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Abstract: Adenovirus Early 1A proteins (E1A) are crucial for initiation of the viral life cycle after
infection. The E1A gene is encoded at the left end of the viral genome and consists of two exons, the
first encoding 185 amino acids in the 289 residues adenovirus 5 E1A, while the second exon encodes
104 residues. The second exon-encoded region of E1A is conserved across all E1A isoforms except for
the 55 residues protein, which has a unique C-terminus due to a frame shift following splicing into
the second exon. This region of E1A contributes to a variety of processes including the regulation
of viral and cellular gene expression, immortalization and transformation. Here we evaluated the
contributions that different regions of the second exon of E1A make to the viral life cycle using
deletion mutants. The region of E1A encoded by the second exon was found to be important for
overall virus growth, induction of viral and cellular gene expression, viral genome replication and
deregulation of the cell cycle. Efficient viral replication was found to require exon 2 and the nuclear
localization signal, as loss of either resulted in severe growth deficiency. Induction of cellular DNA
synthesis was also deficient with any deletion of E1A within the C-terminus even if these deletions
were outside of conserved region 4. Overall, our study provides the first comprehensive insight
into the contributions of the C-terminus of E1A to the replicative fitness of human adenovirus 5 in
arrested lung fibroblasts.
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1. Introduction

Human adenovirus (HAdV) usually infects terminally differentiated epithelial cells [1]. Since this
environment is unsuitable for replication, the immediate early E1A proteins reprogram the infected cell
to facilitate viral replication, which involves induction of the cell cycle and entry of the infected cells
into the S-phase to allow viral DNA to be copied [1]. E1A is a small protein of 289 residues (R) in the
largest isoform of HAdV5. E1A is encoded by the E1A gene; the pre-mRNA is spliced into five different
splice variants that are expressed differentially during the course of viral infection [2]. The largest
isoforms of E1A, derived from the 13S and 12S mRNAs, are most abundant early in infection, while
the smaller isoforms become more abundant once viral genomes begin replicating with the 10S mRNA
and the derived 171R protein being the most abundant E1A during late infection [2].

The E1A gene is composed of two exons that splice alternatively to give the five different protein
isoforms. The first exon undergoes additional alternative splicing, removing much of conserved region
(CR) 1, to generate the later E1A mRNAs found in infection [2]. The functions that E1A performs
are largely executed via a large variety of protein-protein interactions between E1A and cellular
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factors [3]. Some of these disrupt interactions between cellular proteins while others, likely form de
novo interactions that alter protein function either directly or by inducing novel post-translational
modifications via bridging enzymes with novel targets. Most of the interactions between E1A and
cellular proteins have been described for the region of E1A encoded by exon 1, while exon 2 encoded
region (henceforth referred to as the C-terminus and consisting of amino acids 186–289 in HAdV5
E1A289R), despite contributing a substantial number of amino acids to E1A, has been poorly studied [3].
Until recently, only a handful of C-terminus binding partners have been described [4], including the
C-terminus Binding Protein (CtBP) [5], FOXK1 [6], importin α3 [7] and DYRK1A [8]. Recently, our
group has identified three new E1A C-terminus binding partners; DREF that functions in innate
immunity and whose SUMOylation is altered by E1A [9], Ku70 that appears to be important for the
inhibition of the DNA damage response pathway during infection [10] and RuvBL1 that plays an
important role in E1A-mediated suppression of type I interferon pathway [11]. Despite these recent
advances in our understanding of the contribution of the region of E1A encoded by exon 2, we still
lack a complete picture of how this region contributes to the viral life cycle in normal human cells.

In the present study, we undertook the examination of how small deletions within the exon 2 of
E1A affect viral fitness during infection of normal lung WI-38 fibroblasts that have been arrested by
contact inhibition. Deletions of small regions of exon 2 varied greatly in the effect they had on virus
growth, viral gene and protein expression, viral genome replication and modulation of the cell cycle.
All mutant viruses were deficient in growth as compared to HAdV5 expressing wild-type (wt) E1A
(dl309). Interestingly, deletion of the extreme C-terminus including a portion of the bipartite nuclear
localization signal (NLS) [12] had the most profound effect on virus growth, second only to the loss
of entire exon 2. Our study provides the first comprehensive analysis of how the different regions of
E1A C-terminus contribute to the viral replicative cycle in arrested human cells, the natural target of
the virus.

