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Lymphatic vessels are important for tissue fluid homeo-
stasis, lipid absorption, and immune cell trafficking and
are involved in the pathogenesis of several human diseas-
es. The mechanisms by which the lymphatic vasculature
network is formed, remodeled, and adapted to physiolog-
ical and pathological challenges are controlled by an intri-
cate balance of growth factor and biomechanical cues.
These transduce signals for the readjustment of gene ex-
pression and lymphatic endothelial migration, prolifera-
tion, and differentiation. In this review, we describe
several of these cues and how they are integrated for the
generation of functional lymphatic vessel networks.

Some of the most dense lymphatic networks are located
under various epithelia that form the interface between
the body and the outside environment; for example, in
the skin and in the gut. In these locations, the immune
cell trafficking functions of the lymphatics are of special
importance; for instance, for the launching of adaptive
immune responses against pathogens. The lymphatic sys-
tem is also essential for the transport of interstitial fluid
and associated solutes, metabolites, andmacromolecules,
which have extravasated from blood vessels. Blind-ended
lymphatic capillaries form the portal of entry for intersti-
tial fluid, antigen-presenting cells, and lymphocytes
(Aebischer et al. 2014; Aspelund et al. 2016; Betterman
and Harvey 2016). From the capillary network, the inter-
stitial fluid—now called lymph—flows via precollector
and collector vessels and through a series of lymph nodes
back into the systemic circulation via the thoracic duct,
leading to entry of substances transported in lymph into
the bloodstream (Schulte-Merker et al. 2011; Koltowska
et al. 2013). The lymphatic network is a low-pressure sys-
tem, where lymph is propelled forward by the squeezing
action of smooth muscle cells (SMCs) that surround the
lymphangions between valves of the collecting vessels
and by vasomotion and breathing that promote suction

in the downstream collector vessels (Bazigou and Maki-
nen 2013).
With the exception of the Schlemm’s canal in the eyes,

meningeal lymphatic vessels, and the majority of the (lac-
teal) lymphatic vessels in the intestine, most lymphatic
networks are generated during embryonic development
(Kim et al. 2007; Aspelund et al. 2014, 2015; Kizhatil
et al. 2014; Nurmi et al. 2015). However, they also under-
go dynamic changes in adults. Lymphatic vessels can
grow in length and caliber (lymphangiogenesis) in various
pathological conditions, such as inflammation, wound
healing, tumorigenesis, and in association with tissue
transplantation. A common feature in many of these con-
ditions is tissue edema and inflammation, which increase
the demand for fluid drainage and immune cell traffick-
ing. When the lymphatic network undergoes remodeling,
the enlarged vessels with their increased tissue drainage
capacity may benefit the resolution of inflammation by
enabling enhanced removal of accumulated tissue fluid,
immune cells, tissue debris, chemokines, growth factors,
etc. (Aebischer et al. 2014; Betterman and Harvey 2016).
Increased lymphatic function can sometimes also lead
to adverse effects. For example, lymphangiogenesis can
increase the severity of transplant rejection (Dashkevich
et al. 2016). In cancer, it can facilitate the spread of tumor
cells to the lymph nodes and from there to the systemic
circulation, with subsequent metastatic colonization of
distant organs (Alitalo 2011; Stacker et al. 2014). As these
examples indicate, development of molecular tools to
control lymphangiogenesis would be beneficial for the
treatment of several diseases.
The stepwise process of lymphangiogenesis has simi-

larities to the better-studied blood vascular angiogenesis
and the growth of the gas-transporting tracheal system in
Drosophila melanogaster (Ochoa-Espinosa and Affolter
2012). Lymphangiogenic growth starts upon exposure of
lymphatic endothelial cells (LECs) to growth factors or
biomechanical stimuli, which in many cases leads to ac-
tivation of vascular endothelial growth factor (VEGF)
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receptor 3 (VEGFR3) (Fig. 1). Available data support
the view that, in lymphangiogenesis, as in angiogenesis,
the growing lymphatic vessels are guided by migrating
tip cells, which display filopodia and cellular protrusions
that sample the pericellular environment in search of
guidance cues (Figs. 1, 2; Gerhardt et al. 2003; Zheng
et al. 2011). The tip cell guides the forming branch,
and endothelial proliferation behind the tip cell allows
the elongation of the branch (Gerhardt et al. 2003; Baluk
et al. 2005). The growth of new branches ceases upon de-
creased growth factor exposure, or, in some cases, growth
is stalled by an increase of inhibitory signals, such as
IFN-γ, TGF-β, endostatin, neostatin-7, or thrombospon-
din, which act directly on LECs or via control over
growth factor production by other cell types (Fig. 1;
Brideau et al. 2007; Clavin et al. 2008; Kojima et al.
2008; Oka et al. 2008; Avraham et al. 2010; Cursiefen
et al. 2011; Kataru et al. 2011; Ou et al. 2011; Zampell
et al. 2012). After some pruning of the newly formed
branches, some of them are stabilized to form capillaries
or collector vessels. Thematuration of collectors involves
the development of valves and SMC investment (Bazigou
and Makinen 2013; Martinez-Corral and Makinen 2013).
The intercellular cadherin junctions of the capillaries un-

dergo a switch from a zipper-like structure to button-like
connections (Yao et al. 2012), and this is accompanied by
the formation of anchoring filaments that connect the
LECs to the pericellular matrix (Leak and Burke 1968). In-
terestingly, during embryonic growth, the LEC junctions
are zippers and change to buttons slowly around birth
but revert back to zippers upon stimulation by growth fac-
tor or inflammatory processes (Yao et al. 2012).

In this review,we first outline themain principles of the
formation of lymphatic vessel networks during develop-
ment and their expansion in pathological conditions
such as inflammation and tumorigenesis. We then
describe the mechanisms of lymphangiogenesis; i.e., how
VEGF-C activates its cognate receptor, VEGFR3, in
LECs, leading to sprouting lymphangiogenesis. We next
discuss themodulation of VEGFR3 activity by its corecep-
tors.We also describe howmechanical cues, such as tissue
fluid pressure and tissue structures such as arteries and ex-
tracellular matrix (ECM), contribute to lymphangiogene-
sis guidance. Finally, we describe some of the well-
established mouse models for lymphangiogenesis (Fig. 2).
Throughout the review, we focus on the guidance mecha-
nisms of lymphangiogenesis in comparison with angio-
genesis in mammals and zebrafish.

Figure 1. Pericellular cues that guide lymphatic vessel growth. (A,A′) Arterial endothelial cells and SMCs secrete lymphangiogenic guid-
ance cues that contribute to the alignment of large lymphatic collectors with arteries. VEGF-C binds to pericellular matrix and LEC sur-
face proteins, such asVEGFR3, neuropilin 2 (NRP2), and syndecan-4, and is processed upon its interactionwith extracellularmatrix (ECM)
adapter, collagen- and calcium-binding EGF domain-containing protein 1 (CCBE1), and the ADAMTS3 protease as shown in A′. In zebra-
fish and mice, CXCL12 produced by blood vascular endothelial cells guides lymphatic growth via binding to its receptor, CXCR4, on
LECs. Adrenomedullin (AM) binds to the RAMP2 and CALCRL receptors in mice. The chemokine sink CXCR7 regulates these interac-
tions by sequestering bothCXCL12 and adrenomedullin. (B) Upon growth factor-induced activation, bothVEGFR3 andVEGFR2 can stim-
ulate LEC proliferation, and VEGFR3 interaction with β1 integrins, such as α5β1, enhances the lymphangiogenic signals. (C ) The
sprouting and branching of lymphatic vessels is dependent on VEGF-C signaling via the VEGFR3–NRP2 receptor complex. Integrin
α5β1 ligands fibronectin and collagen in the ECM increase VEGFR3 phosphorylation in the absence of a VEGFR3 ligand; they also poten-
tiate VEGF-C-induced VEGFR3 activation and LECmigration. Macrophages provide a major source of VEGF-C in lymphangiogenesis as-
sociated with inflammation. The growth-promoting factors are counteracted by inhibitory signals, such as TGF-β and INF-γ, which act
directly on LECs or affect VEGF-C production by, e.g., macrophages (see the overview figure). (D) The deflection of lymphatic vessel
sprouts away from arteries has been suggested to be driven by arterial expression of semaphorin 3G (SEMA3G), which induces LEC repul-
sion via a plexin 1 (PLXN1)–NRP2–VEGFR3 receptor complex.
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Lymphangiogenesis in development

