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Lipidomic Profiling of Bronchoalveolar Lavage 
Fluid Extracellular Vesicles Indicates Their 
Involvement in Lipopolysaccharide-Induced 
Acute Lung Injury
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Abstract
Emerging data support the pivotal role of extracellular vesi-
cles (EVs) in normal cellular physiology and disease condi-
tions. However, despite their abundance, there is much less 
information about the lipid mediators carried in EVs, espe-
cially in the context of acute lung injury (ALI). Our data dem-
onstrate that C57BL/6 mice subjected to intranasal Esche-
richia coli lipopolysaccharide (LPS)-induced ALI release, a 
higher number of EVs into the alveolar space, compared to 
saline-treated controls. EVs released during ALI originated 
from alveolar epithelial cells, macrophages, and neutrophils 
and carry a diverse array of lipid mediators derived from ω-3 

and ω-6 polyunsaturated fatty acids (PUFA). The eicosanoids 
in EVs correlated with cellular levels of arachidonic acid, ex-
pression of cytosolic phospholipase A2, cyclooxygenase 
(COX), lipoxygenase (LOX), and cytochrome epoxygenase 
p450 proteins in pulmonary macrophages. Furthermore, EVs 
from LPS-toll-like receptor 4 knockout (TLR4-/-) mice con-
tained significantly lower amounts of COX and LOX cata-
lyzed eicosanoids and ω-3 PUFA metabolites. More impor-
tantly, EVs from LPS-treated wild-type mice increased TNF-α 
release by macrophages and reduced alveolar epithelial 
monolayer barrier integrity compared to EVs from LPS-treat-
ed TLR4−/− mice. In summary, our study demonstrates for the 
first time that the EV carried PUFA metabolite profile in part 
depends on the inflammatory status of the lung macro-
phages and modulates pulmonary macrophage and alveolar 
epithelial cell function during LPS-induced ALI.
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Introduction

The pathophysiology of acute lung injury (ALI) and a 
severe form of ALI, acute respiratory distress syndrome 
(ARDS), is orchestrated primarily by the complex inter-
action of pulmonary macrophages, microvascular endo-
thelial, and alveolar epithelial cells. Macrophage-derived 
chemokines recruit neutrophils that transmigrate across 
the epithelium and release reactive oxygen species, prote-
ases, and extracellular traps that play a pivotal role in host 
defense and cause inflammation. Migration of inflamma-
tory monocytes into the alveoli results in alveolar epithe-
lial and microvascular endothelial cell damage leading to 
fluid extravasation and hypoxemia [1]. Further, activated 
platelets form aggregates with polymorphonuclear leuko-
cytes, monocytes, and the red blood cells release cell-free 
hemoglobin, which exacerbates inflammation via oxi-
dant-dependent mechanisms. Therapeutic strategies us-
ing β2-adrenergic receptor agonists, statins, vitamin D3, 
and mesenchymal stem cells that target the cellular me-
diators at different levels have not effectively controlled 
the ALI/ARDS disease outcomes [2–5]. The possible rea-
son for the failure of these approaches could be due to the 
heterogeneous and complex mechanisms underlying the 
disease. Thus, identifying the complex interplay of cellu-
lar events that regulate ALI/ARDS is essential for devel-
oping effective therapies.

Compared to other cell types, macrophages are in-
volved in the metabolism and trafficking of lipids to a 
greater extent, as they acquire lipids from phagocytic ac-
tivity. Multiple studies support the pivotal role of lipid 
mediators in inflammatory pathologies and activation of 
both innate and adaptive immunity [6–8]. ALI is associ-
ated with increased release of arachidonic acid (AA) from 
the cell membrane phospholipids by the phospholipase 
A2 (PLA2) [9, 10]. While different classes of PLA2 operate 
in lipid metabolism, class IV cytosolic PLA2 (cPLA2) is 
the major source for cellular-free AA levels [11]. AA is 
further metabolized by the enzymatic action of different 
cyclooxygenase (COX), lipoxygenase (LOX), and cyto-
chrome p450 epoxygenases/ω-hydroxylase pathways or 
via nonenzymatic-free radical mechanisms [12]. The 
COX, LOX, and CYP450 enzymes generate bioactive lip-
ids that can act as signaling molecules. The COX pathway 
comprises of enzymes COX-1 and COX-2, and down-
stream enzymes that generate prostaglandins (Prosta-
glandin E2 [PGE2], PGD2, and PGF2α), prostacyclin 
(PGI2), and thromboxanes (TXA2), collectively referred 
to as “prostanoids.” The LOX pathway consists of 5-LOX, 
8-LOX, 12-LOX, and 15-LOX (12/15-LOX in mice) en-

zymes and their catalytic products, leukotrienes (LTA4, 
leukotriene B4 [LTB4], LTC4, LTD4, and LTE4), lipoxins 
(LXA4, LXB4), and 8, 12 or 15-hydroperoxyeicosatetrae-
noic acid compounds. The cytochrome p450 pathway 
comprises two enzymes, CYP450 epoxygenase and 
CYP450 ω-hydroxylase, which generate epoxyeicosatri-
enoic acid (EET) and hydroxyeicosatetraenoic acid com-
pounds (HETEs), respectively from polyunsaturated fatty 
acids (PUFAs). Although leukotrienes and prostanoids 
are frequently linked with inflammation, the recently 
identified proresolving lipoxins from AA, ω-3 PUFA-de-
rived resolvins, protectins, and maresins are implicated 
in the resolution of inflammation and restoration of tis-
sue homeostasis [13–15]. In the setting of inflammatory 
pathologies, PGE2 and LTB4 were shown to act as neutro-
philic chemo attractants whereas the lipoxins, D and E 
series resolvins, and maresins to aid in the resolution of 
inflammation, named as specialized proresolving media-
tors generated from essential FA, including AA, eicosa-
pentaenoic acid (EPA), and docosahexaenoic acid (DHA) 
[14]. The lipoxins are synthesized from leukocyte-de-
rived 5-LOX and platelet-derived 12-LOX from AA as 
substrate. Lipoxins are also synthesized by transcellular 
metabolism of AA by epithelial cell or monocyte-derived 
15-LOX and leukocyte-derived 5-LOX in the extravascu-
lar compartments [16].