2. Materials and Methods

2.1. Antibodies

As performed previously [2], mouse monoclonal anti-E1A M58 antibody was previously
described [13] and was grown in-house and used as the supernatant of M58 hybridoma cells. The M58
antibody binds within the region encoded by the first exon of E1A (between residues 63 and 99 of
E1A) and recognizes all mutant E1A proteins used in this study [14]. Mouse monoclonal anti-72k
DNA binding protein (DBP) antibody was previously described [15] and was used at a dilution of
1:400 for western blot. Anti-adenovirus type 5 antibody was purchased from Abcam (catalog number
ab6982, Cambridge, MA, USA). Actin antibody was purchased from Abcam (catalog number ab3280).
Secondary antibodies were acquired from Jackson ImmunoResearch (West Grove, PA, USA) and were
used at a dilution of 1:200,000.

2.2. Cell and Virus Culture

As carried out previously [2], 293 (ATCC CRL-1573) and WI-38 (ATCC CCL-7) cells were grown
in Dulbecco’s modified Eagle’s medium (HyClone, Logan, UT, USA) and supplemented with 10% fetal
bovine serum (VWR Seradigm, Mississauga, ON, Canada) and streptomycin and penicillin (HyClone).
Cells were incubated at 37 ◦C with 5% CO2. All virus infections were carried out in serum-free
media for 1 h, after which saved complete media was added without removal of the infection media.
All viruses used were of the same genetic background as dl309; i.e., all mutants and dl309 have the
same deletion in the E3 region. For all infections, titered crude freeze-thaw lysates were used.

2.3. EdU Incorporation Assay

As described [2], WI-38 cells were grown until 100% confluent on LabTek II 4-chamber slides
(Thermo-Fisher, Waltham, MA, USA). After becoming fully confluent, cells were incubated for
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a further 72 h to achieve growth arrest. Infections were carried out as described above with a
multiplicity of infection (MOI) of 100 for dl309 [16], or dl311 [16,17], or dl1116 [18], or dl1132 [19],
or dl1133 [5], dl1134 [5], or dl1135 [5], or dl1136 [5]. One hour prior to fixation, cells were pulsed
with 5-ethynyl-2´-deoxyuridine (EdU) for 1 h as per manufacturer’s specifications using the Click-It
EdU labeling kit for microscopy (Life Technologies, Carlsbad, CA, USA). After EdU labeling, cells
were fixed in 3.7% formaldehyde, stained for EdU using the Click-It kit with AlexaFluor 488
and labelled for E1A using M58 monoclonal antibody and AlexaFluor 594 conjugated secondary
anti-mouse antibody (Jackson ImmunoResearch). Cells were visualized using LSM700 laser confocal
microscope (Carl Zeiss AG, Oberkochen, Germany) and ZEN software suite (Carl Zeiss AG,
Oberkochen, Germany).

2.4. Immunofluorescence

As performed and described previously [10], WI-38 cells were plated at low density (40,000 cells
per chamber) on chamber slides (Nalgene Nunc, Rochester, NY, USA) and subsequently infected as
described above. Twenty-four hours after infection, cells were fixed in 4% formaldehyde, blocked in
blocking buffer (1% normal goat serum, 1% bovine serum albumin, 0.2% Tween-20 in phosphate
buffered saline) and stained with specific primary antibodies. M58 was used neat (hybridoma
supernatant) and AlexaFluor 488 secondary antibody (Jackson ImmunoResearch) was used at a
dilution of 1:600. After staining and extensive washing, slides were mounted using Prolong Gold
with 4′,6-diamidino-2-phenylindole (DAPI) (Invitrogen, Carlsbad, CA, USA) and imaged using Zeiss
LSM700 confocal laser scanning microscope. Images were analyzed using Zeiss ZEN software package.

2.5. PCR Primers

All primers used were previously described [2,10]. All primers were purchased from Integrated
DNA Technologies (Coralville, IA, USA) and annealing temperature of 60 ◦C was used.

2.6. Real-Time Gene Expression Analysis

As performed previously [2], arrested WI-38 cells were infected with the different viruses at a
MOI of 100 for 16, 24, 48 and 72 h. Total RNA was extracted using the TRIzol Reagent (Sigma, St. Louis,
MO, USA) at the indicated time points according to manufacturer’s instructions. 1.25 µg of total RNA
was used in reverse-transcriptase reaction using SuperScript VILO reverse transcriptase (Invitrogen)
according to the manufacturer’s guidelines using random hexanucleotides for priming. The cDNA was
subsequently used for real-time expression analysis using the BioRad CFX96 real-time thermocycler
(BioRad, Hercules, CA, USA). Analysis of expression data was carried out using the Pfaffl method [20]
and was normalized to glyceraldehyde 3-phosphate dehydrogenase (GAPDH) mRNA levels; these
were compared to dl309 for viral gene analysis and to mock infected samples for cellular genes analysis.