Most of the lymphatic vessels in mice and zebrafish arise
from LECs sprouting from embryonic veins (Sabin 1902;
Wigle and Oliver 1999; Isogai et al. 2003; Yaniv et al.
2006; Srinivasan et al. 2007). In zebrafish, phagocytic peri-
vascular cell populations resembling LECs have been
found recently in the brain that do not form vessels but
are required for the formation of the cerebral blood vessels
(Bower et al. 2017a; van Lessen et al. 2017; Venero Galan-
ternik et al. 2017). An interesting case of lymphatic vessel
specialization in fish is their involvement in fin erection
and thus locomotion in tunas (Pavlov et al. 2017). In
mouse embryos, the first committed LEC progenitors ap-
pear in the cardinal vein at embryonic day 9.5 (E9.5).
These cells express SOX18 (a SRY-related HMG-box tran-
scription factor) and differ from the majority of other ve-
nous cells by expression of homeobox transcription
factor PROX1 and LYVE1 (Wigle andOliver 1999; Schacht
et al. 2003; Francois et al. 2008; Hagerling et al. 2013).
SOX18 induces expression of the downstream Prox1,
which is essential for LEC specification and the subse-
quent formation of lymphatic vessel networks (Wigle
and Oliver 1999; Francois et al. 2008; Johnson et al.
2008). PROX1 drives lymphatic identity and its mainte-
nance by directly inducing expression of LEC-specific
genes and suppressing blood endothelial cell (BEC)-specif-
ic genes in collaboration with its binding partners, such as
the nuclear receptor COUP-TFII (Petrova et al. 2002;
Wigle et al. 2002; Lin et al. 2010; Srinivasan et al. 2010).
Based on live imaging of zebrafish embryos, the initial

LEC specification takes place on the ventral side of the
cardinal vein, where Wnt5b, secreted by the neighboring
endoderm, induces the specification of LEC lineage cells
(Nicenboim et al. 2015). These cells subsequentlymigrate
to the dorsal side of the cardinal vein. It has been suggest-
ed that on the dorsal side, the committed LECs arise via
asymmetric fate determination following cell division;

the daughter cells expressing increased levels of Prox1
then become destined to the lymphatic lineage (Koltow-
ska et al. 2015). Also in mouse embryos, PROX1-positive
LEC progenitors are spatially restricted to the dorsal side
of the cardinal vein at E10.5 (Wigle and Oliver 1999).
WNT activation can increase Prox1 expression via tran-
scription factor 4 (TCF4)-binding sites upstream of the
Prox1 gene in lymphatic endothelial, neuronal, and tumor
cells (Petrova et al. 2008; Karalay et al. 2011; Cha et al.
2016). However, β-catenin deletion in mouse embryos
from E9.5 onward did not interfere with LEC differentia-
tion. Rather, β-cateninwas necessary for lymphatic vascu-
lature morphogenesis and valve formation, possibly via
shear stress sensing and regulation of FOXC2 expression
(Cha et al. 2016).
After delamination, the PROX1-positive LECs migrate

dorsally as strings of loosely connected spindle-shaped
cells and, at E11.5, form the first lumenized lymphatic
structures (“lymph sacs”), the peripheral longitudinal
lymphatic vessel (PLLV), and the primordial thoracic
duct (pTD) (Yang et al. 2012; Hagerling et al. 2013). It
has been suggested that instead of LEC proliferation,
abundant LEC delamination from the cardinal vein and
possibly from the superficial blood vessel plexus compris-
es the major source of migrating LECs (Hagerling et al.
2013). Formation of additional lymph sacs takes place in
other anatomical locations at later developmental time
points. For example, the PROX1-positive LECs in the su-
perior mesenteric vein are specified at E12.5 and form
the mesenteric lymph sac by E14 (Kim et al. 2007; Stanc-
zuk et al. 2015). Lymph sacs will subsequently give rise to
most of the primitive lymphatic vessel plexuses in embry-
os via vigorous LEC sprouting and proliferation (Hagerling
et al. 2013). Thereafter, additional pruning and further
sprouting sculpt the final lymphatic vessel network, con-
sisting of lymphatic capillaries, precollectors, collectors,
and lymph nodes organized in a hierarchical manner.
The lymphatic network patterns in various tissues differ

Figure 2. Examples of ongoing lymphangiogenesis in
mouse embryos and postnatal mice. (A) Embryonic
skin dermis at embryonic day 14 (E14) stained for
CD31 (blue), PROX1 (red), and NRP2 (green). (B) LEC
clusters in the process of assembling to formmesenteric
lymphatic vessels at E14, here stained for PROX1 (red)
andNRP2 (green). (C ) LYVE1 (green) staining of develop-
ing lymphatic vessels in the ventral part of the ear at
postnatal day 16 (P16). The inset shows one of the grow-
ing lymphatic vessel tips, with the LEC nuclei indicated
using PROX1 (red). (D,E) CD31 (blue), PROX1 (red), and
VEGFR3 (green) whole-mount staining of the trachea (D)
and tail dermis (E) at P5. (F ) CD31 (blue) and LYVE1
(green) staining of the pleural side of a P5 diaphragm.
(G,H) CD31 (blue), α-smooth muscle actin (αSMA; red),
and LYVE1 (green) staining of (lacteal) lymphatic vessels
in intestinal villi (G) and the intestinal wall (H) in adult
mice. (I ) CD31-stained (blue) and PROX1-stained (red)
mesenteric lymphatic vessels at P7.

Lymphangiogenesis guidance

GENES & DEVELOPMENT 1617



greatly from each other, reflecting the physical con-
straints and functional demands imposed by the host tis-
sue (Ulvmar and Makinen 2016).

Althoughmost of the lymphatic vascular plexuses orig-
inate from Prox1-positive venous endothelia (Srinivasan
et al. 2007), recent reports have indicated a contribution
by nonvenous sources in diverse tissues (for review, see
Ulvmar andMakinen2016).Mesenteric lymphatic vessels
are formed from isolated clusters of LECs (Fig. 2B), whose
origin was traced to progenitors derived from blood-form-
ing hemogenic endothelium (Stanczuk et al. 2015). In the
lumbar dermis and heart, some of the LECs were negative
for Tie2-Cre lineage tracing, suggesting that these cells
had a nonendothelial origin (Klotz et al. 2015; Martinez-
Corral et al. 2015). According to Klotz et al. (2015), these
LECs are similar to cells in aVAV1-positive hematopoietic
cell lineage in the heart. The precise contribution of alter-
native LEC sources and their importance for the formation
of different lymphatic vascular beds are still unclear. It is
not understood why certain lymphatic networks are com-
posed of LECs derived from various sources. It is possible
that LECs from diverse backgrounds could have differen-
tial functions within the mature network or ensure effi-
cient and rapid (re)vascularization. These findings also
call for studies on the contribution of lymphvasculogene-
sis in pathological conditions.

Lymphangiogenesis in pathological conditions

In adults, lymphangiogenesis is reactivated in inflam-
mation, wound healing, and tumorigenesis. Although
lymphangiogenesis in adults operates with the same prin-
ciples as in embryos, it is less well coordinated by the ap-
propriate signals in pathological processes, and thus
lymphatic vessels often become malformed and poorly
functional. Lymphatic vessel density increases locally at
sites of inflammation in tissues and in their downstream
lymph nodes, which receive lymphangiogenic signals
from the inflamed site (for review, see Aebischer et al.
2014; Kim et al. 2014). Substantial lymphatic vasculature
is required for the resolution of inflammation and efficient
tissue clearance. Increased lymphatic vessel density in
transgenic animals overexpressing VEGF-C improves the
resolution of tissue edema inmodels of cutaneous contact
hypersensitivity, UV irradiation, or lipopolysaccharide-
mediated inflammation (Kataru et al. 2009; Huggenberger
et al. 2011). On the other hand, inhibition of lymphangio-
genesis prolongs the resolution of tissue edema in acute
inflammation of the mouse ear or peritoneum and in
TNFα-induced arthritis (Guo et al. 2009; Kataru et al.
2009; Kim et al. 2009). However, blocking lymphangio-
genic signals can alleviate rejection of transplanted cardi-
ac, corneal, and pancreatic tissue allografts by preventing
antigen presentation in the draining lymph nodes (Chen
et al. 2004; Zhang et al. 2009; Dietrich et al. 2010; Nyka-
nen et al. 2010; Dashkevich et al. 2016).

