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Quality control for next generation sequencing (NGS) has become increasingly important

with the ever increasing importance of sequencing data for omics studies. Tools have

been developed for filtering possible contaminants from species with known reference

genome. Unfortunately, reference genomes for all the species involved, including the

contaminants, are required for these tools to work. This precludes many real-life samples

that have no information about the complete genome of the target species, and are

contaminated with unknown microbial species. In this work we proposed QC-Blind, a

novel quality control pipeline for removing contaminants without any use of reference

genomes. The pipeline merely requires the information about a few marker genes of

the target species. The entire pipeline consists of unsupervised read assembly, contig

binning, read clustering, and marker gene assignment. When evaluated on in silico, ab

initio and in vivo datasets, QC-Blind proved effective in removing unknown contaminants

with high specificity and accuracy, while preserving most of the genomic information of

the target bacterial species. Therefore, QC-Blind could serve well in situations where

limited information is available for both target and contamination species.

Keywords: quality control, contamination screening, metagenome, next generation sequencing (NGS), novel

pipeline

IMPORTANCE

At present, many sequencing projects are still performed on potentially contaminated samples,
which bring into question their accuracies. However, current reference-based quality control
methods are limited as they need either the genome(s) of target species or contaminations. In
this work we propose QC-Blind, a novel quality control pipeline for removing contaminants
without any use of reference genome. Evaluations performed on in silico, ab initio and in vivo
datasets proved that QC-Blind is effective in removing unknown contaminants with high specificity
and accuracy, while preserving most of the genomic information of the target bacterial species.
Therefore, QC-Blind is suitable for real-life samples where limited information is available for both
target and contamination species.
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INTRODUCTION

As next generation sequencing (NGS) techniques become
popular, such as those based on the Illumina platform
(Salter et al., 2014), the need for accurate analysis of these
sequencing data has likewise become increasingly urgent. At
present, many sequencing projects are still performed on
potentially contaminated samples, which bring into question
their accuracies. This situation calls for high-performance quality
control (QC) tools for high-throughput sequencing data.

In most research scenarios, a target species is considered
as the organism under study, while other species are seen as
contaminants. These contaminants often include the microbial
species found in the environment of the molecular biology
laboratories (Concolino et al., 2014; Strong et al., 2014; Rütti
and Widmann, 2015). Their interference with the sequencing

would compromise the precision and reproducibility of the
analysis (Strong et al., 2014). Usually, these contaminations
consist of not one, but a mixture of microbial species (Jung
et al., 2016). Previous studies in the removal of contaminants
are more concerned with water or soil samples, where relatively
comprehensive bacteria genera profiles exist (Salter et al., 2014;
Strong et al., 2014). These QC tools (Paszkiewicz et al., 2014)
include Kontaminant (Leggett et al., 2013), FastQC (Brown
et al., 2017), and many other tools (Guo et al., 2014; Coleman

et al., 2015; Chen et al., 2017; Sheng et al., 2017). However,
contaminants removal becomes difficult when the profile of the

sample is unknown (Tanner et al., 1998; Henderson et al., 2013).
The problem becomes much more difficult when the reference
genomes for both the target and the contaminations are not
available (Jung et al., 2016; Vikram et al., 2016).

One strategy to identify and remove contaminants is
the metagenomic approach (Simon and Daniel, 2011),
which facilitate taxonomical and functional analyses of the
contaminating microbial genomes. A few methods based
on this strategy have already been proposed: SourceTracker
(Knights et al., 2011) applies Bayesian inference to estimate the
composition and abundance of microbial contaminations, while
DeconSeq (Schmieder and Edwards, 2011) deals with possible
contamination from human through long reads alignment.
Previously we have also published a method, QC-Chain, to
differentiate the reads from target species and contaminations
(Zhou et al., 2013), based on contig clustering (Strous et al., 2012).
However, the false positive rate of read assignment remained
high, and potentially valuable information was not considered
in that method. For instance, knowledge of the abundance of
a certain target species among multiple samples (with similar
contaminations) were not utilized (Zhou et al., 2013).

