
last diagnosis are healthy; (2) MCI converters: baseline diagnosis
is healthy and the last diagnosis is MCI; (3) ADD converters:
baseline diagnosis is healthy and the last diagnosis is ADD.
Using these data, the following model was fit:

PAS,i,j = Bs,0 + Bs,1Agei0 + Ps2 (Delta_scani,j

X Convert_typei) + bs,0,i + bs,1,iDelta_scan; j + e, j

Where PAg,; j is the predicted age for the structure S, patient
i and acquisition j; Age;o is the real age at baseline scan
for patient i; Convert_type; is the type of conversion (healthy
to healthy, healthy to MCI or healthy to AD) of patient i
Delta_scan; j is the duration between baseline scan and the j-th
acquisition of patient 4; fs,0, fs,1 and fs,, are structure-specific
fixed effects coeflicients, bs; is a structure-specific random
intercept, bs,1,; a structure-specific random slope and eg,; ; the
residuals. Aging slopes for MCI and AD were defined for all
structures as the ratios between the fixed-effect coefficients fs »
associated with MCI or AD with that associated with HC. All
p-values were corrected for multiple comparisons using false
discovery rate (FDR) (Benjamini and Hochberg, 1995).
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Results

Accuracy of structure age predictions

The accuracy of age prediction for each structure using the
baseline scans of healthy controls from the independent testing
set as well as the bias correction effectiveness are summarized in
Figures 2, 3. Age was well estimated for all structures, the mean
absolute error ranging from 3.30 years when using the caudate
only, to 3.61 years when using the amygdala only or the putamen
only. For all structures, the coefficient of correlation between the
actual and the predicted structure age was at least 0.89.

Cross-sectional analysis of baseline
scans

The effect of diagnosis at baseline on structure age
prediction is shown in Figure 4. Using only the baseline scans
and diagnosis of all subjects, the predicted age for all structures
was found significantly larger in patients with MCI and ADD
compared to healthy subjects. The amygdala was found to have
the largest effect as MCI patients were estimated to be 3.48 years
older, and ADD patients 7.97 years older than healthy controls.
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On the other hand, the pallidum had the smallest effect as
pallidum age was estimated to be 1.74 years older in MCI
patients and 3.78 years older in ADD patients compared to
healthy controls.

Longitudinal analysis of structure age

The results of the mixed effect linear model for the
longitudinal analysis of structure age predictions are presented
in Table 4. Compared to healthy controls, MCI converters
have significantly increased estimated age for the composite
subcortical structures, as well as individual amygdala, caudate,
hippocampus, pallidum and putamen. ADD converters have
significantly increased estimated age for the whole brain
(cortical + subcortical), composite subcortical structures, as well
as individual accumbens, amygdala, hippocampus, pallidum
and putamen. Overall, the aging pattern in ADD converters is
similar but consistently more marked than the aging pattern
of MCI converters compared to healthy controls, except for
the caudate, found to be significantly increased in MCI
converters only.

Frontiers in Aging Neuroscience

The aging pace, determined by the fixed effect term
between the type of conversion and the time across scans
(delta scan), was found largely and widespread increased in
ADD converters compared to healthy controls with significantly
faster aging affecting the whole brain, cortex, accumbens,
amygdala, hippocampus and pallidum. A similar pattern
of widespread increased aging pace was identified in MCI
converters, although to a lesser degree and included only
significant whole brain findings.

Discussion

Successful prediction of brain age
using structure-wise analysis

Using baseline MRI scans from healthy controls, accurate
brain age was predicted using a combination of all brain
structures combined as well as each individual brain structure
in isolation. The accuracy of our results are equivalent or
superior to those of others when taking the whole brain as a
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FIGURE 3

Accuracy of structure age prediction using the baseline acquisition of healthy subjects (95 Cl: 95% confidence interval).

predictive model (Cole et al., 2017; Liem et al., 2017; Beheshti
et al, 2022). The strong performance of each subcortical
structure in isolation is notable. While this is a novel finding,
it is not altogether unexpected due to the adjacency of the
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FIGURE 4

Effect of baseline diagnosis on structure age prediction (point
estimate and 95% confidence intervals). The predicted age was
significantly larger (p < 0.0001 FDR corrected) for all structures
compared to healthy controls (group of reference, no effect) as
well as between MCI and ADD groups.
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subcortical structures to the ventricles. Given the previously
well-described relationship between the ventricles and brain
age, this finding is congruent with previous reports (Scahill
et al,, 2003; Preul et al, 2006). Ours is the first work to
investigate structure-wise prediction of brain age using a
gCNN approach. While findings were relatively consistent
across individual structures and when taking all structures
together, variability across structures was identified. These
findings suggest a unique but tandem contribution to brain
aging exerted by each individual brain structure. Our findings
utilizing a gCNN approach, corroborate those of others using
non-graph based methods which have demonstrated enhanced
brain age prediction when accounting for a combination of
both local and regional metrics in the prediction algorithm
(Beheshti et al., 2022).

Differences identified between healthy
and pathologic aging populations

When comparing findings on baseline MRI between
healthy and pathologic aging populations, including those
with MCI and ADD, structure-wise analysis continues to
reveal novel insights into these different populations. All
brain structures analyzed together and individually revealed
a consistent relationship between healthy, MCI and ADD
populations including a modest increased deviation of
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Putamen Thalamus
+1.39 +0.78

Pallidum
+1.13

Hippocampus
+1.83

+1.00

Cortex Subcortical Accumbens Amygdala Caudate
+0.78 +1.20 +0.33 +1.34

Cortical +
subcortical
+0.93

TABLE 4 Effects of cognitive status conversion on structure age.