Since their discovery 30 years ago, there is mounting 
evidence of the role of extracellular vesicles (EVs) in reg-
ulating normal and disease physiology. EVs are lipid bi-
layer membrane-bound vesicles released extracellularly, 
which originate from the cellular endosomal system or 
plasma membrane [17, 18]. Based on their cellular origin 
and size, EVs are classified as small, medium, and large 
EVs. Small EVs ∼40–100 nm, originating from endosom-
al microvesicular bodies are the focus of the current study. 
Microvesicles (MVs) ∼100–1,000 nm, originate from 
plasma membrane and apoptotic bodies ≥1 μM, originate 
from cells undergoing apoptosis [19]. EVs transfer mem-
brane proteins or other bioactive cargo, including nucle-
ic acids, lipids, and peptides to the recipient cells [20–23]. 
The lipid composition of EVs depends largely on their 
cellular source and microenvironment [23, 24]. However, 
bilayer lipid membranes of EVs are enriched in sphingo-
myelin, cholesterol, phosphatidylserine, and glycosphin-
golipids compared to their parent cells, offering more 
structural stability [20]. Thus, EVs could potentially in-
crease the stability of their biological cargo that mediate 
intercellular communication. EV carried micro-RNAs 
(miRs) were shown to regulate the inflammatory signal-
ing pathways during ALI/ARDS. For example, miR-466 
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released into BALF of ARDS mice exacerbated pulmo-
nary inflammation through the NLRP3 inflammasome 
activation [25]. In contrast, the plasma membrane-gener-
ated MVs from lipopolysaccharide (LPS) or Klebsiella 
pneumonia-induced ALI in mice carried miR-223/142, 
which suppressed NLRP3 inflammasome activation [26]. 
Epithelial cell-derived MV from acid-induced ALI mice 
are enriched in miR-17 and miR-221 that promoted β1 
integrin recycling and macrophage migration and re-
cruitment during lung inflammation [27]. EVs from LPS-
stimulated rat alveolar epithelial cells initiated pro-in-
flammatory signaling in alveolar macrophages by the ac-
tivation of the NF-κB pathway by shuttling miR-92a-3p, 
and inhibition of miR-92a-3p abolished pro-inflammato-
ry/NF-κB signaling [28]. Similarly, MVs from mice sub-
jected to LPS-induced ALI contained significant amounts 
of TNF-α and lower amounts of IL-1β/IL6, compared to 
healthy control mice. Furthermore, culture of MLE-12 
cells with MVs from LPS-treated ALI mice-induced ex-
pression of epithelial intercellular adhesion molecule-1 
and keratinocyte-derived cytokine release and induced 
neutrophilic infiltration when delivered intratracheally 
into mice [29]. To our knowledge, there are no published 
studies that investigated the lipid constituents of EVs 
from lung injury patients or animal models. In the cur-
rent study, we demonstrate that LPS-induced ALI causes 
an increase in the release of EVs into the alveolar space, 
packaged with ω-6 and ω-3 PUFA metabolites. We have 
specifically characterized the role of 40–100-nm size EVs 
and their lipid cargo in regulating LPS-induced ALI using 
the toll-like receptor 4 (TLR4-/-) mice.

Materials and Methods

Mouse Models of LPS-Induced ALI
Wild-type C57BL/6 (WT-Stock no. 000664) and TLR4−/− 

(Stock no. 029015) mice purchased from the Jackson Research 
Laboratories (Bar Harbor, ME, USA) and maintained in the patho-
gen-free vivarium. Eight to twelve-week-old mice were used for all 
the animal experiments, conducted following protocols approved 
by the Institutional Animal Care and Use Committee of The Ohio 
State University. Escherichia coli LPS Serotype O55:B5 S-form, dis-
solved in sterile saline was delivered through intranasal insuffla-
tion into anesthetized WT or TLR4−/− mice (4 mg/kg in 25-μL sa-
line). Control mice received an equal volume of saline. After 6 h, 3 
days, and 15 days of LPS treatment, mice were euthanized with 
ketamine/xylazine, trachea was cut open, BALF was collected by 
instilling 1-mL sterile saline three times and aspirating. Aspirated 
BALF was centrifuged at 300 g to separate cells, and the superna-
tant was used for TNF-α, IL6, extravasated protein measurements, 
and EV isolation. Cytokine release was analyzed using R&D Sys-
tems ELISA kits for mouse TNF-α (catalog no. MTA00B) and IL-6 

(catalog no. M6000B) following the protocols supplied by the 
manufacturer. Lung wet dry ratios and histological changes were 
determined as described previously [30].

Isolation of EVs
EVs were isolated by ultracentrifugation as per the published 

protocol [31]. In brief, BALF from each mouse was centrifuged 
sequentially at 300 g, 2,000 g, and 10,000 g to separate cells, apop-
totic bodies, and MV. MV-depleted BALF was filtered through 
0.22-μM syringe filters, centrifuged at 100,000 g for 6 h at 4°C using 
TLA100 fixed angle rotor on Beckman Coulter ultracentrifuge. 
The EV pellet was resuspended in 1-mL PBS, centrifuged at 100,000 
g, before final reconstitution in PBS for downstream analyses.