2.7. Statistical Analysis

Statistics were performed as described by [21]. Briefly, statistical analysis was conducted using
one-way analysis of variance (ANOVA) followed by post hoc comparison using Tukey test of cellular
and viral genes from dl309 infection versus mutant virus infection. Viral growth assays and genome
quantification assays were also subjected to ANOVA with post hoc comparison using Tukey test
comparing mutants to dl309. p-Values were two-tailed and values of <0.05 were considered statistically
significant in gene expression assays, viral growth assays and genome quantification assays. Student’s
independent sample t-test was conducted on EdU incorporation assays. p-Values were one-tailed and
values of <0.05 were considered statistically significant in the EdU incorporation assays.
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2.8. Viral Genome Quantification

As we have done previously [2], arrested WI-38 cells were infected with the different viruses at a
MOI of 100. The cells were infected for 24, 48 and 72 h and were lysed in lysis buffer (50 mM Tris pH 8.1,
10 mM ethylenediaminetetraacetic acid and 1% sodium dodecyl sulphate (SDS)) on ice for 10 min.
Lysates were sonicated briefly in a Covaris M220 focused ultrasonicator to break-up cellular chromatin
and subjected to digestion, using Proteinase K (NEB) according to manufacturer’s specifications.
Following digestion viral DNA was purified using GeneJET PCR Purification Kit (Thermo-Fisher).
PCR reactions were carried out using SYBR Select Master Mix for CFX (Applied Biosystems, Foster
City, CA, USA) according to manufacturer’s directions using 2% of total purified DNA as template
using a CFX96 Real Time PCR instrument (BioRad). Standard curve for absolute quantification was
generated by serially diluting pXC1 plasmid containing the left end of HAdV5 genome starting with a
concentration of 1.0 × 107 copies per reaction down to 1.0 copy per reaction. The primers used were
the same as those used for expression analysis of E1B region; the annealing temperature used was
60 ◦C; and 40 cycles were run.

2.9. Virus Growth Assay

As previously described [2], arrested WI-38 cells were infected with the different viruses at MOI of
100 in serum-free medium. HAdV5 mutant dl309 deletes portion of the E3 region that is not necessary
for growth in cell culture and all of the mutants used were generated in dl309 background. Virus was
adsorbed for 1 h at 37 ◦C under 5% CO2, after which cells were bathed in conditioned media and were
re-incubated at 37 ◦C under 5% CO2. Virus titers were determined at 48, 72 and 96 h after infection by
plaque assays performed on 293 cells by serial dilution.

3. Results

3.1. Growth of C-Terminus Deletion Mutants in Arrested Fibroblasts

To test how deletions of E1A C-terminus affect virus growth in arrested WI-38 cells we used
E1A mutants dl1116, dl1132, dl1133, dl1134, dl1135, dl1136 and dl311. Mutants dl1116 through dl1136
collectively delete subsets of residues 205 to 289 of E1A289R, while mutant dl311 deletes residues
203 to 289 (Figure 1). We initially determined the efficiency of infection of arrested WI-38 cells for each
mutant at MOI of 10, 30 and 100 to determine the optimal MOI. Unexpectedly, we observed relatively
low infectivity at MOI of 10 and 30 with approximately 30–50% of cells expressing E1A 24 h after
infection at MOI of only 30 as judged by immunostaining. This was surprising as standard Poisson
distribution would suggest nearly 100% efficiency of infection at MOI of 30 based on statistics alone.
We therefore tested MOI of 100, which gave nearly 100% infection as judged by immunostaining for
E1A at 24 h after infection. We chose this MOI for all subsequent experiments.