In this study, we proposed QC-Blind, a pipeline for bacteria
NGS data quality control and contamination screening with high
specificity and accuracy. This pipeline requires only a few marker
genes for differentiating reads from target bacteria species and
bacteria contaminations. QC-Blind could identify and remove
contaminations that were introduced during sample handling,
and recover genomes from mixed cultures/environmental
samples. Extensive downstream performance evaluations based
on in silico, ab initio, and in vivo datasets, showed the method to

be effective. As most microbial contaminations could be removed
and almost complete genomic information of target bacteria
species could be preserved after processing, this pipeline is shown
to be a fairly good solution for quality control and contamination
screening of bacteria DNA sequencing data.

MATERIALS AND METHODS

The general process flow of QC-Blind is as follows. First,
reads are assembled into contigs. The contigs are clustered into
species-level groups by species abundance and sequence features.
Then, the marker genes of the target species [generated through
MetaPhlAn2 (Truong et al., 2015) and manual curation] are
utilized to identify the contig clusters for the target species. Here,
the main issues include the assembly and clustering accuracies,
as well as the specificity of the contig clusters for target species.
To perform this fine-tuning, we put the method to very thorough
tests on simulated, ab initio and in vivo datasets. The simulated
and sequencing data were deposited to NCBI SRA with project
access number PRJNA491366.

Simulated and Real Datasets
Three types of metagenomic datasets have been utilized in this
study: simulated, ab initio and in vivo (Figure 1; Table 1).

Metagenomic Data Simulation
For in silico simulated datasets, reads of target, and
contamination species were generated by NeSSM (Jia et al.,
2013). In this study, we assume only one target bacteria species
is present in each sample. The target bacteria species used in
this study include three model organisms: Bacillus subtilis,
Staphylococcus aureus, Escherichia coli (dataset A, dataset B,
dataset C, Table 1). Their reads were mixed with reads generated
from the genome of 5 or 10 representative species in human oral
microbial community [referred to as HOB(5/10)], which were
used as possible human contaminations (Hasan et al., 2014).
Gradient proportions of reads from target species were set to 5,
35, 65, 95%. We also combined Saccharomyces cerevisiae with
B. subtilis and 10 oral bacteria to simulate a special condition
with eukaryotic contamination (dataset D, Table 1). In each
dataset, over 10 million pair-end reads with 100X coverage were
generated at the length of 120 bp every 200 bp bin. All other
parameters were set as default (Jia et al., 2013).

ab initio Dataset Preparation
For ab initio datasets, we mixed the real sequencing data of B.
subtilis strain 168 with real metagenomic sequences from human
saliva samples (dataset E, Table 1), with the relative proportion
of reads from target species (B. subtilis) set at 35, 65, 95%
for different datasets. These samples were named AB_BS_35%,
AB_BS_65%, AB_BS_95%, respectively. In order to maintain
them in their natural state, we did not perform any filtration
of any human contamination from saliva samples (Hasan et al.,
2014), even though the lack of filtration may adversely affect the
contig assembly and clustering process.

For both ab initio and in vivo dataset preparations, real DNA
extraction and sequencing were needed. Their procedures are
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FIGURE 1 | Simulated and real datasets. QC-Blind were tested on three types of data, simulated, ab initio, and in vivo in this study. B.S., S.A., E.C represent the three

target species (Bacillus subtilis, Staphylococcus aureus, and Escherichia coli.) S.C. represents Saccharomyces cerevisiae, a source of contamination. The red lines

symbolize sequence data from oral cavity flora, while the black lines represent sequence data from target species. (A) In simulated datasets, the target species were

mixed with human saliva (or S.C.) at 5, 35, 65, and 95%. The gray line represents Saccharomyces cerevisiae sequence data. (B,C) For ab initio and in vivo datasets,

B. subtilis (extracted DNA solution and bacteria culture) were mixed with human saliva, the DNA proportions of which were set to 35, 65, 95, or unknown ratio (x%).

The DNA proportions of which were set to 35, 65, 95, or unknown (x%).

TABLE 1 | Information about simulated and real metagenomic datasets.