Inflammation-associated lymphangiogenesis is induced
by inflammatory cytokines such as TNFα and IL-1 (which
stimulate target cells), and leukocytes (e.g., macrophages)

can produce substantial amounts of VEGF-C (Enholm
et al. 1997; Matsui et al. 2003; Kataru et al. 2009; Kim
et al. 2009). Macrophages and other bone marrow-derived
cells have also been reported to intercalate in between the
LECs at a very low rate during the formation of lymphatic
vessels and, in some cases, have been detected to express
the LEC markers LYVE1 and PROX1 (Maruyama et al.
2005; Religa et al. 2005; Jiang et al. 2008; Zumsteg et al.
2009; Lee et al. 2010; Hall et al. 2012; Hirai et al. 2013).
However, there is no lineage tracing evidence that these
cells would directly contribute to expansion of lymphatic
vessels in inflammation.

The stability of inflammation-induced lymphatic neo-
vessels varies between tissues. In the cornea, lymphatic
capillaries induced by a surgical suture started to regress
immediately upon suture removal, but, 6 mo later, short
fragments still persisted (Cursiefen et al. 2006). It was sug-
gested that they can act as seeds of accelerated lymphan-
giogenesis in recurring inflammation (Kelley et al. 2013).
Furthermore, in the trachea, entire lymphatic vessel net-
works generated during inflammation persisted for long
time periods after the resolution of inflammation (Baluk
et al. 2005), whereas in lymph nodes treated with a single
injection of lipopolysaccharide, the lymphatic capillary
area peaked 3 d later and returned to normal in 2 wk
(Kataru et al. 2011). The reasons for such variation in lym-
phatic vessel regression are not known (for review, see
Kim et al. 2014).

Increased expression of lymphangiogenic factors occurs
also in a variety of tumors that promote lymphangiogene-
sis in the peritumoral area and enlarge the downstream
collecting lymphatic vessels as well as the subcapsular si-
nus network of the draining lymph nodes (for review, see
Alitalo 2011; Karaman and Detmar 2014; Stacker et al.
2014). Lymphatic vessels can also grow intratumorally
(Beasley et al. 2002; Dadras et al. 2003). Intratumoral ves-
sels either have penetrated the tumor or represent pre-ex-
isting lymphatics trapped by the growing tumor (Stacker
et al. 2014). VEGF-C produced by tumor cells and by in-
flammatory cells in the tumor stroma promotes lymphan-
giogenesis (Salven et al. 1998; Achen et al. 2001; Karpanen
et al. 2001; Schoppmann et al. 2002), which facilitates the
dissemination of tumor cells into the lymphatic vessels
and lymph nodes (Karpanen et al. 2001; Mandriota et al.
2001; Skobe et al. 2001; Stacker et al. 2001).

It has been suggested that lymphatic and lymph node
colonization facilitates tumor cell entry into the systemic
circulation (Karpanen andAlitalo 2001). Indeed, tumor-in-
duced lymphangiogenesis is associated with increased
lymph nodemetastasis andworse disease-free/overall sur-
vival of patients, and surgical removal of cancer cell-har-
boring lymph nodes can improve patient survival
(Moertel et al. 1995; Dadras et al. 2003, 2005; Nakamura
et al. 2005; Renyi-Vamos et al. 2005; Saad et al. 2006;
Takanami 2006; Tobler and Detmar 2006; Adachi et al.
2007; Kaneko et al. 2007;Matsumoto et al. 2007; Doekhie
et al. 2008; Mumprecht and Detmar 2013). However, me-
tastases can also occur via an exclusive hematogenous
route. Reconstruction of phylogenetic trees of primary
tumors and associated metastases from colon cancer
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patients showed that 35% of liver and lymph node metas-
tases had the same subclonal origin in the primary tumor,
reflecting either themetastatic route or the capability of a
metastatic tumor clone to efficiently spread to several in-
dependent locations (Naxerova et al. 2017). In mouse
models, lymphangiogenic factors produced by tumor cells
facilitate lymph node metastases, and blocking of
lymphangiogenesis in various tumor models attenuates
tumor dissemination (Karpanen et al. 2001; Mandriota
et al. 2001; Skobe et al. 2001; Stacker et al. 2001; He
et al. 2002, 2005; Krishnan et al. 2003; Lin et al. 2005; Rob-
erts et al. 2006). However, increased marginal lymphatic
vessels and a high “immunoscore” (i.e., density of tu-
mor-infiltrating cytotoxic CD8+ and memory CD45RO+

T cells) in human colorectal carcinoma are associated
with protection against the generation of distant metasta-
ses (Galon et al. 2006; Kirilovsky et al. 2016;Mlecnik et al.
2016). In melanoma, VEGF-C levels correlated with tu-
mor infiltration of naïve T cells and enhanced response
to immunotherapy (Fankhauser et al. 2017). Thus,
lymphatic vessels likely have a dual role during tumor
progression, allowing metastatic escape but also regulat-
ing the immune recognition and critical checkpoints in
anti-tumor responses.

VEGF-C and other lymphangiogenic growth factors

VEGF-C is so far the only specific growth factor that is es-
sential for embryonic lymphangiogenesis (Karkkainen
et al. 2004). In the absence ofVEGF-C, PROX1-positive en-
dothelial cells are specified in the cardinal vein of develop-
ing mouse embryos but fail to delaminate, which leads to
failure of primary lymph sac and lymphatic network for-
mation and prenatal death (Karkkainen et al. 2004;Hagerl-
ing et al. 2013).Heterozygous embryos survivebut develop
hypoplastic lymphatic vessels (Karkkainen et al. 2004).
Conditional deletion of Vegfc at a later developmental
time point leads to absence of, e.g., lacteals in the intestine
and hypoplastic Schlemm’s canal in the eyes (Aspelund
et al. 2014; Nurmi et al. 2015). Furthermore, VEGF-C/D
sequestration by epidermally expressed soluble VEGFR3-
Ig protein (VEGF-C/D trap) inhibits cutaneous andmenin-
geal lymphatic vessel development (Makinen et al. 2001;
Haiko et al. 2008; Aspelund et al. 2015).
VEGF-C is also indispensable for lymphangiogenesis in

adult tissues, as shown in models of acute inflammation
inwhich an inflammatory responsewas induced in the tra-
chea byMycoplasmapulmonis, in the peritoneumby lipo-
polysaccharide, or in the ear dermis by lipopolysaccharide
or lipoteichoic acid and muramyl dipeptide (Baluk et al.
2005; Kataru et al. 2009; Kim et al. 2009). In these models,
lymphangiogenesis was prevented by the VEGF-C/D trap.
Interestingly, the maintenance of lymphatic capillaries
seems to be dependent on constant VEGF-C signaling in
some tissues. Deletion of Vegfc in adult mice caused slow
degeneration of intestinal lacteals, whereas the main-
tenance of dermal lymphatic vessels was independent of
a constant supply of VEGF-C (Aspelund et al. 2014;Nurmi
et al. 2015). Furthermore, in contrast to dermal LECs, it

was reported that the lacteal LECs proliferate at a slow
rate, and some of the lacteal tips display a tip cell pheno-
type even in adult mice (Bernier-Latmani et al. 2015).
Although VEGF-C and perhaps Wnt5a (see above;