Virus growth was assayed at 48, 72 and 96 h after infection (Figure 1). No growth was observed at
24 h after infection, which was consistent with previous reports showing that in arrested cells virus
does not begin to egress until after 24 h after initial infection [2,22]. dl311, which expresses E1A lacking
most of the region encoded by exon 2, grew minimally throughout the assay duration. dl311 reached a
titer of approximately 2E5 pfu/mL at 96 h, which is about 10,000× lower to the titer observed for dl309,
expressing wt E1A and lower to what was previously observed for dl311 in transformed cells [16].
Greatest differences in virus growth were observed at 48 h after infection, with some viruses nearly
reaching dl309 growth levels by 96 h or equalizing with other mutant viruses. Of all deletion mutants,
dl1136 was the second worst replicating virus. It stalled at 72 h and never reached a titer of 1E7 pfu/mL,
at least 10× lower than the next worst mutant but still much higher than dl311.
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Figure 1. Deletions within the E1A C-terminus affect virus growth. (A) Schematic representation of 
HAdV5 E1A289R protein with locations of deletion mutants used in this study. Numbers indicate 
amino acids. (B) Contact inhibited WI-38 cells were infected with the indicated HAdV5 deletion 
mutants at a MOI of 100. Virus titers were determined at the indicated times points by performing 
plaque assays on 293 cells. At 48 h the differences in growth between dl309 and dl311, dl1135 and 
dl1136 were statistically significant with p < 0.0005, while others were not significant. At 72 h, the 
differences in growth between dl309 and dl1116 and dl1132 were not significant but were found to be 
statistically significant for all the other viruses with p < 0.0001. At 96 h, the differences in growth 
between dl309 and all the mutants tested were statistically significant with p < 0.0003. Error bars 
represent standard deviation of biological replicates, n = 3. 
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Figure 1. Deletions within the E1A C-terminus affect virus growth. (A) Schematic representation of
HAdV5 E1A289R protein with locations of deletion mutants used in this study. Numbers indicate
amino acids. (B) Contact inhibited WI-38 cells were infected with the indicated HAdV5 deletion
mutants at a MOI of 100. Virus titers were determined at the indicated times points by performing
plaque assays on 293 cells. At 48 h the differences in growth between dl309 and dl311, dl1135 and dl1136
were statistically significant with p < 0.0005, while others were not significant. At 72 h, the differences
in growth between dl309 and dl1116 and dl1132 were not significant but were found to be statistically
significant for all the other viruses with p < 0.0001. At 96 h, the differences in growth between dl309
and all the mutants tested were statistically significant with p < 0.0003. Error bars represent standard
deviation of biological replicates, n = 3.

To assess how replication affected the morphology of the infected cells we examined cellular
appearance by microscopy every 24 h after infection (Figure 2). Morphological changes associated with
virus growth and replication were not observed for any virus at 24 after infection. Changes to cellular
appearance and cytopathic effect (CPE) started to become apparent at 48 and 72 h after infection,
respectively, for those cells infected with most viruses except for dl311 and dl1136, which looked
normal with no cell enlargement or cellular detachment (Figure 2). CPE only became evident in dl1136
infected cells at 96 h after infection and only minor changes in cellular appearance were observed in
cells infected with dl311 at 120 h after infection. Control uninfected cells were also monitored for any
morphological changes over 120 h and showed no differences between the time of infection or 120 h
later, consistent with the behaviour of arrested lung fibroblasts.
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Figure 2. Deletions within the E1A C-terminus affect appearance of CPE. Arrested WI-38 cells were
infected at a MOI of 100 and imaged at the indicated time points. Bar in lower right corner represents
100 µm, cells were all imaged using the same magnification (20× objective lens).