Dataset Dataset A Dataset B Dataset C Dataset D Dataset E Dataset F

Type Simulated Simulated Simulated Simulated ab initio in vivo

Target Bacillus subtilis Staphylococcus aureus Escherichia coli Bacillus subtilis Bacillus subtilis Bacillus subtilis

Sample Names Simu_BS_5%

Simu_BS_35%

Simu_BS_65%

Simu_BS_95%

Simu_SA_5%

Simu_SA_35%

Simu_SA_65%

Simu_SA_95%

Simu_EC_5%

Simu_EC_35%

Simu_EC_65%

Simu_EC_95%

Simu_BS_5%(SC)

Simu_BS_35%(SC)

Simu_BS_65%(SC)

Simu_BS_95%(SC)

AB_BS_35%

AB_BS_65%

AB_BS_95%

Real_BS

Contamination HOB(5/10) HOB(5/10) HOB(5/10) HOB(5/10) and S.C. HOB(5/10) HOB(5/10)

Dataset A-D were simulated datasets, Dataset E was ab initio dataset, and Dataset F was in vivo dataset. Naming style: for simulated datasets, the target species and the relative

proportion of reads from target species were provided. For example, “Simu_BS_5%” means that Bacillus subtilis was the target species, and reads from this target species compose of

5% of all reads in this sample. For ab initio datasets, the sample names were defined similarly. The reference genomes of all species were downloaded from NCBI Microbial Genomes

website (https://www.ncbi.nlm.nih.gov/genome/microbes/).

detailed in the sub-section “in vivo sample preparation, DNA
extraction and sequencing”.

In vivo Sample Preparation, DNA
Extraction, and Sequencing
The in vivo datasets used in this study were metagenomic (not
16s rRNA) datasets from real community samples prepared as
follows: after being activated, strain B. subtilis 168 was cultured
overnight till its OD600 value reaches between 0.6 and 0.8. All
the B. subtilis were centrifuged at 12,000 rev min−1 (12114 g) for
the following experiments. The fresh saliva was collected from
three healthy adults abstaining from drinking water or gargling
for about 30min before sample collection. Then 200 µl fresh
saliva was added to the B. subtilis culture before DNA extraction,

amplification and sequencing. This sample was named Real_BS
(dataset F, Table 1).

Modified CTAB method (Porebski et al., 1997; Cheng et al.,
2014a,b) was chosen for obtaining high MW metagenomic
DNA of samples. Five milliliter lysis buffer (Cetyl Trimethyl
Ammonium Bromide, 1% w/v; EDTA, 100mM; NaCl, 1.5mol
l−1; Sodium phosphate, 100 mmol l−1; Tris-Cl pH 8.0, 100
mmol l−1) and 20 µl Proteinase K was added into 15ml liquid
sample (B.S. culture or its mixture with saliva), followed by gentle
shaking at 100rev min−1. SDS was added to a final concentration
of 1% and the reaction was incubated at 65◦C for 30min with
intermittent shaking. After the above steps, an equal volume
of saturated phenol, chloroform and isoamyl alcohol (25: 24:1)
was added to the mixture and centrifuge at 12,000 rev min−1
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FIGURE 2 | Schematic demonstration and evaluations of QC-Blind. (A) An overview of the QC-Blind pipeline. Based on NGS data, on one hand, 16S rRNA genes

were extracted and compared with bacteria 16S rRNA database to count the number of species; on the other hand, raw reads were assembled into contigs, binned

into species-level groups, and then target clusters were identified through mapping marker genes of target species onto them. Within these steps, the marker genes

mapping step would finally determine which cluster of contigs and reads belong to the target species. (B) Evaluations for QC-Blind were performed at three levels:

read, contig, and species. For clustering quality, the purity, and concentration of target and other clusters were measured. For contamination removal, sensitivity, and

specificity were calculated. For data loss, target reads and contigs that fail to pass at each step were counted. For functional analysis, the coverages of target

genomes at base and gene level were calculated.

(12,114 g) for 10min to collect supernatant that are free from
protein. This step is then repeated once. Metagenomic DNA was
precipitated with 0.6 volumes of isopropanol for 30min at−20◦C
and pelleted by centrifugation at 12,000 rev min−1 (12,114 g) for
10min. DNA was washed twice with 70% ethanol and finally
dissolved into a 200 µl of TE (1X), pH 8.0. The genomic DNA
of B. subtilis 168 and the mixture of B. subtilis 168 with human
saliva were extracted with Soil Genomic DNA kit(CWBIO).