Size Determination and Transmission Electron Microscopy
Sizes of different EVs in BALF were determined by nanopar-

ticle analysis using NanoSight at OSU Comprehensive Cancer 
Center Flow cytometry facility. Mean size, particle numbers were 
compared between different BALF samples/vesicles isolated from 
individual mice. Photomicrographs of EVs were captured by neg-
ative staining using FEI Tecnai G2 Biotwin Transmission electron 
microscope at OSU Comprehensive Cancer Center-Campus Mi-
croscopy and Instrumentation facility.

Cellular Source of EVs
Cellular source of EVs was determined by flow cytometry using 

CD9 Exo-Flow capture beads (System Biosciences; Palo Alto, CA, 
USA) as per manufacturers’ instructions. EVs were attached to CD9 
labeled Exo-Flow beads at 4°C, for 16 h, and stained with F4/80-APC, 
CD31-FITC, CD326-PE, and Ly6G-BV421 (eBioscience) antibodies, 
and analyzed on BD LSR Fortessa Flow Cytometer at OSU Flow cy-
tometry core facility. Data were analyzed using FlowJo.

Analysis of EV Lipid Mediators
EV eicosanoids and bioactive lipid mediators were isolated by 

Solid Phase Extraction on C18 columns and analyzed as described 
previously using liquid chromatography-mass spectrometry at 
Lipidomics Core Facility, Wayne State University, Detroit [32].

Isolation of Lung Macrophages
Total lung leucocytes were isolated by digesting mouse lungs 

with collagenase and DNase as described previously [33]. From 
these, total lung macrophages were isolated by adherence purifica-
tion, grown on 12-well plates for EV uptake and TNF-α release 
assay. In a parallel set of experiments, lung macrophages were 
washed with sterile PBS and resuspended in PBS or radio immune 
precipitation assay buffer for analyzing fatty acid composition, im-
munoblotting of PUFA metabolic proteins.

Analysis of Fatty Acid Composition
Total lipids from alveolar macrophages were extracted and an-

alyzed by HPLC using appropriate internal standards as described 
previously [34].

Western Blot Analysis
Total lung macrophages or MVs/EVs were lysed in radio im-

mune precipitation assay lysis buffer (Cell Signaling Technologies, 
Danvers, MA, USA) with 1× protease inhibitor cocktail (Thermo 
Fisher, Waltham, MA, USA). Cell lysates containing 10 μg of total 
protein were electrophoresed on 4%–20% SDS-PAGE gradient 
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gels, transferred onto PVDF membranes, and immunoblotted 
with cPLA2, COX-1, COX-2, 5, 12/15-LOX and CYP450 antibod-
ies, and HRP-conjugated secondary antibodies. Expression levels 
of proteins were detected using a streptavidin-HRP chemilumi-
nescence detection system (ThermoFisher, Waltham, MA, USA).

cPLA2 Activity Assay
Enzymatic activity of cPLA2 in lung macrophages was assayed 

using Arachidonoyl Thio-PC as substrate in the cPLA2 assay kit 
(Cayman Chemical; Ann Arbor, MI, USA) as per the manufactur-
ers' instructions. Specific activity was expressed as μmol of Arachi-
donoyl Thio-PC hydrolyzed per min per mg cellular protein.

Analysis of EV Uptake
EV were labeled with PKH26 and purified on sucrose gradient 

ultracentrifugation as per the manufacturers' instructions (Sigma-
Aldrich, St. Louis, MO, USA). PKH26-labeled EV (109/well) were 
added to 5 × 103 primary mouse alveolar epithelial cells (Cell Bio-
logics, Chicago, IL, USA) plated on collagen type-I coated 96-well 
plates and grown to 100% confluence, at 37°C for 16 h. Similarly, 
PKH26-labeled EVs were added to 5 × 103 lung macrophages, in-
cubated further for 16 h on 96-well plates. Next, the cells were 
washed gently with 1× HBSS, incubated with CD9-Exo-Flow cap-
ture beads (System Biosciences, Palo Alto, CA, USA) for 1 h to 
remove EVs loosely attached to cell membranes. Cells were washed 
twice with 1× HBSS and uptake of EVs was quantified by fluores-
cence plate reader (530 nm/567 nm) and expressed as relative flu-
orescence units (RFU). Cells incubated in presence of unlabeled 
EVs were included to measure baseline fluorescence.

Alveolar Epithelial Cell Barrier Function
To assess monolayer permeability, mouse primary alveolar epi-

thelial cells were cultured on 24-well collagen-coated transwell inserts 
(0.4-μm pore size) to 100% confluence. EVs were added to transwells 
along with 100 μg/mL FITC-dextran (10 kDa, Invitrogen). Flux of 
FITC-dextran into bottom wells was measured using 100 μL medium 
from the basolateral chamber after 0 and 16 h of EV addition. An 
equal volume of culture medium was added to the chamber to com-
pensate for the reduction in volume due to sampling. Fluorescence 
was measured using a plate reader at 492/520 nm excitation/emission.

Statistical Analysis
All data are expressed as mean ± SEM, n = 5 in each group, re-

peated three times. Differences between two experimental groups 
were compared with Student’s t test and comparisons among the 
four groups were performed using ANOVA with a post hoc Bon-
ferroni correction test, using Graphpad Prism 9.0. n = 4 mice in 
each group processed separately for lipidomics analyses, false dis-
covery rate threshold set at 1%. Lung injury parameters were as-
sayed using n = 5 mice in the control group, and n = 8 mice in the 
LPS group, representative data sets were presented. p value <0.05 
was considered significant.