3.2. Viral Protein and Gene Expression

To determine the effects of E1A deletions on viral protein expression, infected cells were lysed
and western blot performed 24, 48 and 72 h after infection for E1A, E2 72k DBP and viral late proteins
(Figure 3). E1A levels were readily detectable at 24 h after infection except for dl311 and dl1116.
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dl311 E1A was never observed by western blot, only by immunofluorescence (Figure 4). Levels of
E1A continued to increase, with an observed shift in isoform abundance that we have previously
observed [2]. Specifically, early in infection E1A243R was the most abundant isoform (denoted with •
in Figure 3), E1A289R (denoted with * in Figure 3) overall was much less abundant with highest levels
observed at 24 h after infection and nearly disappeared by 72 h (top-most band on E1A blots), whereas
the 10S-derived E1A171R (denoted with ◦ in Figure 3) became more abundant later on, particularly in
dl309-infected cells. DBP was only detectable at 24 h in dl309-infected cells and became more abundant
at 48 h after infection for most of the mutants with the exception of dl1133 and dl1135. DBP protein
levels increased during the course of the infection, with all infections showing readily detectable
protein at the 72 h time point. Viral late proteins were not detected at 24 h after infection. Late proteins
were readily detectable at 48 and 72 h after infection for all viruses except for dl311, which only showed
these proteins weakly at this time point and readily at 72 h after infection. Interestingly, levels of
late proteins did not correlate with virus growth, since dl311 grew very poorly yet had some late
protein levels that were similar to other mutants at 72 h after infection, while dl1136 had relatively
high late protein expression, second only to dl309, yet grew quite poorly when compared to other
mutants (Figure 3).
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Figure 3. Viral protein levels in infected WI-38 cells. Arrested WI-38 cells were infected at a MOI of
100 and proteins were extracted at the indicated time points. Total cell lysate (20 µg) was resolved by
SDS polyacrylamide gel electrophoresis, blotted for the indicated proteins and visualized using film.
Actin was used as a loading control. * denotes E1A289R, • denotes E1A243R and ◦ denotes E1A171R.
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Figure 4. Sub-cellular localization of E1A and deletion mutants in infected cells. Arrested WI-38 cells
were infected with the indicated mutants at a MOI of 100 for 24 h. Cells were then fixed, permeabilized
and stained with anti-E1A antibody (M58) and a secondary anti-mouse AlexaFluor 488-conjugated
antibody to visualize E1A. DAPI was used as a nuclear counterstain. The dashed lines in the merged
image indicate cell boundaries. Images were acquired on a Zeiss LSM700 laser confocal microscope
using the 63× objective lens.

Expression of viral genes was determined at 16, 24, 48 and 72 h after infection by
reverse-transcriptase quantitative real-time PCR (qPCR). Expression was directly compared to levels
of transcripts present in dl309-infected cells at the same time point (Figure 5). We examined expression
levels of the following mRNAs: E1A-10S, E1A-13S, E1B-55k, E2A, E3A, E4 orf6/7 and hexon. Most
viral genes were expressed at much lower level in the mutants than in dl309 infected cells and this
largely correlated with protein levels. For example, hexon protein was the highest in dl309, dl1133
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and dl1136 and the hexon mRNA was also higher in the two mutants versus the remaining mutants
that had lower hexon protein levels. Overall, the mutant viruses were approaching dl309 expression
levels the longer the infection was allowed to proceed, since the differences contracted at 48 and 72 h
as compared to 16 and 24 h for most viral genes.
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Figure 5. Relative viral gene expression profiles as compared to dl309. Arrested WI-38 cells were
infected at a MOI of 100 and total RNA was extracted at the indicated time points using the TRIzol
reagent and treated with DNase I. RNA was converted to cDNA using VILO Master Mix reverse
transcriptase and relative levels of viral mRNAs were quantified by qPCR using BioRad CFX96 with
Applied Biosystems SYBR Master Mix for CFX. Expression levels were compared to those obtained
from dl309-infected cells using the Pfaffl method with GAPDH as a reference. Statistically insignificant
differences are indicated with an n. The p values for all the genes at a time point that are significant are:
16 h—p < 0.023; 24 h—p < 0.0001; 48 h—p < 0.0063; 72 h—p < 0.0021. Error bars represent standard
deviation of biological replicates, n = 3.

3.3. Sub-Cellular Localization of Mutant E1A Proteins

We investigated the sub-cellular localization of the different mutant E1A proteins and how this
compared to wt E1A (Figure 4). Arrested WI-38 cells were infected and stained for E1A 24 h later using
the M58 antibody that would detect all mutants; DAPI was used as a nuclear counterstain. All E1A
proteins showed nearly exclusive nuclear localization, with the exception of E1A dl311, E1A dl1134,
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E1A dl1135 and E1A dl1136, which showed more cytoplasmic E1A present but with the majority of the
E1A protein still being localized to the nucleus.