Before sequencing with Illumina Miseq-2000, DNA samples
were quantified using a Qubit R© 2.0 Fluorometer (Invitrogen,
Carlsbad, CA) and its quality was checked on a 0.8%
agarose gel. 5–50 ng metagenomic DNA in high quality was
used as the template for amplifying the V3-V4 diameter
region of 16S rRNA genes for each individual sample,
with ′′5′-CCTACGGRRBGCASCAGKVRVGAAT-3′′′ used as the
forward primer and ′′5′-GGACTACNVGGGTWTCTAATCC-
3′′′ as the reverse primer. The sequencing library was constructed
using a MetaVxTM Library Preparation kit (GENEWIZ, Inc.,
South Plainfield, NJ, USA). Then indexed adapters were
added to the ends of 16S rDNA amplicons by limited-
cycle PCR. Verified by Agilent 2100 Bioanalyzier (Agilent
Technologies, Palo Alto, CA, USA), and quantified by Qubit R©

2.0 Fluorometer (Invitrogen, Carlsbad, CA) and real-time PCR
(Applied Biosystems, Carlsbad, CA, USA), the DNA libraries

were normalized for sequencing. All sequencing reactions were
performed on the Illumina MiSeq platform using paired-end
sequencing technology (2∗300 bp).

ANALYTICAL PROCEDURE

An overview of our quality control pipeline is shown in
Figure 2A. First, real sequencing reads are trimmed by
Trimmomatic-0.36 to remove low quality bases and reads
(Bolger et al., 2014). Three leading/trailing bases are cut if
their quality scores are below a certain quality threshold. Reads
with lengths that are too short (<50 bp as default) are also
discarded. 16S rRNA genes are extracted from remaining reads,
for species identification and quantification. Then read assembly,
contig binning, and marker gene mapping are performed in
sequential order.

Identification of Target and Contamination
Species
The taxonomical profiles were generated by the Parallel-
Meta pipeline (version 2.0) (Jia et al., 2013). 16S rRNA
sequences were extracted from raw sequencing data through an
HMM model, and these sequences were searched against the
Greengene database (http://greengenes.secondgenome.com/) to
identify their species.

At the contig binning step, the total number of species
identified was used to set the initial cluster number, which
aims to provide better accuracy for clustering. An additional
eukaryotic18S rRNA database was used as reference when
processing the dataset with S. cerevisiae. Though choosing the
number of clusters become difficult for unknown contaminants
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whose information are not recorded in 16S RNA or 18S rRNA
database, this approach is practical and performs well for target
identification and contamination filtration.

Assembly of Contigs From Community
Data
Two assemblers were applied to assemble contigs from
community reads. One of the assemblers selected was Velvet (Jia
et al., 2013), which could deal with de novo genomic assembly
and short sequencing reads alignment. For Velvet, we use the
velveth command to construct the dataset as preparation work,
and velvet command to build the de Bruijn graph from the k-
mers obtained by velveth and extract the contigs. We use k = 12,
and set other parameters to auto or default. The other one was
MEGAHIT (Li et al., 2015), an assembler designed specifically for
complex metagenomics via succinct de Bruijn graph. It is worth
mentioning that by using these two assemblers, the abundance
information has been intrinsically taken into consideration.

For simulatedmetagenomic datasets, assembly was performed
on two assemblers to compare their performance. Basic assembly
statistics were extracted and compared. As MEGAHIT has
been shown to be superior to Velvet on simulated data, only
MEGAHIT was used to process ab initio and in vivo dataset.

Contig Binning With Concoct
Contig binning is another key step of QC-Blind. Out of all
the existing and evaluated binning algorithms, CONCOCT
is selected because: firstly, both sequence composition and
coverage across multiple samples were considered in contig
binning; and secondly, it could handle both single sample and
multiple samples. These make CONCOCT a suitable choice
for batch processing of possibly contaminated samples (Knights
et al., 2011). For multiple species, co-assembly is a necessary
prerequisite to running CONCOCT, as CONCOCT takes contigs
as input to maximize the number of genomes that could
potentially be resolved. Contigs are limited to lengths from 1,000
to 10,000 bp, the lower limit filters low quality contigs while
the upper limit cuts fragments for more statistical weight. The
number of clusters was precisely determined with 16S rRNA
method by Parallel-Meta (Su et al., 2014). Contigs would be
clustered into species-level groups after CONCOCT processing.
Again, we have to emphasize that by using CONCOCT, the
abundances (read depth) of contigs in each of the clusters
are similar.