Results

LPS Increases Release of EVs into BALF
A mouse model of LPS-induced ALI was used to de-

lineate the role of BALF EV lipid mediators on lung in-

flammation and injury. Nanoparticle tracking analysis of 
total cell-free BALF from control mice at 6 h, 3 and 15 
days post treatment showed a mixed population of vesi-
cles from 40 to 500 nm size (Fig. 1a – total BALF). As ex-
pected, the MV fraction contained vesicles ranging in size 
from 200 to 500 nm (Fig. 1a – MV). MV-depleted super-
natant was centrifuged at 100,000 g for 6 h to pellet EVs. 
The size of EVs ranged from 40 to 160 nm, and the most 
frequently represented EV size was 100–140 nm (Fig. 1a 
– EV). The number of EVs in BALF was significantly 
higher after LPS treatment (Fig. 1b). In addition, the size 
of EVs was found to be in the 100–140 nM range deter-
mined by transmission electron microscope (Fig. 1c). Im-
munoblotting confirmed the presence of CD9 and CD63 
proteins indicating the endosomal origin of EVs (Fig. 1d). 
As expected, BALF levels of TNF-α were significantly el-
evated at 6 h and 3 days, which decreased to basal levels 
after 15 days of the LPS challenge (Fig. 1e). The amount 
of phospholipids per milligram protein in EV-depleted 
BALF was significantly lower than that of EVs, indicating 
that most of the phospholipids were packaged in EVs 
(Fig. 1f).

EVs Carry Diverse Array of Lipid Mediators
Total lipids from the EVs were analyzed by liquid 

chromatography in conjunction with mass spectrometry 
to characterize the lipid cargo. Intranasal LPS-induced 
ALI shows acute-inflammatory phase up to 3 days char-
acterized by increased IL6, TNF-α, neutrophilic influx, 
and pulmonary vascular leak, which resolves by 9 days 
[35]. EVs from inflammatory and resolution phases of 
ALI were enriched with a wide array of PUFA metabo-
lites, bioactive eicosanoids resulting from the enzymatic 
and nonenzymatic conversion of AA, DHA, and EPA 
(Fig.  2a, b; online supplementary Table 1 (see www. 
karger.com/doi/10.1159/000522338 for all online suppl. 
material). Both pro-inflammatory and pro-resolution 
eicosanoids are elevated in the acute-inflammatory phase 
(3 days post-LPS), which decreased in the resolution 
phase (15 days post-LPS) of ALI. LOX metabolites of AA, 
including LTB4, 5-HETE, 12-HETE, 15-HETE, and COX 
metabolites (PGE2, PGD2, PGF2α, TXB2), were the most 
abundant eicosanoids packaged in EVs. Similarly, the 
EPA-derived 5, 11, 12, 15, and 18-hydroxyeicosapentae-
noic acid (5, 11, 12, 15, and 18-HEPE) and DHA-derived 
Resolvin D6 (RvD6), 8-oxo-Resolvin D1 (8-oxoRvD6) 
are enriched in EVs 3 days post-LPS injury. In addition, 
EVs also contained inactive prostanoid metabolites and 
stereoisomers of PGE1, such as 15-keto-PGE1 and 15R-
PGE1. Furthermore, metabolic intermediates of PGE2, 
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PGD2, PGF2α, TXB2 are enriched in EVs on day 3 of 
LPS-induced lung inflammation and decreased by 15 
days. The essential fatty acid LA-derived metabolites, 9- 
and 13 hydroxyoctadecadienoic acids (9-HODE and 13-
HODE), and their derivatives 9- and 13-oxo-octadecadi-
enoic acid (9-oxoODE and 13-oxoODE), generated by 
NAD + dependent dehydrogenase followed a similar 
trend with other lipid mediators. Saline treated or 15 days 
post-LPS injured mice contained significantly lower lipid 
mediators of all classes.

To determine if disruption of LPS-induced signaling 
alters EV lipid cargo, we have analyzed TLR4−/− mice sub-

jected to LPS-induced ALI (4 mg/kg i.n). As anticipated, 
there was a marked decrease in BALF IL6 and TNF-α lev-
els, protein, and lung wet to dry ratios (indicating vascu-
lar leak and pulmonary edema) than WT mice (Fig. 3a–
d). Interestingly, the total EV numbers were similar be-
tween TLR4−/− and WT mice (Fig. 3f). Furthermore, the 
BALF EVs were derived from epithelial cells (CD326+), 
neutrophils (Ly6G+), and macrophages (F4/80+) in de-
creasing order (Fig. 3e). On the other hand, no pulmo-
nary microvascular endothelial cell-derived EVs (CD31+) 
were detected in BALF, and the epithelial-derived EVs 
increased by ∼ 50% in both WT and TLR4−/− ALI mice. 