3.4. Viral Genome Replication

E1A is crucial for induction of S-phase in arrested cells [23], which is essential for viral genome
replication. Therefore, we investigated how deletions in the C-terminus of E1A affect viral genome
replication. Arrested WI-38 cells were infected at a MOI of 100 and viral genomes were quantified
at 24, 48 and 72 h after infection using qPCR. We did not observe any genome replication at 24 h,
which is consistent with our prior observations that genome replication in arrested lung fibroblasts
begins sometime between 24 and 48 h after infection (Figure 6) [2]. At 48 h after infection we observed
robust genome replication in all viruses, with all mutants lagging in genome replication behind dl309
expressing wt E1A. This trend continued at 72 h also and at this point all mutant viruses still lagged
behind dl309 virus. Interestingly, dl311 was not the worst virus in terms of genomes replicated despite
growing very poorly. Ultimately, the mutant viruses did not replicate their genomes as efficiently
as wt E1A expressing virus, with some mutants lagging by as much as 100-fold in genomes per cell
(such as dl1135).
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Figure 6. Deletions within the C-terminus of E1A affect viral genome replication. Arrested WI-38 cells
were infected with the indicated mutant viruses at a MOI of 100. At the indicated time points, viral
DNA was extracted and quantified by qPCR using the E1B primers and pXC1 plasmid to generate
the standard curve. Viral genomes are plotted on per cell basis. All differences at 48 and 72 h were
statistically significant versus dl309 with a p value ≤ 0.0002, except for the 24 h time point where there
was no statistically significant difference between dl309 and the mutant viruses. Error bars represent
standard deviation of biological replicates, n = 3.

3.5. Effects of E1A C-Terminus Mutations on S-Phase Induction

To determine how the different E1A mutants impact cellular reprogramming of arrested cells
we examined induction of S-phase specific genes that were previously shown to be regulated by
E1A [24]. We looked at expression of Bloom (BLM), Proliferating Cell Nuclear Antigen (PCNA) and
Mini-Chromosome Maintenance 4 (MCM4) at 16, 24, 48 and 72 h after infection as compared to mock
infected cells (Figure 7). At 16 h after infection, compared to the mutants, levels of BLM mRNA were
highest in cells infected with dl309, expressing wt E1A. dl1133 had the second highest BLM mRNA
levels, while dl311, dl1135 and dl1136 had the lowest levels at 16 h after infection. This trend continued
later into the infection particularly with dl311 and dl1136, which never induced BLM expression beyond
2-fold over mock infected cells. Interestingly, dl1135, which had very low levels of induction of BLM
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at 16 h, was able to recover later, particularly at 48 and 72 h after infection. dl1116 and dl1132 were
also relatively poor at inducing BLM expression, whereas dl1133 and dl1134, although not as good
in induction as wt virus, had relatively high levels of BLM mRNA. Similar trends were observed for
expression of PCNA, although overall this gene was only induced by 2.5-fold over mock infected cells
at 16 h. The mutant viruses either did not induce PCNA expression at all, such as dl311 or induced it
poorly, such as dl1132 and dl1136. Lastly, induction of MCM4 lagged behind that of BLM and PCNA
and correlated closely with initiation of viral DNA replication, with levels of MCM4 mRNA increasing
at 48 h after infection in these cells. Interestingly, dl1134 induced this gene to the highest levels at 48 h
after infection, slightly higher than dl309, before dropping off slightly at 72 h. Overall, however, the
trend for MCM4 was similar to what was seen for the other genes.
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Figure 7. C-terminus deletions in E1A affect induction of cell cycle genes in arrested cells. Arrested
WI-38 cells were infected with the indicated mutant viruses at a MOI of 100. At the indicated time
points, total RNA was extracted using the TRIzol reagent and treated with DNase I. RNA was converted
to cDNA using VILO Master Mix reverse transcriptase and relative levels of the indicated cellular
mRNAs were quantified by qPCR using BioRad CFX96 with Applied Biosystems SYBR Master Mix
for CFX. Expression levels were compared to those obtained from mock-infected cells using the Pfaffl
method with GAPDH as reference. Statistically significant changes as compared to genes expressed in
dl309-infected cells are indicated with an asterix (*), others are not significant. For statistically significant
differences, the p values are as follows: BLM—p ≤ 0.0001; PCNA—p ≤ 0.0132; MCM4—p ≤ 0.0003.
Error bars represent standard deviation of biological replicates, n = 3.
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We also determined how deletions within the C-terminus affect the ability of the virus to induce
S-phase. To examine induction of DNA replication we assayed for EdU incorporation in arrested cells
24 h after infection (Figure 8). Mock infected cells showed a background level of DNA replication
below 10% of total cells. HAdV dl309 virus expressing wt E1A induced S-phase in over 50% of cells,
which is in line with previous reports [2,24], whereas all viruses expressing mutant E1A showed
deficiencies in induction of S-phase. Of these mutants, dl311 was the poorest closely followed by
dl1132. Induction of cellular DNA replication at 24 h hovered between 20% and 40% for all mutants
and overall showed similar pattern to the induction of cellular S-phase specific genes (Figure 7).
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Figure 8. C-terminus of E1A is important for induction of DNA replication in arrested WI-38 cells.
Arrested WI-38 cells were infected with the indicated viruses at a MOI of 100 for 23 h, pulsed with EdU
for 1 h, fixed and stained for EdU using the Click-It EdU labeling kit. Cells were also labeled for E1A
using the M58 antibody and anti-mouse Alexa594-conjugated secondary antibody. Cellular nuclei were
also counterstained using DAPI. All mutants were significantly different from dl309 with a p ≤ 0.0341.
Error bars represent standard deviation of biological replicates, n = 5.