Marker Gene Selection and Mapping
Utilizing marker genes for target species cluster identification
helps us overcome the situation where we do not have the
complete or partial reference genome. This is realistic for most
of the contemporary sequencing tasks, in which we only know
a few of the targets’ marker genes (Davey et al., 2011; Sunagawa
et al., 2013).

Except for a few well-studied species that have had their whole
genome sequenced, we have knowledge on only a few genes for
most of the other species, such as important regulators in their
metabolism, proliferation, or 16S rRNA genes. Therefore, we can
only utilize these genes as markers to identify contig clusters that

belong to the target species. Marker genes were generated by the
combination of MetaPhlAn2 (Truong et al., 2015) and manual
curation. The majority of these marker genes are obtained from
MetaPhlAn2’s unique clade-specificmarker genes identified from
∼17,000 reference genomes (http://huttenhower.sph.harvard.
edu/metaphlan2). For those species (newly sequenced) not
included in MetaPhlAn2’s marker gene sets, we have extracted
marker genes manually and ensure they are clade-specific.

The clusters generated in the previous step were mapped to
marker genes of target species by BLAST (e-value cutoff= 1e-20).
The number of usable marker genes are species-dependent. The
more unique the genes, the more specific the identification would
be. Through MetaPhlAn2 selection and literature review, marker
genes ftsZ, lytF, nsrR, spo0A, ygxB, yjbH, yjbI were selected for
B. subtilis (Amann et al., 1995; Lindgreen et al., 2016; Vikram
et al., 2016), acpP, casA, cof, dxs, fabB, fabF, leuO, tesA, uidA
were chosen for E. coli (Coleman et al., 2015; Katta et al., 2015;
Freedman et al., 2016; Yan et al., 2016; Yu et al., 2017).

After marker gene assignment, contigs containing marker
genes for target species are identified as belonging to the target
species (defined as target contigs). Based on these assignments,
raw reads were mapped to contigs identified as belonging to the
targets with BOWTIE2 (Langmead and Salzberg, 2012) (defined
as target reads).

EVALUATION METHODS

Statistics of total reads number and target reads number in every
step could be evaluated with reference genome used. For ab
initio and in vivo datasets, only the target reads or contigs were
classified through mapping to reference of B. subtilis, since it is
impractical to classify each read from contaminations to their
source species, especially when many of them do not yet have
their whole genome sequenced (Hasan et al., 2014).

Our assessment of QC-Blind is based on the purity of the
clusters, target distribution, sensitivity, specificity, data loss and
coverage (Figure 2B).

Purity of Clusters
DS (dominant species) is defined as the species whose contigs
(and reads) outnumber other species’ in the cluster. In each
cluster, all the contigs were mapped to their reference genome
database consisted of both target bacteria and contaminations
by BLAST, to identify their source species. Reads were mapped
to contigs by BOWTIE2 (Langmead and Salzberg, 2012) and
thus inheriting taxonomical information from contigs. Purity
was defined as the proportion of contigs or reads of the DS in
each cluster, after contig binning through CONCOCT (Knights
et al., 2011; Formulas 1, 2).

Purity_contig =
# of DS contigs in a cluster

# of all contigs in a cluster
×100% (1)

Purity_read =
# of DS reads in a cluster

# of all reads in a cluster
×100% (2)

Purity of each cluster was categorized and evaluated at three
levels, 100%, 90%+, 80%+. The proportion of clusters exceeding
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these thresholds among all the clusters reflects the quality of
the clustering.

Target Contig and Target Read
Concentration and Distribution
We define clusters that contain contigs (and reads) from target
species (TS) as target clusters (TC), no matter how many contigs
are in the TC. The proportion of target contig or target read
in each clusters, as well as their distributions among all TC are
measured in Formulas (3, 4).