Nicenboim et al. 2015) are the only indispensable growth
factors for lymphangiogenesis, several other growth fac-
tors can also induce lymphatic growth. For instance, the
VEGF-C-related VEGF-D induces lymphangiogenesis
when overexpressed (Stacker et al. 2001), and its deletion
results in mild lymphatic vessel hypoplasia in the lungs
and slightly decreased lymphatic vessel caliber in the der-
mis (Baldwin et al. 2005; Paquet-Fifield et al. 2013). In
zebrafish, VEGF-D is indispensable for facial lymphangio-
genesis (Astin et al. 2014; Bower et al. 2017b). Ectopic ex-
pression of FGF2 can also induce lymphangiogenesis, and
Fgfr1 and Fgfr3 double-mutantmice show reduced growth
of dermal lymphatic vessels at E15.5 (Kubo et al. 2002;
Cao et al. 2004b; Chang et al. 2004; Yu et al. 2017). Ectopic
expression of several other growth factors, such as VEGF
(Nagy et al. 2002; Cao et al. 2004b; Cursiefen et al. 2004;
Kunstfeld et al. 2004), angiopoietin 1 (Gale et al. 2002;
Morisada et al. 2005; Tammela et al. 2005), angiopoietin
2 (Gale et al. 2002), PDGF-BB (Cao et al. 2004a), EGF (Ma-
rino et al. 2013), IGF-1 (Bjorndahl et al. 2005), and HGF
(Kajiya et al. 2005; Cao et al. 2006; Gibot et al. 2016),
can induce lymphangiogenesis in mouse tissues. At least
FGF2-, angiopoietin 1-, andHGF-induced lymphangiogen-
esis is inhibited by the VEGF-C/D trap (Kubo et al. 2002;
Chang et al. 2004; Tammela et al. 2005; Cao et al. 2006).
Thus, in addition to direct effects on LECs, these growth
factors may act by recruiting leukocytes, which can pro-
duce VEGF-C/D (for review, see Zumsteg and Christofori
2012). Another possibility is that they induce VEGF-C ex-
pression in blood vascular endothelium or associated
SMCs, which leads to lymphangiogenesis via angiocrine
mechanisms (Kubo et al. 2002; Cao et al. 2006).

Sources of VEGF-C

When overexpressed, VEGF-C provides directional cues
for LECmigration and lymphatic vessel extension. For ex-
ample, LECs delaminating from the jugular vein migrate
toward the paracrine VEGF-C source (Karkkainen et al.
2004). VEGF-C induces directed LEC migration in vitro
(Joukov et al. 1996), and beads soaked in recombinant
VEGF-C were capable of recruiting LECs in Vegfc-deleted
embryos (Karkkainen et al. 2004). Lymphatic vessels also
grow toward VEGF-C-expressing tumors and encircle the
tumor foci, occasionally penetrating into the tumor
stroma (Stacker et al. 2014). A point source of VEGF-C
may form a LEC-guiding gradient, or the tip LEC may fol-
low a source of VEGF-C that advances ahead of the grow-
ing lymphatic capillary tip. Furthermore, extracellular
processing of VEGF-C by the ADAMTS3 metallprotease
and associated collagen- and calcium-binding EGF
domain-containing protein 1 (CCBE1) may shape active
VEGF-C gradients (see below). Such mechanisms are
known from othermodel systems. For example, angiogen-
esis toward the midline in the hindbrain is regulated by a
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VEGF gradient and neuropilin binding (Ruhrberg et al.
2002), and tracheal vessel growth inDrosophila is directed
by a gradient formed by a point source of FGF (Sutherland
et al. 1996). In the developing retina, the angiogenic vessel
front (the leading edge) follows the advancing border of
hypoxic tissue, which shows high VEGF expression by
the underlying astrocytes (Stone et al. 1995; Gerhardt
et al. 2003). So far, it has been difficult to explore such
mechanisms in the case of VEGF-C because of the lack
of specific reagents for the localization of the activated
form of VEGF-C.

Macrophages are often detected in the vicinity of form-
ing lymphatic vessels in embryos and in inflamed and tu-
mor tissues in adults (Kelley et al. 2013; Lee et al. 2014;
Ochsenbein et al. 2016). However, claims thatmacrophag-
es incorporate to lymphatic vessels and transdifferentiate
into proliferating LECs have not been supported by hema-
topoietic lineage tracing usingVav-Cre orCsf1r-iCremice
(Maruyama et al. 2005; Religa et al. 2005; Kerjaschki et al.
2006; Bertozzi et al. 2010; Gordon et al. 2010; Martinez-
Corral et al. 2015). However, macrophages are essential
for lymphangiogenesis associated with inflammation.
They are known to produce angiogenic cytokines, includ-
ing VEGF-C and VEGF-D (Fig. 1C; Schoppmann et al.
2002). Clodronate liposomes, which have been used to
depletemacrophages systemically, inhibited lymphangio-
genesis induced by lipopolysaccharide in the ear, skin, and
diaphragm; by corneal suture in the eye; and by a high-salt
diet in the skin (Maruyama et al. 2005; Kataru et al. 2009;
Kim et al. 2009; Machnik et al. 2009).

Although macrophages stimulate LEC proliferation in
vitro (Gordon et al. 2010), the role of macrophages in
developmental lymphangiogenesis is less obvious. op/op
mice, which lack macrophage colony-stimulating factor
(M-CSF and CSF-1)-dependent macrophages, show de-
layed development of dermal and tracheal lymphatic ves-
sels (Kubota et al. 2009). Lymphangiogenesis induced by
ischemia and tumors was also attenuated in the op/op
mice (Kubota et al. 2009). Furthermore, defective CCL2–
CCR2 chemokine signaling led to decreased association
of macrophages with the lymphatic vessels and decreased
density of the dermal lymphatic network, possibly by re-
ducing the concentration of VEGF-C/D that interacts
with its receptor on the LECs (Lee et al. 2014). Interesting-
ly, depletion of the PU.1 transcription factor orM-CSF-de-
pendent macrophages in the corresponding gene targeted
mice led to LEC hyperproliferation and lymphatic vessel
dilation. Although it was suggested that PU.1- and
Csf1r-dependent cells inhibit lymphangiogenesis, VEGF-
C/D expression was increased in PU.1 embryos, suggest-
ing alternative overcompensating mechanisms (Gordon
et al. 2010).

Immunohistochemistry for VEGF-C shows staining in
the endothelium and arterial SMCs in adult mice, reflect-
ing its binding to the vascular endothelial cell surfaces and
production by SMCs and possibly BECs (Skobe et al. 1999;
Partanen et al. 2000; Tammela et al. 2008). β-Galactosi-
dase staining of tissues from heterozygous Vegfcwt/lacZ

mice confirmed Vegfc expression in SMCs in E10.5 em-
bryos and intestinal arteries in adults (Karkkainen et al.

2004; Nurmi et al. 2015). Furthermore, the circular
smooth muscle fibers of the intestinal wall and elongated
SMCs extending into the gut villi were positive for β-ga-
lactosidase (Nurmi et al. 2015). VEGF-C production by
SMCs could explain why the intestinal lacteals run paral-
lel to the intestinal SMC fibers andwhy lymphatic vessels
accompanymajor arteries, although the CXCL12/CXCR4
chemokine signaling system is also involved (see below;
Fig. 1A; Cha et al. 2012). However, the proof of SMC-pro-
duced VEGF-C function would require targeted deletion
of VEGF-C in these cells. Overall, cell- and tissue-specific
patterns of VEGF-C expression and physical constraints
for the growth of lymphatic vessels may explain the tis-
sue-specific patterns of many lymphatic networks.

VEGF-C activation

Unlike other members of the VEGF family, VEGF-C and
VEGF-D are produced as precursor proteins, which require
processing of their C-terminal and N-terminal propepti-
des to achieve full activity toward their cognate receptors,
VEGFR3 and VEGFR2 (Joukov et al. 1997). Concomitant
with its secretion, the VEGF-C precursor undergoes C-ter-
minal cleavage by proprotein convertases (Siegfried et al.
2003). The resulting VEGF-C form is poorly active, but
subsequent N-terminal processing greatly potentiates its
receptor binding. Recent studies have revealed that the
processing of theN terminus is a complexmechanism, re-
quiring the scaffold protein CCBE1 (Jeltsch et al. 2014; Le
Guen et al. 2014; Jha et al. 2017). Both CCBE1 and the
ADAMTS3 metalloproteinase are essential for cleavage
of VEGF-C into its active form in vivo and in vitro (Jeltsch
et al. 2014; Janssen et al. 2016). Importantly,CCBE1-inac-
tivating mutations in the collagen domain, calcium-bind-
ing EGF domain, or cysteine-rich domain upstream of the
EGF domain have been found in patients with Hennekam
syndrome, which involves severe lymphedema (Alders
et al. 2009, 2013; Connell et al. 2010). Furthermore, homo-
zygous Ccbe1 mutations prevent the formation of all
primitive lymphatic structures in mice and zebrafish (Ho-
gan et al. 2009; Bos et al. 2011). In Ccbe1 mutant mice,
LECs are specified and able to delaminate from the cardi-
nal vein in small amounts but fail to migrate and form
PLLV and pTD (Hagerling et al. 2013). The fact that
LECs still delaminate in Ccbe1mutants, but not in Vegfc
mutants, suggests that the unprocessed VEGF-C also has
some activity toward VEGFR3. Alternatively, low levels
of VEGF-C cleavage may occur in the absence of CCBE1.
In line with the developmental phenotype, conditional
deletion ofCcbe1 in adultmice abolishes lymphangiogen-
esis induced by VEGF-C overexpression (Bui et al. 2016).
Moreover, CCBE1 overexpression in adult mice syner-
gizes with VEGF-C expression for improved lymphangio-
genesis (Jeltsch et al. 2014). The ADAMTS3 protease that
activates VEGF-C was previously considered to be of ma-
jor importance for the processing of interstitial procolla-
gens to collagen (for review, see Fernandes et al. 2001). It
was therefore surprising that the Adamts3-deleted mice
had no connective tissue phenotype but instead lacked
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lymphatic vessels and had severe tissue swelling as em-
bryos, resulting in prenatal death (Janssen et al. 2016).
Mechanistically, CCBE1 could present a scaffold that