4. Discussion

The present study examines the contribution of the C-terminus of E1A to adenovirus replication,
growth, gene expression, protein expression, the modulation of cellular S-phase specific genes and
induction of the cell cycle in arrested normal diploid lung fibroblasts. Viruses which had deletions in
the C-terminus of E1A were found to be deficient for growth, protein and gene expression, genome
replication and induction of S-phase. There was a large variability in phenotypes observed between
the different E1A deletion mutants and predictably, the virus expressing E1A that was missing most of
the region encoded by exon 2 (dl311) grew poorly and was severely deficient for induction of S-phase
and S-phase specific genes.

The region of E1A encoded by the second exon of the gene has been implicated in a variety
of cellular and viral processes via studies of mutants and binding partners [25]. Recently, we
identified three novel C-terminus binding proteins that likely contribute to some of the observed
phenotypes. RuvBL1, which binds in the region deleted in mutants dl1132 and dl1133, is involved
in suppression of interferon stimulated gene activation via a direct interaction with E1A [11].
Mutants deleted for this region are unable to efficiently suppress interferon and part of the observed
growth deficiency, particularly apparent at 96 h after infection, may be caused by loss of binding
to RuvBL1. Similarly, interaction with DREF, which relies on residues missing in mutant dl1134, is
important for innate antiviral response [9] and this may be compromised in this mutant as it also
grows quite poorly. Lastly, Ku70, which E1A binds via residues 241–289, plays a role in suppression of
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the DNA damage response pathway [10] and deletions in this region affect many aspects of the viral
life cycle. Furthermore, in addition to loss of binding to potential targets by E1A, some of the observed
defects may be caused by alteration to protein conformation or spacing between regions of E1A.

Most of the functions of the C-terminus of E1A have been studied in the context of effects
on cellular processes, with only a few studies looking at aspects of viral replication. For example,
CtBP was identified as binding within CR4 of E1A and playing an important role in E1A-mediated
transformation [5]. Further studies have shown that E1A can form a tri-partite complex with
CtBP and ZNF217, enhancing ZNF217 binding to CtBP in order to alter the cellular transcriptional
program [26]. FOXK1 was also identified as a C-terminus binding protein that is important in E1A
mediated suppression of transformation [6]. Beyond the well-studied roles of E1A C-terminus in
transformation [5,6,27–30], there is some evidence of this region playing a regulatory role in viral
transcription [31]. Particularly, the region encoded by exon 2 of E1A was sufficient for induction of
expression of DBP [31]. Our results show that most deletions within the C-terminus affect expression
of DBP (Figures 3 and 5) and this is particularly evident at 48 h after infection at the protein level.
Levels of DBP mRNA were highly variable and we observed very low levels at 16 and 24 h after
infection for all of the mutants, while dl309-infected cells showed robust mRNA and protein levels
at 24 h. Interestingly, levels of DBP were quite robust in dl311-infected cells and overall DBP protein
levels did not correlate well with virus growth. This suggests that the C-terminus of E1A may act
as a transcriptional repressor for some viral genes, perhaps via an interaction and recruitment of a
repressor to the viral promoters that E1A occupies [9,32]. However, this repression may be enhanced
with certain mutants that may lose activator binding or lost with others that may lose repressor
binding. Clearly, there is a hitherto unappreciated complexity in the role of E1A C-terminus in
transcriptional regulation.