Fig. 1. Characterization of EVs from mouse BALF. BALF was sub-
jected to sequential centrifugation to separate cells, apoptotic bod-
ies, MVs, and EVs. a Size distribution of vesicles in total BALF, 
MVs, EVs, and EV-depleted supernatant was assayed by NTA. b 
Difference in release of EVs into BALF from control (saline) and 
LPS-treated mice. c Determination of EV size by transmission 
electron microscopy. d Expression of EV marker proteins CD9, 
CD63 in EVs. e TNF-α levels in EV-depleted BALF in saline and 

LPS treatment after 6 h, 3, and 15 days. f Comparison of phospho-
lipid content of MVs, EVs, and EV-depleted BALF. The error bars 
represent the mean ± SEM from five mice in each group. Statistical 
difference between different treatments calculated by one-way 
ANOVA with Bonferroni correction. b *p ≤ 0.05 LPS versus saline 
control (e), ***/•••p ≤ 0.001 LPS versus saline control. f ***p ≤ 
0.001 EV or MV versus EV-depleted BALF. NTA, nanoparticle 
tracking analysis.
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In addition, the neutrophil and macrophage-derived EVs 
were significantly lower in TLR4−/− compared to WT 
mice subjected to ALI, which agrees with the lung tissue 
injury severity and neutrophilic infiltration (Fig.  3g). 
Thus, as expected, the TLR4−/− mice were hypo-respon-
sive to LPS-induced inflammation, as they lack TLR4, the 
primary transducer of LPS-induced signaling [36, 37].

AA Metabolome in EVs
EVs from LPS-challenged TLR4−/− mice contained sig-

nificantly lower amounts of both pro-inflammatory and 
pro-resolution eicosanoids compared to LPS-challenged 
WT mice (Fig.  4a–e). LPS is a known activator of the 
TLR4-NF-ᴋB-COX-2 signaling axis. The EVs from 
TLR4−/− ALI mice are devoid of AA/COX metabolites, 
including prostaglandins and thromboxane B2/B3, pos-
sibly because of disruption of the TLR4-NF-ᴋB-COX sig-
naling axis (Fig. 4a). Similarly, the pro-inflammatory AA/
LOX metabolites 5-HETE, 12-HETE, and 15-HETE and 
the proresolving lipid mediator lipoxin A4 (LXA4) are 
significantly lower in TLR4−/− EVs compared to WT EVs 
(Fig. 4b–e). Also found in lower amounts in TLR4−/− EVs 
were the inactive COX metabolites of AA, including 
15-Keto-PGE1, 15-keto-PGE2, and 13, 14dh-15k-PGD2 
(Fig. 4a). The COX metabolite, 15-keto PGF2-α, which 

causes contraction of pulmonary arteries, was high in the 
EVs of the WT-LPS mice, whereas the same was unde-
tectable in the TLR4−/− LPS mice (Fig.  4a). Similarly, 
thromboxane B2 (TXB2) and the nonenzymatic oxidized 
species of AA and isoprostane iPF-VI (a biomarker of lip-
id peroxidation) levels were higher in the BALF EVs of 
WT-ALI mice. In contrast, the same was absent in the 
EVs from lung injured TLR4−/− mice (Fig. 4a).

DHA and EPA Metabolome in EVs
DHA-derived metabolites, including hydroxydocosa-

hexaenoic acids (4-HDoHE, 10-HDoHE, and 20-HDo-
HE), were selectively packaged in the WT EVs, 3 days 
post-LPS challenge (Fig. 5a–c). However, the BALF EVs 
from LPS-treated TLR4−/− mice harbored negligible 
amounts of these ω-3 PUFA metabolites. Notably, the 
DHA-derived D-series resolvins, including resolvin D1, 
D6, and Maresin 1, were packaged more in WT EVs than 
the TLR4−/− EVs (Fig.  5d). The EPA-derived 15-HEPE 
followed similar trends with other ω-6 and ω-3 and PUFA 
metabolites (Fig. 5e). In summary, BALF EVs of the LPS-
challenged WT mice contained increased amounts of 
DHA and EPA-derived metabolites, which were either at-
tenuated or undetectable in the LPS-challenged TLR4−/− 
mice (Figs. 4, 5).

Fig. 2. BALF EVs from LPS-treated mice carry a diverse array of 
ω-6 and ω-3 PUFA metabolites. WT mice were treated with LPS 
or saline (i.n.), and BALF was collected after 6 h, 3, and 15 days 
later. EVs from BALF of individual animals (n = 4) were isolated 
by ultracentrifugation and confirmed by size determination. a, b 
The relative amount of AA, EPA, DHA, and LA-derived metabo-

lites from enzymatic action of COX, LOX, CYP450, and nonenzy-
matic lipid peroxidation were determined by LC-MS. Heat map 
constructed using Graphpad Prism v9.0. Scale bar represents pico-
gram of metabolite per milligram of EV protein. Samples with no 
detectable metabolites are in white.
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Macrophage Fatty Acid Composition and Metabolic 
Protein Expression
As the content of total esterified FAs in the membrane 

phospholipids correlate with downstream metabolism in 
cells, we have determined the molar concentration of the 
ω-6 and ω-3 fatty acids and the expression levels of PUFA 

catalytic proteins in lung macrophages. Our data show 
that the enzymatic activity of cPLA2 (assayed in the pres-
ence of sPLA2 and iPLA2 inhibitors) was significantly 
higher in total lung macrophages from LPS-treated WT 
than TLR4−/− mice (Fig. 6a). Similarly, lung macrophages 
from LPS-challenged WT mice showed increased expres-

Fig. 3. TLR4−/− mice are resistant to LPS-induced ALI, release low-
er number of macrophage and neutrophil-derived EVs into BALF. 
WT and TLR4−/− mice were treated with LPS or saline (i.n.). After 
3 days of LPS challenge mice were euthanized, and lung injury se-
verity was determined by measuring BALF levels of IL6 (a), TNF-α 
(b), extravasated protein (c), and lung wet to dry ratios (d). BALF 
EVs were attached to CD9-Exo-Flow capture beads, stained with 
F4/80-APC, CD31-FITC, CD326-PE, Ly6G-BV421, and analyzed 
on BD LSR Fortessa Flow Cytometer (e). Data were analyzed using 
FlowJo v10.8.1. The total number of BALF EVs compared between 