directly binds ADAMTS3, and complex formation may
be required for the binding of pro-VEGF-C in vitro
(Jeltsch et al. 2014; Bui et al. 2016). The N terminus of
CCBE1 interacts also with VEGFR3 and the pericellular
matrix components vitronectin and collagens I, IV, and V
(Bos et al. 2011; Jeltsch et al. 2014). Immature VEGF-C
also binds VEGFR3 and cell surface/ECM heparan sul-
fates in vitro (Yin et al. 2011; Jeltsch et al. 2014; Johns
et al. 2016). Most VEGF-C activation may thus occur
on the endothelial cell surface or in the pericellular ma-
trix. It is also interesting that the C-terminal propeptide
contains a repetitive arrangement of cysteine residues,
which is otherwise exclusively known from the salivary
proteins of silk-weaving mosquito larvae of the genus
Chironomus, which can form fibrous structures (Joukov
et al. 1996; Jha et al. 2017). Whether latent VEGF-C
is present in fibrillar silk-like matrix structures in mam-
malian tissues is not known yet, but it is clear that
spatiotemporal regulation of VEGF-C activity may be
achieved by either regulated VEGF-C production or
three-dimensional (3D) integration of the components
of its activation machinery. Furthermore, differences in
ECM composition or VEGFR3 protein levels likely cre-
ate hot spots for VEGF-C activation and localized/guided
lymphangiogenesis.

The VEGF-C–VEGFR3 signaling complex
in lymphangiogenesis

Several lines of evidence support the key role of VEGFR3
in lymphangiogenesis (Fig. 1). Processed “mature” VEGF-
C binds to and activates its primary receptor, VEGFR3;
the main angiogenic receptor VEGFR2; and, to some ex-
tent, their heterodimers (Joukov et al. 1996; Dixelius
et al. 2003). In humans and mice, heterozygous VEGFR3
andVEGFCmutations lead to lymphedema (lymphedema
type 1A and 1D, Chy mice) (Irrthum et al. 2000; Karkkai-
nen et al. 2000, 2001; Gordon et al. 2013; Brouillard et al.
2014). Furthermore, combinedVegfc andVegfr3 heterozy-
gosity leads to embryonic lethality, and expression of the
VEGF-C/D trap in the developing epidermis prevents lym-
phatic vessel development in the skin (Makinen et al.
2001; Haiko et al. 2008). VEGFR3 is also expressed in de-
veloping blood vessels and in fenestrated endothelia and
the tip cells of angiogenic vessel sprouts in adults (Valtola
et al. 1999; Partanen et al. 2000; Siekmann and Lawson
2007; Tammela et al. 2008). Accordingly, a homozygous
deletion of Vegfr3 leads to failure of cardiovascular devel-
opment before the first lymphatic vessels develop from
embryonic veins at E9.5 (Dumont et al. 1998). Intrigu-
ingly, the role of VEGFR3 in embryonic angiogenesis
seems to be ligand-independent, as deletion of both of
its identified ligands, VEGF-C and VEGF-D, led to the
absence of lymphatic but not blood vasculature in E13.5
embryos (Haiko et al. 2008). Moreover, mutation of the
VEGFR3 ligand-binding domain or kinase domain pre-

vented lymphangiogenesis but not angiogenesis (Zhang
et al. 2010). In the absence of ligand-induced VEGFR3
kinase activity, other kinases (such as the SRC kinases)
activated by integrin signaling can phosphorylate the
cytoplasmic tail of VEGFR3, providing docking sites for
VEGFR3 downstream signaling components (Galvagni
et al. 2010). However, experiments so far have shown
that lymphangiogenesis is strictly dependent on an intact
VEGF-C–VEGFR3 signaling pathway.
While Vegfr3 has been shown to be necessary for LEC

proliferation, sprouting, and migration (Karkkainen et al.
2001), the role of VEGFR2 in LECs seems more context-
dependent. The VEGFR2-specific ligand VEGF-E induced
LEC proliferation but not sprouting, suggesting that
VEGFR2 has a secondary role in the modulation of lym-
phatic vessel caliber (Wirzenius et al. 2007; Zarkada
et al. 2015). However, Vegfr2 deletion had no effect on
developmental lymphangiogenesis, whereas Vegfr3 ex-
pression was essential for postnatal lymphangiogenesis
and even the maintenance of some lymphatic vessel seg-
ments in adult skin (Zarkada et al. 2015).
VEGF-C binding to VEGFR3 induces endocytosis of the

ligand–receptor complex, which may be necessary for full
activation of VEGFR3-derived signals. Ephrin B2, local-
ized to cellular filopodia in active LECs, was necessary
for VEGFR3 endocytosis after ligand binding and in-
creased filopodia number and length in response to
VEGF-C exposure (Wang et al. 2010). In line with this,
deletion of the intracellular C-terminal PDZ domain of
ephrin B2 led to defective expansion and pruning of the
primary lymphatic capillary plexus, resulting in blunted
lymphatic capillary sprouts (Makinen et al. 2005). Ephrin
B2 was also needed for the internalization of VEGFR2
(Sawamiphak et al. 2010). Accordingly, antibody-mediat-
ed inhibition of ephrin B2 led to attenuation of tumor-as-
sociated lymphangiogenesis and angiogenesis (Abengozar
et al. 2012). After its internalization, growth factor-acti-
vated VEGFR3 triggers several intracellular signal trans-
duction pathways (for review, see Coso et al. 2014;
Secker and Harvey 2015). The ubiquitin-binding adaptor
proteins epsin 1 and epsin 2 bind to VEGFR3 and mediate
its internalization and degradation, resulting in termina-
tion of VEGFR3 signaling. Interestingly, mice with LEC-
specific deficiency of epsin 1 and epsin 2 had dilated lym-
phatic capillaries, abnormally highVEGFR3 abundance in
collecting lymphatics, immature lymphatic valves, and
defective lymph drainage (Liu et al. 2014).
VEGFR3 activity is modulated by its coreceptor, neuro-

pilin 2 (NRP2), initially identified as an axon guidance re-
ceptor, which is also expressed in lymphatic vessels and
veins (Yuan et al. 2002). VEGF-C binds NRP2 directly,
promoting its interaction with VEGFR3 (Karkkainen
et al. 2001; Favier et al. 2006).Nrp2 deletion or antibodies
blocking the NRP2–VEGF-C interaction attenuated LEC
migration and sprouting but not proliferation (Fig. 1B,C;
Caunt et al. 2008; Xu et al. 2010). Accordingly, lymphatic
vessels in the dermis of Nrp2 mutant embryos are larger
and less branched (Uchida et al. 2015), although this phe-
notype is partially compensated in adults (Yuan et al.
2002). A similar phenotype with increased cell

Lymphangiogenesis guidance

GENES & DEVELOPMENT 1621



proliferation but decreased branching was observed upon
mutation of Tgfβr1 or Tgfβr2 (James et al. 2013). Interest-
ingly, TGFβ up-regulates NRP2 and VEGFR3 levels,
simultaneously inhibiting LEC proliferation in vitro,
which suggests that TGFβ-driven lymphatic vessel
sprouting/branching is NRP2-dependent (James et al.
2013). It is curious that NRP2 signaling does not promote
VEGFR3-dependent LEC proliferation; perhaps lymphatic
vessel branching/sprouting requires a higher VEGFR3 ac-
tivity threshold than LEC proliferation. On the other
hand, NRP2 could be necessary for only some VEGFR3
downstream signaling pathways, similarly to NRP1,
which is specifically required for full activation of the
p38MAPK signaling pathway downstream from VEGFR2
(Kawamura et al. 2008).