MCI converter fixed effect

Model Term
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+1.52 +2.56 +2.08 + 2.86 +1.32 +3.18 +2.08 + 3.07 +1.59

+2.29

ADD converter
fixed effect

—0.31% —0.75% + 1.40%

+ 7.74%

+2.52%

+12.22% +7.99%

+3.45% + 6.53%

+ 12.28%

MCI converter delta scan

interaction fixed effect

+ 8.87% —3.20%

+ 18.59% +19.11%

+6.18%

+25.57% + 35.84%

+38.08% + 20.46%

+ 31.16%

ADD converter delta scan

interaction fixed effect

Significant differences with non-converters are displayed in bold font (p < 0.05, FDR corrected).
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predicted brain age in MCI and a more marked increased
deviation of predicted brain age in ADD, both of which
were significant compared to healthy controls and between
pathologic entities.

The most notable increased deviations from chronologic age
were found in the amygdala with an overestimation of brain
age by nearly 3.5 and 8 years in MCI and ADD populations
respectively, when predicting brain age from the surface of
the amygdala alone. This was followed by an overestimation
of brain age by analysis of the cortical ribbon alone by 3.4
and 6.7 years for MCI and ADD populations respectively,
while the analysis of the hippocampus alone yielded an
overestimation of brain age by 3.3 and 6.8 years for MCI and
ADD populations, respectively.

The significant overestimation of structure-wise brain age
in pathologic aging populations suggests a prominent role
may be played by each of these individual brain structures
in driving altered aging patterns. The findings involving the
cortex and hippocampus are unsurprising in our current
understanding of aging, however, the substantial role of the
amygdala and putamen in pathologic aging has been less
extensively investigated and discussed.

Our findings advance the work of Cuenod, Maunoury
and others following their descriptions of amygdala atrophy
serving as a marker of early ADD (Cuenod et al, 1993;
Maunoury et al,, 1996). More recently, disordered olfaction and
specifically impairment of the olfactory amygdala in ADD has
been discussed and postulated to be an early driver of ADD
symptom onset (Ubeda-Banon et al., 2020).

Differential structuro-temporal
evolution between groups

When comparing findings over time for individuals who
remain healthy against those who convert from healthy to
either MCI or ADD, gCNN analysis reveals insights into
the temporal evolution of brain aging both at the whole
brain and single-structure level. Specifically, individuals who
convert to either MCI or ADD demonstrate an overestimated
structure age (conversion fixed effect) compared to non-
converters who remain healthy, but this overestimation is
more modest than when statically comparing groups at a
single point in time.

While the net brain age overestimations are relatively
modest on these longitudinal comparisons, structure-wise
gCNN analysis also provides novel temporal information
regarding the pace of brain aging between groups over time.
Overall, brain structures demonstrate a significantly faster pace
(conversion delta scan interaction fixed effect) of brain aging
within individuals converting to either MCI or ADD compared
to non-converting healthy individuals with the exception of
the caudate, putamen and thalamus which remain relatively
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aligned with healthy agers regardless of conversion status.
Of the brain structures demonstrating a faster pace of brain
aging in pathologic aging populations, the relative increase
in aging pace was more pronounced in those converting
to ADD compared to those converting to MCI. Ours is
the first to represent these dynamic relationships between
MCI and ADD converters at the whole brain and single
structure levels.

An additional novel finding from this analysis yields
overarching consistency across static and dynamic analyses.
Specifically, the roles played by the cortex, hippocampus
the
characterized as MCI and ADD. Interestingly, the amygdala

and amygdala within pathologic aging processes
reveals a more pronounced static difference in brain age
overestimation whereas the cortex-only model and amygdala-
only model each demonstrate the most elevated pace of
aging in ADD converters, specifically 38.08 and 35.84%
faster rates of brain aging respectively, compared to
healthy non-converters. This supports long standing work
implicating the amygdala in the neurobiology of dementia
given its role in both the cholinergic and serotonergic
systems, long-thought to underpin the development of
ADD and other dementia types (Rodriguez et al, 2012
Mesulam, 2013). This finding is also in keeping with
prior work demonstrating accelerated atrophy of the
amygdala in healthy adults at increased genetic risk of
developing ADD (An et al, 2021) as well as in individuals
with MCI and ADD (Feng et al, 2021). Taken together,
these findings add to the growing body of literature that
identifies a prominent role played by the amygdala in the
pathophysiology of deteriorating cognitive function. Of note,
the hippocampus demonstrates a relatively modest increased
pace of aging in pathologic agers compared to healthy agers
at 7.74% increase in MCI converters and 18.59% increase
in ADD converters.

The results of this work must be interpreted within
the constraints of large, publicly available database-based
analyses investigating aging cognition including
the subjective criteria used to define MCI and ADD
classification across multiple participating sites as well

and

as multiple scanner and used

in MR data collection.
believe

acquisition  protocols
Despite these limitations, we
of

structuro-temporal

our findings advance our understanding

brain aging by providing a novel
of healthy
aging populations.

understanding aging in and pathologic
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