Targetconcentration_contig =
TS contigs in one TC

TS contigs in all TCs
×100% (3)

Targetconcentration_read =
TS reads in one TC

TS reads in all TCs
×100% (4)

Target concentrations in all clusters would thus form a
distribution, which is named “Target distribution.” A more
biased target distribution indicates a better clustering result, and
vice versa.

Sensitivity and Specificity
“Target/Contamination Dichotomization” were also measured
by sensitivity and specificity, which provided quantitative
information about contaminations correctly removed and target
sequences successfully preserved (Formulas 5–8). Here, the
contigs or reads of target species in the clusters found by marker
genes alignment were considered as true positive (TP), while
those of other species were considered as false positive (FP). The
contigs or reads mapping on the target genome were considered
as ground truth (GT), which contained those identified or
unidentified contigs or reads in target clusters.

Sensitivity_contig =
Target contigs in TCs identified by marker genes

All target contigs

×100% (5)

Sensitivity_reads =
Target reads in TCs identified by marker genes

All target reads

×100% (6)

Specificity_contig =
Target contigs in TCs identified by marker genes

All contigs in TCs identified by marker genes

×100% (7)

Specificity_reads =
Target reads in TCs identified by marker genes

All reads in TCs identified by marker genes

×100% (8)

Coverage Evaluation
We performed functional evaluations to examine how much of
the target bacteria species sequencing data has been kept after the
quality control process, and whether they retain the functional
genomics of the target species. The coverage in target genome
was calculated at both base and gene levels (Formulas 9, 10).
At the base level, the number of bases in the genome that have
been mapped for one or more times was measured (mapped

base, MB) and compared with the length of the whole genome
(total base, TB). Statistical data were summarized after target
reads alignment. At the gene level, genes covered by contigs in
our target clusters were viewed as mapped genes (MG), while the
genes for the all species were considered as total gene (TG). Genes
preserved after the processing were identified by the intersect
command of BEDTools (Quinlan and Hall, 2010). Obviously,
the gene and base coverage for unprocessed simulated data are
both 100%.

BaseCoverage =
Mapped base

Total bases
×100% (9)

GeneCoverage =
Mapped genes

Total genes
×100% (10)

RESULTS AND DISCUSSION

Simulated metagenomic datasets, each consisting of 4 samples
with different multi-species configurations, were selected to
benchmark the performance of QC-Blind for target species
identification (Figure 1). Here we present the results for dataset
consisting of B. subtilis as target species (read proportion
of 5, 35, 65, and 95%) and 10 human oral bacteria as
contaminations (Hasan et al., 2014) (Table 1). Results for target
species of S.A., E.C., and B.S mixed with S.C, were shown in
Supplementary File 1.

Target and Contamination Species
Identification
Target species can be completely identified at genus level, along
with 88% of contaminations identified on average (Table 1
in Supplementary File 2). The setting of number of species
acquired in this step could increase the purity of clustering,
although the unsupervised contig binning method utilized in
QC-Blind does not necessarily require this parameter (Knights
et al., 2011). However, it was also found that most eukaryotic
organisms (usually not contaminations) would not be identified
at species level by this method.

Read Assembly and Contig Binning
For read assembly, results based on Velvet (Zerbino and Birney,
2008) and MEGAHIT (Li et al., 2015) were compared, showing
that MEGAHIT would generate less contigs with longer N50
(e.g., for BS 5%, 603 contigs were generated with N50 = 154,200

TABLE 2 | Assembly result summary for ab initio and in vivo datasets.

Dataset AB_BS 35% AB_BS 65% AB_BS 95% Real_BS

Type ab initio ab initio ab initio in vivo

Contig number 1136824 182802 333868 90457156

N50 (bp) 490 413 432 540

Average length (bp) 489 424 519 532

Contig number, N50, and average length of contigs assembled by MEGAHIT from real

datasets are shown. More information of AB_BS_35%, AB_BS_65%, AB_BS_95%, and

Real_BS are shown in Table 1.
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FIGURE 3 | Evaluation of contig binning and contaminations removal. (A) 11, 12, 13, 11 clusters were generated, respectively for the four datasets with target reads

fraction of 5, 35, 65, 95%. Bar plots show the purity ratio of reads and contigs in all clusters in each sample. C1–C4 and R1–R4 stands for contigs and reads of the