According to Johns et al. (2016), the cell surface heparan
sulfate proteoglycan syndecan-4 interacts with VEGFR3
and potentiates its activity. It was also suggested that
the heparan sulfate side chains of syndecan-4 bind imma-
ture VEGF-C via the charged heparan sulfate side chains
and that these could provide a tissue reservoir or sink of
VEGF-C (Johns et al. 2016; Jha et al. 2017). In line with
this, lymphatic endothelial-specific deletion of heparan
sulfates leads to attenuation of tumor-induced lymphan-
giogenesis, possibly because of decreased VEGFR3 signal-
ing (Johns et al. 2016). Strikingly, however, syndecan-4
deletion led to excessive expansion of lymphatic vascula-
ture during embryonic development (Wang et al. 2016),
suggesting that syndecan-4 is not needed for VEGFR3 sig-
naling, at least in the developmental setting. Further-
more, a chimeric VEGF-C containing the VEGF
homology domain of VEGF-C in fusion with the high-af-
finity heparan sulfate-binding domain of VEGF induced
a unique lymphatic vessel growth pattern along blood ves-
sels (Tammela et al. 2007). The syndecan-4 heparan sul-
fates could act as a reservoir or sink of VEGF-C in a
context-dependent manner, and the CCBE1–ADAMTS3
complex could provide the required switch to activate
the syndecan-4-bound latent VEGF-C (Jeltsch et al.
2014; Jha et al. 2017).

The integrin β1 subunit has been shown to interact
with VEGFR3 in response to LEC adhesion to fibronectin
or VEGFR3 stimulation with VEGF-C (Fig. 1B,C). Forma-
tion of the integrin β1–VEGFR3 complex increases
VEGFR3 phosphorylation and LEC migration in vitro
(Wang et al. 2001; Zhang et al. 2005). LECs are in contact
with the ECM during lymphangiogenesis and with the
basement membrane in mature quiescent lymphatic ves-
sels; thus, the function of the VEGFR3–integrin β1 inter-
action differs in these two settings. By binding to the
ECM, integrins are able to translate changes in extracellu-
lar tension to cellular responses via outside-in signaling.
Interestingly, interstitial pressure/edema also leads to
VEGFR3 activation and lymphangiogenesis in an integrin
β1-dependent manner (see below; Planas-Paz et al. 2012).
Recently, other cell surface transmembrane proteins,
such as CLP24 and CLEC14a, have been shown to inter-
act with VEGFR3, but their exact roles in lymphangiogen-
esis are not yet known (Saharinen et al. 2010; Lee et al.
2017).

Lymphatic vessel sprouting

Several principles of blood vessel sprouting apply also to
lymphangiogenesis, although differences are evident.
Blood vascular endothelial tip cells are considered to sam-
ple the microenvironment with long thin filopodia that
guide the establishment of the leading BEC lamellopodia
and the direction of vessel growth, whereas BEC prolifer-
ation (and thus sprout elongation) occurs most intensely
in the vessel stalk (Gerhardt et al. 2003). In tracheal lym-
phatic vessels, most of the LEC proliferation in response
toM. pulmonis-induced inflammationwas found to occur
∼60 µm behind the lymphatic capillary tip cell (Baluk
et al. 2005), suggesting similarity between blood and lym-
phatic vessel growth.

In growing blood vessel sprouts, the endothelial tip
cells have high VEGFR2 activity (Jakobsson et al. 2010;
Costa et al. 2016). VEGFR2 activation induces expression
of the membrane-bound delta-like ligand 4 (DLL4), espe-
cially in the tip cells, and subsequent NOTCH activation
in the sprouts (Hellstrom et al. 2007; Lobov et al. 2007;
Ubezio et al. 2016; Hasan et al. 2017; Pitulescu et al.
2017). DLL4 in turn suppresses further sprouting, as evi-
denced by hyperbranching of blood vasculature upon
Dll4 deletion or attenuation of NOTCH signaling (Sain-
son et al. 2005; Hellstrom et al. 2007; Lobov et al. 2007;
Suchting et al. 2007). Similarly, VEGF-C inducesDLL4 ex-
pression in LECs (Zheng et al. 2011). Suppression of
NOTCH signaling by a soluble DLL4, an inhibitor of
NOTCH signaling, led to hypersprouting of lymphatic
vessels in adult mouse skin (Zheng et al. 2011). Lymphan-
giogenesis triggered by Notch inhibition was suppressed
by a VEGFR2-blocking antibody as well as soluble VEGF
and VEGF-C/VEGF-D ligand traps (Zheng et al. 2011). In
the embryonic dermis, deletion of Notch1 caused hyper-
branching of the lymphatic vessels and increased LEC pro-
liferation (Murtomaki et al. 2013; Fatima et al. 2014).
However, Dll4 deletion in adult mice caused shortening
of lacteal vessels, which are typically unbranched and
may constantly renew in homeostatic conditions (Ber-
nier-Latmani et al. 2015; Nurmi et al. 2015).Dll4 deletion
had no effect on mature dermal lymphatic vessels (Ber-
nier-Latmani et al. 2015). Antibody-mediatedNOTCH in-
hibition in postnatal mice during the development of the
dermal lymphatic network caused inhibition of both lym-
phatic vessel growth and sprouting (Niessen et al. 2011).
In this context, inhibition of NOTCH signaling was asso-
ciated with down-regulation of ephrin B2 (Niessen et al.
2011), which is necessary for VEGFR3 internalization
and signaling (Wang et al. 2010). These experiments indi-
cate thatNOTCHsignaling has context-dependent effects
in lymphangiogenesis.

Interstitial fluid pressure, edema, and flow regulate
lymphangiogenesis

One of the key functions of lymphatic vessels is to remove
interstitial fluid and return it to the blood circulation.
An obvious question is whether accumulation of intersti-
tial fluid (and thus increased pressure) stimulates
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lymphangiogenesis. Indeed, expansion of the lymphatic
network during development, inflammation, and hyper-
tension correlates with interstitial fluid accumulation
(Machnik et al. 2009; Planas-Paz et al. 2012; Kim et al.
2014). In mouse embryos, interstitial fluid pressure peaks
at about E12.0, and this coincides with the proliferation of
LECs and formation of lymph sacs and the associated
superficial lymphatic plexus (Planas-Paz et al. 2012). In-
terstitial pressure was shown to stretch LECs and induce
their proliferation in vivo, and, in vitro, stretch synergized
with VEGF-C in stimulating LEC proliferation (Planas-
Paz et al. 2012). The shear stress associated with lymph
flow has been shown to potentiate VEGF-C-induced
LEC sprouting in two-dimensional and 3D cell cultures
(Helm et al. 2005; Kim et al. 2016; Choi et al. 2017b). Re-
cently, flow was shown to suppress NOTCH signaling via
the calcium influx mediated by the ORAI1 calcium chan-
nel. Accordingly,Orai1 calcium channel-deficient embry-
os displayed hypobranching of dermal lymphatic vessels
(Choi et al. 2017b). Furthermore, VEGF expression by tu-
mor cells drives peritumoral interstitial convection,
which could potentially stimulate lymphangiogenesis as-
sociated with tumorigenesis (Dafni et al. 2002). Intersti-
tial pressure and fluid flow also modulate the
regeneration of lymphatic capillaries. Lymphangiogenesis
associated with skin wound healing inmouse tails was at-
tenuated upon decreased interstitial flow through the re-
generating region, and the capacity of ectopic VEGF-C to
induce lymphangiogenesis was blunted in conditions of
decreased flow (Rutkowski et al. 2006; Goldman et al.
2007). It was suggested that the need for flow is related
to the channeling of growth factor and protease cues
(Boardman and Swartz 2003).
It seems that lymphatic vessel specification and identi-