WT and TLR4−/− mice, subjected to control or LPS-induced ALI 
(f). Lung sections of WT and TLR4−/− mice subjected to control or 
LPS-induced ALI were stained with H & E. Representative sections 
showing lung injury and neutrophilic infiltration (g). a–d Error 
bars represent mean ± SEM from 5 mice in each group. Statistical 
difference calculated by one-way ANOVA with Bonferroni correc-
tion. a, b, d ***p ≤ 0.001 WT LPS versus WT-saline control; **p ≤ 
0.01 WT-LPS versus TLR4−/−LPS. c **p ≤ 0.01 WT-LPS versus 
WT-saline control, *p ≤ 0.05 WT-LPS versus TLR4−/− LPS.
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sion of cPLA2, COX-2, and 5-LOX proteins compared to 
TLR4−/− lung macrophages (Fig. 6b). Expression levels of 
12 and 15-LOX proteins increased moderately in response 
to LPS in WT lung macrophages. In addition, the total cel-
lular fatty acid composition (% AA and EPA) in LPS-treat-
ed WT lung macrophages was higher than TLR4−/− lung 
macrophages (Fig. 6c, e), whereas the DHA content was 
similar in both strains of mice (Fig.  6d). In conclusion, 
pulmonary macrophage PUFA content and metabolizing 
proteins correlate with lower ω-6 and ω-3 PUFA metabo-
lites in EVs from TLR4−/− mice (Fig. 4, 5, 6a–e).

Lipid Mediators in EVs Alter Pulmonary Macrophage 
and Alveolar Epithelial Cell Function
As the lipid mediators were known to initiate cellular 

signaling and alter their function, we sought to determine 

the role of EV carried lipid mediators in influencing 
mouse lung macrophages and alveolar epithelial cell 
monolayer barrier function using in vitro assays. Both the 
alveolar epithelial cells and lung macrophages internal-
ized PKH26-labeled EVs, measured by arbitrary RFU 
(Fig.  7a, b). As seen by relative fluorescence intensity, 
there was no difference in uptake of saline or LPS gener-
ated EVs from WT or TLR4−/− mice by the macrophages 
and alveolar epithelial cells (Fig. 7a, b). As expected, pre-
treatment with the EV uptake inhibitors Nystatin (50 μg/
mL) and cytochalasin D (10 μg/mL) have decreased the 
EV uptake by 50%–60% compared to solvent control 
(Fig. 7a, b). Relative fluorescence intensity of alveolar ep-
ithelial cells and macrophages incubated with unlabeled 
EVs showed RFU values lower than 5 and 20, respective-
ly. WT-LPS EVs (1011/well) disrupted epithelial cell 

Fig. 4. BALF EVs from TLR4−/− mice are devoid of AA-derived 
eicosanoids. EVs were isolated from saline or LPS-treated WT and 
TLR4−/− mice and analyzed by LC-MS. COX metabolites in EVs 
from saline or LPS-treated mice (a). Similarly, LOX metabolites 
were determined in EVs isolated from saline or LPS-treated WT 
and TLR4−/− mice, showing levels of 5-HETE (b), 12-HETE (c), 
15-HETE (d), and LXA4 (e). n = 4 mice in each group, EVs from 
each mouse processed separately. Heat map constructed using 

Graphpad Prism v9.0 and statistical differences calculated by one-
way ANOVA with Bonferroni correction. b–e ***p ≤ 0.001 WT 
LPS versus WT-saline control; •••p ≤ 0.001 WT-LPS versus 
TLR4−/−LPS. Scale bar represents picogram of metabolite per mil-
ligram of EV protein. Samples with no detectable metabolites are 
in white. 5-HETE, 5-hydroxyeicosatetraenoic acid; 12-HETE, 
12-hydroxyeicosatetraenoic acid; 15-HETE, 15-hydroxyeicosatet-
raenoic acid; LXA4, lipoxin A4.
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monolayer integrity resulting in increased FITC-dextran 
flux into the bottom chamber of trans wells (Fig. 7c). In 
contrast, the exact EV numbers from WT-saline or 
TLR4−/−saline or TLR4−/−LPS-treated mice had no nega-
tive impact on the alveolar epithelial cell monolayer in-
tegrity (Fig. 7c). Furthermore, WT-LPS EVs (1011/well) 
also increased TNF-α release by lung macrophages com-
pared to WT-saline or TLR4−/−EVs (Fig.  7d). Nystatin 
and cytochalasin D prevented the cellular effects induced 
by WT-LPS EVs, thereby confirming the role of WT-LPS 
EVs on barrier disruption and macrophage inflammatory 
phenotype (Fig. 7c, d). There was no significant differ-
ence in the cellular activity of control EVs in presence or 
absence of EV uptake inhibitors (Fig. 7c, d).

To determine if the EVs carried residual LPS that 
caused the observed cellular effects, we measured endo-
toxin content in EVs using an Endotoxin detection kit 
(Thermo Fisher, Waltham, MA, USA). The endotoxin 
levels in EVs were almost negligible (less than 0.01 endo-
toxin units) in both saline and LPS-treated groups ruling 
out the possibility of LPS contamination (Fig. 7e). In ad-
dition, the lipid mediator 13-HODE (most abundant lip-
id mediator found in WT-LPS EVs) alone disrupted al-

veolar epithelial barrier function in a dose-dependent 
manner (Fig. 7f). In summary, the EV carried lipid me-
diators regulate alveolar epithelial and macrophage cell 
function during ALI.