Initiation of viral DNA replication occurred between 24 and 48 h after infection for all mutants
(Figure 6), this is similar to what has been previously reported in arrested IMR-90 cells [2] and arrested
WI-38 cells [22] and significantly later than what was seen in transformed cell lines, which was
reported to occur between 10 and 20 h after infection in HT1080 cells [9]. Thus, the delayed viral
growth kinetics that we observe coincide with expectations based on existing literature for growth
arrested cells. Our observations suggest that it is host factors, rather than levels of viral proteins,
that regulate initiation of S-phase and DNA synthesis. As long as sufficient levels of viral proteins
are made to initiate the cell cycle and facilitate viral DNA replication, duplication of genomes will
commence. We observed a disparity in the total number of genomes produced at different time points
after infection (Figure 6) and there was a correlation between the total number of genomes at the given
time point and levels of DBP. This suggests that although host intrinsic factors regulate initiation of
viral gene expression, it is viral factors, particularly those expressed from the E2 transcriptional region,
that govern the efficiency and total accumulation of viral genomes. The cellular factors governing viral
genome replication are likely the same ones that are induced during S-phase entry. Mutant viruses
showed deficiencies in S-phase induction that paralleled levels of S-phase specific gene expression
(Figures 7 and 8). However, the overall accumulation of viral genomes was not related to S-phase
induction, further strengthening the notion that total genome accumulation is more dependent on
viral protein levels rather than cellular factors.

Interestingly, induction of cellular S-phase specific genes was highly variable amongst the mutants
(Figure 7). It is generally thought that the deregulation of these genes occurs via disruption of E2F-pRb
interactions by the CR1-CR2 regions of E1A [3,33] or direct activation via interaction of E1A with the
E2F-DP complex at cellular promoters [24], so this result was unexpected. Although some mutants
showed good induction of S-phase specific genes (such as dl1134), others induced these genes very
poorly, such as dl1132 and dl1136. These results largely do not correlate with tumourigenicity of
these mutations in the E1A243R protein [5] and rather may suggest that the C-terminus of E1A has
unappreciated roles in cell cycle regulation via transcriptional control. This is of high interests and
merits future investigation.
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Our analysis of the mutant E1A sub-cellular localization showed that E1A is predominantly a
nuclear protein even when its nuclear localization signal is compromised (Figure 4). For example,
a complete deletion of the second exon from the E1A gene resulted in a protein that is predominantly
nuclear. This may be due to E1A piggybacking on cellular factors that are nuclear; alternatively, the
non-canonical E1A nuclear localization signals present within CR1 and CR3 of the protein may still
drive its nuclear localization [12,34]. Of all the E1A mutants analyzed, dl1136 showed most cytoplasmic
E1A, with dl311, dl1134 and dl1135 also showing some cytoplasmic E1A. These mutants delete or
affect the C-terminus E1A NLS but retain other nuclear localization signals located within the region
encoded by the first exon of the protein [34], suggesting that the C-terminus signal plays a major role
in protein localization. Interestingly, we did not observe pronounced cytoplasmic localization of E1A
as observed by others with green fluorescent protein (GFP)-fusion constructs [12]. This is likely due
to the presence of the large GFP tag, which was absent in our virally-expressed mutants, combined
with attenuation, via mutagenesis, of the strong E1A NLS at the C-terminus. Additionally, there is
possible interference of the N-terminal GFP fusion with E1A binding partners at the N-terminus, many
of which may carry E1A to the nucleus in the absence of a strong intrinsic NLS.

The poor growth of dl1136, next only to dl311, is difficult to explain using the metrics that we
used to assess viral replication. This mutant expressed most viral proteins at levels comparable to
other mutants that grew much better (Figures 3 and 4) and it was capable of relatively efficient genome
replication (Figure 6) but was poor at induction of CPE (Figure 2). It was also severely impaired for
S-phase specific gene induction but not S-phase induction, suggesting that even minimal disruption of
cell cycle genes by the virus is sufficient for S-phase entry, which may also be facilitated by expression
of other viral genes, such as E4 products [35]. It is likely, that the disruption of nuclear localization of
E1A dl1136 has a substantial effect on its nuclear functions, particularly those that affect host processes
needed for efficient viral growth. This is evident from severe transformation deficiencies of a similar
mutant (deleted only for the NLS but in E1A243R background) in rodent cells [19,36].

In conclusion, we have analyzed the influence of E1A C-terminus deletions on the fitness of
the virus in arrested normal lung fibroblasts. Arrested cells represent the natural target of the virus
and these studies provide important insight into how the different regions of the C-terminus of E1A
contribute to viral growth. Importantly, we showed that deletions of the C-terminus affect viral gene
expression, viral DNA replication and induction of S-phase. Interestingly, deletions outside of CR4
had significant effects on viral fitness, suggesting that yet unidentified proteins may be bound by E1A
via those regions and contribute to viral replication. Lastly, our results suggest that E1A may play
hitherto unknown roles in the late phase of the viral life cycle.
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