ty are determined in part by the level of fluid shear stress.
In Slp-76 (Lcp2) mutantmice, in which the access of blood
into some lymphatic vessels leads to lymphatic vessel ex-
posure to high shear stress, PROX1 is down-regulated and
LECs start to display features of blood vascular endothelia
(Abtahian et al. 2003; Chen et al. 2012a). In vitro, even low
shear stress induces LEC alignment with the direction of
flow in a pattern similar to the in vivo situation in lym-
phatic vessels (Ng et al. 2004; Sabine et al. 2012). Upon
oscillatory flow, which mimics turbulent flow in the
valve-forming areas, cultured LECs adopt a cuboidal shape
similar to that of valve-forming cells (Sabine et al. 2012).
Interestingly, only the PROX1-high LECs respond to oscil-
latory flow, whereas all LECs respond to shear stress
caused by laminar flow (Sabine et al. 2012). It is not known
whether flow contributes to lymphangiogenesis in al-
ready lumenized sprouts bymodulating LEC proliferation
in the stalks of the sprouts.
A variety of fluid pressure/flow sensors has been impli-

cated in lymphangiogenic responses. It has been suggested
that interstitial fluid accumulation and increased pressure
impacts the reorganization of stretched ECM, thereby af-
fecting integrin β1 and subsequent VEGFR3 activation
in embryos (Fig. 1B,C; Planas-Paz et al. 2012). Interesting-
ly, VEGFR3 may also provide a mechanosensory function
when complexed with VE-cadherin (Coon et al. 2015),

raising the possibility of interstitial pressure sensing at
the level of LEC–LEC junctions, which mediate tension
between the cells. The endothelial transmembrane pro-
tein PECAM1 (CD31) functions as a mechanosensor in
BEC–BEC junctions of the blood vascular endothelium
(Osawa et al. 2002; Tzima et al. 2005). Interestingly,
Pecam1-deleted mouse embryos have increased branch-
ing of mesenteric lymphatics, suggesting that PECAM1
could provide a similar function also in the lymphatic ves-
sels (Wang et al. 2016). Furthermore, loss of syndecan-4 or
β-catenin function leads to defective lymphatic vascula-
ture patterning in the embryonic mesentery and dermis,
respectively (Cha et al. 2016;Wang et al. 2016). Thesemu-
tant phenotypes may be caused by defective flow sensing,
which leads to increased proliferation of LECs or lack of
pruning of the lymphatic sprouts, resembling the defec-
tive blood vessel pruning in decreased flow conditions
(for review, see Korn and Augustin 2015). Laminar flow
has also been shown to induce ORAI1-dependent calcium
signaling, which stimulated LEC proliferation and sprout-
ing during development (Choi et al. 2017a,b). However,
the actual sensor that activates ORAI1 has not yet been
identified. Mutations of mechanosensitive calcium-per-
meable channel PIEZO1 have been linked to hereditary
lymphedema (Fotiou et al. 2015; Lukacs et al. 2015). Al-
though the exact role of PIEZO1 in lymphatic function
is still unclear, studies on blood vasculature have suggest-
ed a role for PIEZO1 in transducing shear stress to polar-
ized BEC orientation (Li et al. 2014; Ranade et al. 2014).
In addition, deletion of Pdk1 or Pdk2, which have been
implicated in mechanosensitive calcium signaling, led
to failure of thoracic duct development in zebrafish em-
bryos and attenuated branching of cutaneous lymphatic
vessels in mouse embryos (Coxam et al. 2014; Outeda
et al. 2014). Although most of the in vivo investigations
so far have focused on developmental lymphangiogenesis,
it would be interesting to know whether similar mecha-
nisms regulate regenerative lymphangiogenesis.

Lymphatic vessel guidance by arteries and nerves

As lymphatic vessels drain the tissue fluid extravasated
from blood vessels, the codevelopment of these two vas-
cular systems is critical. Indeed, large lymphatic collec-
tors align with major blood vessels in mice and humans,
indicating that the growth of the two vascular systems
is interconnected (Fig. 1A; Sabin 1902). Lymphatic and
blood vessels display close association already in the cho-
rioallantonic membrane of chicken embryos (Oh et al.
1997). Furthermore, lymphatic vessel development is de-
pendent on prior arteriogenesis in the mouse mesentery
(Mahadevan et al. 2014). In zebrafish, a recently identified
population of cells resembling LECs in the brain was
shown tomigrate along themesencephalic vein during de-
velopment; the cells remain positioned in close proximity
tomeningeal blood vessels in adult fish without forming a
lumenized structure (Bower et al. 2017a; van Lessen et al.
2017; Venero Galanternik et al. 2017). Interestingly, mi-
gration of these LEC-resembling cells was shown to be
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vegfr3-, vegfc-, vegfd-, and ccbe1-dependent (Bower et al.
2017a; van Lessen et al. 2017). Whether this reflects Vegfc
production by the BECs or the associated SMCs (see
above; Fig. 1A) requires further investigation. Similarly,
patterning of the first lymphatic vessels in zebrafish is de-
pendent on LEC migration along intersegmental arteries
whose mispatterning alters lymphatic vessel patterning,
indicating that the blood vasculature provides guidance
for the developing lymphatic vessels (Bussmann et al.
2010). The arterial chemokine Cxcl12 and its receptor,
Cxcr4, in LECs provide such a guidance function in zebra-
fish (Cha et al. 2012; Zhuo et al. 2012). Consistent with
this, a specific inhibitor of the CXCL12–CXCR4 interac-
tion blocks suture-induced corneal lymphangiogenesis
in mice (Du and Liu 2016).

Blood vessels can regulate lymphatic vessel growth and
maintenance also via the peptide hormone adrenomedul-
lin, which is essential for proper lymphatic vessel develop-
ment.Accordingly, deletion of adrenomedullin or either of
its two receptors,Calcrl or Ramp2, leads to an edematous
embryonic phenotype (Fritz-Six et al. 2008; Ichikawa-
Shindo et al. 2008), whereas overexpression of adrenome-
dullin by tumor cells results in increased lymphangiogen-
esis (Karpinich et al. 2013). Adrenomedullin levels are
regulated by the atypical chemokine receptor CXCR7,
which acts as a sink of adrenomedullin. Because of this,
Cxcr7 deletion leads to increased adrenomedullin levels
and hypersprouting of lymphatic vessels (Klein et al.
2014). Interestingly, CXCR7 is expressed predominantly
in BECs, whereas CALCRL and RAMP2 are more promi-
nent in LECs, and CXCR7 acts also as a sink for CXCL12
(Boldajipouret al. 2008; Fritz-Six et al. 2008).Thus, dynam-
ic modulation of CXCL12, adrenomedullin, and CXCR7
levels in the two vascular systems could potentially regu-
late their alignment and separation fromeachother at later
developmental stages (Boldajipour et al. 2008).

Although the major collecting lymphatic vessels ac-
company arteries, lymphatic capillaries display a distribu-
tion pattern that is distinct from blood vessels. The
separation of these two networks is an active process
that uses, for example, semaphorin 3G, a repulsive cue
in axon pathfinding (Uchida et al. 2015; Liu et al. 2016).
In vitro, semaphorin 3G induces LEC contraction and re-
pulsion, which is dependent on semaphorin 3G receptors
plexin and NRP2 (Uchida et al. 2015; Liu et al. 2016). De-
veloping arteries in the embryonic dermis express sema-
phorin 3G, suggesting that the altered lymphatic pattern
in semaphorin 3G-deleted mice results from failure of
lymphatic vessel separation from the arteries (Fig. 1D;
Uchida et al. 2015; Liu et al. 2016). The nonarterial sema-
phorins 3C and 3F may also inhibit lymphangiogenesis
during development and tumorigenesis (Doci et al. 2015;
Mumblat et al. 2015).

Although nerves have not been directly implicated in
lymphatic vessel growth in mammals, it is well estab-
lished that cutaneous neurons guide developing arteries
in embryonic skin (Mukouyama et al. 2002). They could
thus indirectly affect lymphatic guidance. In zebrafish,
however, LECs migrate along motoneurons, which in
turn are directed by netrin 1, secreted by the underlying

muscle pioneers in the horizontal myoseptum. Both
netrin 1 down-regulation and laser-mediated motoneuron
ablation prevented proper LEC migration and the para-
chordal sprouting of LECs (Lim et al. 2011). Vegfc from
the preformed dorsal aorta guides the axon growth of sec-
ondary motoneurons in zebrafish (Kwon et al. 2013).
These examples indicate the existence of cross-talk be-
tween the developing neuronal and lymphatic vascular
networks.