Discussion

Considerable research dedicated to EVs is based on 
their miR and protein cargo [38–40]. However, much less 
is known about EVs’ lipid and eicosanoid constituents 
generated from the cellular fatty acids. It is well-docu-
mented that lipid mediators control the initiation and 
resolution of acute lung inflammation, at least in part [6, 
41, 42]. In the current study, we demonstrated that LPS-
induced ALI increases the release of EVs into alveolar 
space, which carry a diverse array of ω-6 and ω-3 PUFA-
derived lipid mediators and the total phospholipid con-
tent of EVs was significantly higher than that of EV-de-
pleted BALF (Figs. 1, 2). Our data show that intranasal 
delivery of LPS (4 mg/kg) in mice induces acute neutro-
philic lung inflammation along with the increased release 
of EVs into the alveolar space. Lung macrophages, alveo-

Fig. 5. BALF EVs from TLR4−/− mice are devoid of DHA and EPA-
derived lipid mediators. EVs were isolated from saline or LPS-
treated WT and TLR4−/− mice and analyzed for the presence of 
DHA auto-oxidation metabolites and DHA-derived resolvins. 
Levels of 4-HDoHE (a), 10-HDoHE (b), 20-HDoHE (c). Heat map 
showing relative levels of Resolvin D6, 8-oxoResolvin D1, and Ma-
resin 1 (d). EPA-derived 12-HEPE (e). n = 4 mice in each group, 
EVs from each mouse processed separately. Statistical difference 

calculated by one-way ANOVA with Bonferroni correction. a–e 
***p ≤ 0.001 WT LPS versus WT-saline control; •••p ≤ 0.001 WT-
LPS versus TLR4-/−LPS. Scale bar represents picogram of metabo-
lite per milligram of EV protein. Samples with no detectable me-
tabolites are in white. 4-HdoHE, 4-Hydroxydocosahexaenoic acid; 
10-HdoHE, 10-Hydroxydocosahexaenoic acid; 20-HdoHE, 
20-Hydroxydocosahexaenoic acid; 12-HEPE, 12-hydroxyeicosa-
pentaenoic acid.
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lar epithelial cells, and neutrophils significantly contrib-
uted to the EV populations in BALF (Fig. 3e). BALF EVs 
of the LPS-challenged WT mice contained increased 
amounts of AA, DHA, and EPA-derived metabolites, 
which were either attenuated or undetectable in the LPS-
challenged TLR4−/− mice (Figs. 4, 5).

Previous studies have reported that eicosanoids have 
a short life in circulation or pulmonary edema fluid after 
their generation [43–45]. In contrast, recent studies sug-
gest that the bilayer lipid membrane enclosing EVs is rich 
in sphingomyelin, cholesterol, phosphatidylserine, and 
glycosphingolipids compared to their parent cells, offer-
ing more structural stability compared to the plasma 
membrane, indicating the stability of lipid cargo carried 
in them [20]. We demonstrate that EVs carry diverse bio-
active lipid mediators during ALI (Fig. 2). Specifically, 
the levels of pro-inflammatory and pro-resolution eico-

sanoids and ω-3 PUFA-released lipid mediators in-
creased with LPS treatment during the acute-inflamma-
tory phase, which reached basal levels by 15 days, coin-
ciding with the resolution phase of LPS-induced ALI. 
Mammalian LOX enzymes are activated in pathological 
settings that initiate inflammation and tissue damage 
[46–48]. Different LOX metabolites of AA, including 
5-HETE, 12-HETE, and 15-HETE, regulate the patho-
physiology of lung diseases [49–51]. Thus, the HETEs 
packaged in EVs probably exert diverse cellular effects 
during inflammation and resolution phases of ALI 
pathophysiology. Monocytes and macrophages were 
shown to express the highest levels of 12/15-LOX, the 
enzyme responsible for generating 12-HETE in mice 
[52]. Twelve-HETE plays a pivotal role in inflammation 
by acting as a potent, pro-inflammatory chemoattractant 
for neutrophils, altering endothelial cell cytoskeleton 

Fig. 6. Eicosanoids in EVs correlate with expression levels FA met-
abolic proteins and ω-6 and ω-3 fatty acid composition of lung 
macrophages. Total lung macrophages were isolated from saline 
and LPS-treated WT and TLR4−/− mice. a Specific activity of 
cPLA2 measured by hydrolysis of μmol of Arachidonoyl Thio-PC 
hydrolyzed per min per mg cellular protein. b Expression levels of 
cPLA2, COX-1, COX-2, 5-LOX, 12-LOX, CYP450, and β-actin 
and arbitrary densitometric units of COX-1, COX-2, 5-LOX, 

12/15-LOX, CYP450, and β-actin averaged from different bots, n 
= 8 mice in each group, each well corresponds to lung macro-
phages pooled from two mice. In addition, total lipids were ex-
tracted from saline and LPS-treated mouse lung macrophages and 
analyzed by HPLC, (c) % AA (d) % DHA (e) % EPA. Statistical 
difference calculated by one-way ANOVA with Bonferroni correc-
tion. a, c, e ***p ≤ 0.001 WT LPS versus WT-saline control, •••p ≤ 
0.001 WT-LPS versus TLR4−/−LPS.
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and expression of adhesion molecules [51, 53–55]. Inter-
estingly, DHA and AA-derived pro-resolution media-
tors, including Resolvin D6, 8oxo resolvin D1, Maresin1, 
and Lipoxin A4, were detected in EVs released during 
LPS-induced ALI (Fig.  2). The beneficial effects of re-
solvins in immunomodulation and actively resolving in-
flammation in different organ systems are well estab-
lished [56–59]. For example, in a study using human vas-
cular endothelial cells, Resolvin D1 reverted LPS-induced 
tight junctional disruption and the increase of cellular 
permeability by regulating I κBα signaling [60]. More 
importantly, analysis of AA metabolites in sepsis-in-
duced ARDS patient plasma revealed that non-survivors 
had significantly higher prostaglandin F2 and LTB4 [61]. 
In addition, the ARDS patient plasma had elevated levels 
of the pro-resolution mediators, resolvin E1, resolvin D5, 