Basement membranes in lymphangiogenesis

Quiescent lymphatic vessels are invested with a base-
ment membrane, which is very thin and porous around
lymphatic capillaries, being thicker and continuous
around the collector vessels (Sauter et al. 1998; Pflicke
and Sixt 2009; Lutter et al. 2012). These differences reflect
functional specialization of these two vessel types. The
porous basement membrane allows leukocyte entry via
LEC–LEC junctions into the lymphatic capillary lumen
(Pflicke and Sixt 2009), whereas the basement membrane
around collectors is critical for endothelial cell–SMC in-
teractions, as in blood vessels (Lutter et al. 2012). The lym-
phatic vessel basement membrane is composed of LEC-
expressed laminin α4/5, β1/2, and γ1 chains; collagens IV
and XVII; reelin; and nidogen 1 that cross-links the lami-
nin and collagen layers (Vainionpaa et al. 2007; Pflicke
and Sixt 2009; Lutter et al. 2012). The functional signifi-
cance of the lymphatic vessel basement membrane and
its constituents are less well known than in the case of
blood vessel basement membranes. Embryoid bodies
that have a mutation in the laminin γ1 gene lack a struc-
tured basement membrane and have dilated blood vessels
and altered vessel branching (Jakobsson et al. 2008). Dele-
tion of the laminin α4 gene in vivo led to blood vessel
hypersprouting in mouse retinas in an integrin β1-depen-
dent manner (Stenzel et al. 2011). As in blood vessels,
basement membranes seem to stabilize lymphatic ves-
sels. Reelin was shown to be essential for lymphatic col-
lector maturation via stabilization of interactions
between LECs and SMCs (Lutter et al. 2012). Further-
more, basement membrane matrix (Matrigel) inhibited
sprouting lymphangiogenesis in explants of the thoracic
duct in vitro (Detry et al. 2012).

During angiogenesis, matrix metalloproteases digest
basement membranes and the interstitial matrix, thus re-
vealing new integrin-binding epitopes and releasing
growth factors that facilitate sprout formation (Arroyo
and Iruela-Arispe 2010). Thin and porous lymphatic capil-
lary basementmembranes should allow an interaction be-
tween LECs and the components of the interstitialmatrix.
Thus, the extension of LEC sproutsmay bemuch less pro-
tease-dependent (for review, see Paupert et al. 2011). In-
deed, LECs in general express fewer proteases than BECs
(Petrova et al. 2002). Nevertheless, increased expression
of matrixmetalloproteinase 2 (MMP2) andMMP9 is asso-
ciated with wound healing and FGF2-induced lymphan-
giogenesis (Chang et al. 2004; Rutkowski et al. 2006).
MMP2 was also up-regulated in lymphangiogenesis in
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response to corneal injury, and Mmp2 deletion led to tor-
tuous lymphatic capillaries in the cornea (Detry et al.
2012). In zebrafish, mmp2 deletion reduced the length of
the thoracic duct, possibly via attenuated processing of
collagen (Detry et al. 2012). In contrast, spontaneous
lymphangiogenesis was observed in corneas of MT-
MMP1-deficient mice (Wong et al. 2016). These examples
suggest that metalloproteases may control lymphangio-
genesis, e.g., viamodulation of basementmembrane com-
ponents and by exposing hidden matrix components.

Integrins and the interstitial matrix in lymphatic
sprouting

During lymphangiogenesis, lymphatic vessel tip cells in-
teract with fibrillar and provisional matrix components,
such as collagen I and fibronectin, in the remodeling tis-
sue. Several of these components are known to modulate
lymphangiogenic responses. The ECM components that
directly interact with integrins in LECs lead to activation
of signal transduction pathways involved in the regulation
of migration and proliferation (for review, see Chen et al.
2012b). For example, injection of a collagen I gel stimulat-
ed lymphangiogenesis associated with wound healing in
mice (Clavin et al. 2008), and the EDA epitope-containing
fibronectin form, which is abundant in regenerating tis-
sues, stimulated LECproliferation in vitro (Ou et al. 2010).
Several integrins expressed in LECs are essential for

lymphangiogenesis. The integrin α9 gene (ITGA9) is an
important Prox1-regulated LEC signature gene (Petrova
et al. 2002; Mishima et al. 2007). Mice deleted of the
α9 subunit (Itga9) of integrin α9β1 failed to survive be-
yond postnatal day 12 due to development of chylo-
thorax, which has also been reported in patients with
missense mutations of the ITGA9 (Huang et al. 2000;
Liao et al. 2002; Ma et al. 2008). α9β1 integrin is neces-
sary for the formation of lymphatic valves; it acts via
binding to the fibronectin EDA domain, emilin1, and
polydom (Bazigou et al. 2009; Danussi et al. 2013; Karpa-
nen et al. 2017; Morooka et al. 2017). Polydom deletion
recapitulates the chylothorax phenotype of Itga9 mutant
mice and also leads to severe defects in lymphatic vessel
sprouting, which has not been reported for Itga9 mutants
(Morooka et al. 2017). Furthermore, it was suggested that
defective lymphatic vessel sprouting in Polydom-defi-
cient mice depends on attenuated angiopoietin 2 signal-
ing (Morooka et al. 2017).
Expression of the major fibronectin and collagen recep-

tors is upregulated in LECs in lymphangiogenic condi-
tions. The fibronectin receptor integrin α5β1 is induced
in lymphangiogenic sprouts of inflamed tracheal mucous
membranes, and small molecules that block α5β1 inhibit-
ed lymphangiogenesis but not angiogenesis associated
with tracheal or corneal inflammation (Dietrich et al.
2007; Okazaki et al. 2009). The fibronectin and VCAM re-
ceptor α4β1 is up-regulated in lymphangiogenesis, and its
genetic deletion or antibody-mediated inhibition attenu-
ated tumor lymphangiogenesis (Garmy-Susini et al.
2010). Furthermore, collagen receptors integrin α1β1 and

α2β1 were induced upon VEGF exposure in vitro, and an-
tibodies against α1β1 and α2β1 attenuated wound heal-
ing-associated lymphatic vessel density in mice treated
with VEGF-expressing implants (Hong et al. 2004). Inhibi-
tion of α1β1 also attenuated suture-induced inflammatory
lymphangiogenesis (Grimaldo et al. 2011). Lymphangio-
genic integrins contain the β1 chain, which interacts
with VEGFR3 and stimulates its activity (Fig. 1B,C);
thus, the above results could be mediated at least in part
by regulation of VEGFR3 activation.

Outlook

Recent findings in the field of lymphangiogenesis and lym-
phatic biology include the identification of meningeal
lymphatic vessels (Aspelund et al. 2015; Louveau et al.
2015) and finding of nonvenous endothelial cell contribu-
tion to lymphatic vessel growth in various tissues (Klotz
et al. 2015; Martinez-Corral et al. 2015; Stanczuk et al.
2015). These will undoubtedly provide additional insights
for our understanding of the normal and pathological func-
tions of lymphatic vasculature. Improvements in genetic
reporters and lineage tracing tools and the ongoing deep
and single-cell RNA sequencing should allow the identifi-
cation of distinct molecular signatures of various types of
lymphatic vessels in different organs as well as identifica-
tionof novel lymphatic vessel-specificmarkers,which can
be used to develop highly specific lineage tracing and Cre-
deleter mouse strains. Together with advanced whole-
mount imaging techniques, these tools should enable
studies of lymphangiogenesis in the context of hierarchi-
cal lymphatic networks, which may reveal unexpected
heterogeneity among seemingly similar LECs and allow
studies on lymphatic vessel interactions with other ana-
tomical structures. The possibility of postnatal manipula-
tion of lymphatic vessel development in vivo allows
studies of molecules that are essential for vascular growth
and indispensable for embryonic development. These
studies should provide additional insights into the general
mechanisms of vascular growth and disease.
The importance of lymphatic vessels has been shown in

the pathogenesis of several diseases, and modulation of
lymphangiogenesis provides opportunities for therapeutic
interventions. In preclinical models, inhibition of
lymphangiogenesis decreases tumor dissemination,
whereas stimulation of lymphangiogenesis results in en-
hanced resolution of inflammation. The studies done so
far have targeted VEGFR3 ligand availability or signaling
activity directly. However, detailed knowledge of other
paracrine and pericellular mechanisms of lymphangio-
genesis should provide additional possibilities to treat dis-
eases whose pathogenesis involves lymphatic vessels.
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