and 17r-protectin D1, that persisted along with pro-in-
flammatory mediators until 7 days in these patients, sim-
ilar to our observation in the mouse ALI model. Thus, 
the EVs likely carried a significant proportion of the total 
plasma eicosanoids reported in this study. Furthermore, 
15-LOX metabolites of linoleic acid 13-HODE and its 
oxidation product 13-OxoODE were also detected in 
EVs (Fig. 2). Although the role of these oxidation prod-
ucts has not been investigated in detail, published reports 
demonstrate that 13-HPODE negatively regulates endo-
thelial barrier integrity and causes endothelial cell apo-
ptosis [62]. Moreover, the oxidized LA metabolites and 
their derivatives (9-HODE, 13-HODE, 9-oxoODE, 
13-oxoODE) have been linked to cardiovascular inflam-
mation [63]. Thus, Oxidized LA metabolites transported 
through the EV could cause pulmonary microvascular 

Fig. 7. BALF EVs alter alveolar epithelial and pulmonary macro-
phage function. a Alveolar epithelial cells and b lung macrophages 
were grown in the presence of PKH26-labeled EVs from WT, 
TLR4−/−, solvent control (Cont), Cytochalasin (CD −10 μg/mL) or 
Nystatin (50 μg/mL) for 16 h and washed with 1X HBSS as de-
scribed in methods. EV uptake was measured as RFU. c EVs from 
WT and TLR4−/− mice, and 10 kDa FITC-dextran were added to 
100% confluent monolayer of alveolar epithelial cells grown on 
transwells. After 16 h, flux of FITC-dextran to the bottom wells of 
the cell culture plate was measured at 492/520 nm. d EVs were 
added to lung macrophages grown in 96-well plates, and after 16 
h, the release of TNF-α into the cell culture medium was measured. 
e Endotoxin contamination in EV preparation was determined by 

the Pierce Endotoxin Detection kit. f 13-HODE (100–1,000 nM) 
and 10 kDa FITC-dextran were added to 100% confluent mono-
layer of alveolar epithelial cells grown on transwells. After 16 h, 
flux of FITC-dextran to the bottom wells of the cell culture plate 
was measured at 492/520 nm. Statistical difference calculated by 
one-way ANOVA with Bonferroni correction. a, b *p ≤ 0.01 CD 
or Nystatin uptake versus Solvent control uptake of WT or TLR4−/− 
EVs. c, d **p ≤ 0.01 WT LPS EVs versus WT-saline EVs, *p ≤ 0.05 
WT-LPS versus TLR4−/−LPS EVs, #p ≤ 0.05 WT-LPS EVs versus 
WT-LPS + Nystatin, and x p ≤ 0.05 WT-LPS EVs versus WT-LPS 
+ CD pretreated alveolar epithelial cells. f ****p ≤ 0.0001 13-HODE-
treated alveolar epithelial cells versus vehicle-treated cells.
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barrier dysfunction in the LPS-induced ALI mice [64]. 
Similarly, activation TLRs and purinergic receptor PY27 
were reported to induce inflammasome formation and 
concurrent triggering of lipoxin synthesis in macro-
phages [65]. This study suggested that inflammasome 
formation also triggers an eicosanoid storm that contains 
both pro-inflammatory and proresolving lipid media-
tors.

Our previous studies and others have established a piv-
otal role for pulmonary macrophages in regulating the 
LPS and abdominal sepsis-induced ALI severity in mouse 
models [33, 66–68]. Therefore, we sought to determine if 
the differences in EV eicosanoids correlate with the al-
veolar macrophage PUFA composition and the PUFA 
metabolizing enzymes. Alveolar macrophages from LPS-
treated WT mice showed an increased % of AA and EPA 
compared to LPS-treated TLR4−/− mice (Fig. 6). In addi-
tion, the enzymatic activity of cPLA2, expression levels of 
COX-2, 5-LOX, and CYP P450 proteins were lower in 
TLR4−/− lung macrophages while COX-1 remained the 
same (Fig. 6). Thus, expression levels of PUFA metaboliz-
ing enzymes in lung macrophages align with the lipid me-
diators in EVs. In addition to the lipid mediators identi-
fied in the current study, miRs (miR-466, miR-223/142, 
miR-17, miR-221, miR-92a-3p), the inflammatory cyto-
kine TNF-α, and the microvesicular Caspase 1 were im-
plicated in the regulation of the ALI [25–27, 29, 69]. 
Therefore, it appears that EVs deliver a cargo of proteins, 
miRs, and PUFA metabolites that regulate cellular func-
tion during ALI pathophysiology.

In summary, our study demonstrates for the first time 
that the EVs carry a diverse array of lipid mediators, 
which can modulate the alveolar epithelial cell barrier and 
lung macrophage inflammatory phenotype during ALI 
(Fig. 7). PUFA metabolite profile depends on the inflam-
matory phenotype of the alveolar macrophages and their 
interaction with other lung cells. However, the eicosanoid 
and lipid mediator synthesis is a much complex process 
involving eicosanoid class switching and transcellular 
synthesis of some lipoxins, in addition to other regula-
tory cell-signaling mechanisms. Future studies are re-
quired to delineate the individual role of EV proteins, 
miRs, and lipids in regulating ALI/ARDS pathophysiol-
ogy.
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