four samples, respectively. Purity were measured at 100, 90%+, 80%+ level, in which green bar represents 100% purity, the orange bar represents purity over 90%,

the violet bar represents purity over 80%. (B) Target distribution and concentration in four samples. Clusters with the largest and second largest number of target

contigs were shown, combined with all other clusters that has at least one target contig. The green bar represents target species, while the orange bar represents

other species. Distribution of all target contigs were also shown in pie charts. (C) Sensitivity and specificity of the results of the four groups for MEGAHIT-BLAST (blue

lines) and Velvet-BLAST (red lines) pipeline. The squares stand for results based on read level and the triangles stand for results based on contig level.

by MEGAHIT, while 10,667 contigs were assembled by Velvet
with N50 = 39,369), thus we deemed contigs from MEGAHIT
outperform those from Velvet for downstream analysis (Table 2
in Supplementary File 2).

Purity of cluster evaluation indicated that most of these
contigs generated by QC-Blind were dominated by single species.
At the read level, 59.6% (28 of 47) of the clusters reached 90%
purity on average, and 72.3% clusters reached 80% purity (34 of
47) (Figure 3A). At contig level, more than 50% of the clusters
reached 90% purity. For target concentration, each dataset had
a single main cluster that contained over 94% target contigs.
Noticeably, the dominant clusters in three simulated datasets
were of 100% purity, except that purity of Simu_BS_95.0%
dominant cluster 8 was 95% (Figure 3B).

Taken together, the contig binning method could resolve
single highly concentrated and pure target cluster from multiple
species. Considering possible artifacts produced during read
mapping on the simulated datasets, we anticipated that the
method would actually perform better for real datasets.

Evaluation of Sensitivity and Specificity for
Target Species Read Assignment
The sensitivity and specificity values for target species read
assignment of MEGAHIT-processed data were both high

(Figure 3C). Sensitivity values were 92.7% on average in four
samples, while specificity values of those were even higher for
both target contigs and reads: 100% assignment specificity in
Simu_BS_5%, Simu_BS_35%, and Simu_BS_65%, showing that
the target information in target cluster can be extracted with
very few contaminations remaining. However, the sensitivity and
specificity evaluation of Velvet-processed data were extremely
low at the dataset with 5% target reads (34.3%, compared to
93.5% in MEGAHIT), which raised question on the ability
of Velvet to deal with severely contaminated data. Velvet’s
sensitivity at the contig level was also not optimistic.

This evaluation of sensitivity and specificity for target species
read assignments showed the superiority of using MEGAHIT in
QC-Blind method. Thus, in the following analyses, we adopted
MEGAHIT in the QC-Blind method as default.

Data Loss in Screening Process
The information loss that we generally experience as the target
information progress from raw reads, to read assembly, contig
binning, and then marker gene mapping, decreases as the
proportion of target species increases (Figure 4A). The greatest
data loss on read level occurred in marker gene mapping. the
proportion of reads loss were up to 5.31, 5.91, 5.32, 4.87% for each
simulated dataset with target fraction from 5 to 95%. Samples
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FIGURE 4 | Data loss assessment for simulated data. (A) Percentage of target contigs and reads preserved in each step (read assembly, contig binning, marker gene

mapping), for MEGAHIT pipeline. The four circles in a row represent groups in which the frequency of target species increases from 5 to 95%. The orange portions

represent preserved reads, the blue portions represent preserved contigs, while the white portions represent lost data. (B) Comparison of data loss in the steps of

read assembly, contig binning, and marker gene mapping between MEGAHIT-BLAST (full squares) and Velvet-BLAST (dot lines and triangles) pipeline at contig level.

The red, blue, green, and yellow lines represent the samples with proportion of target species from 5 to 95%. (C) Data loss comparison between MEGAHIT-BLAST

(full squares) and Velvet-BLAST (dot lines and triangles) pipeline at read level. The red, blue, green, and yellow lines represent the samples with proportion of target

species from 5 to 95%.

without a dominant species (e.g., Simu_BS_5%, Simu_BS_35%)
encountered difficulty on assigning all reads correctly, as there
may not be enough unique reads from them to reconstruct a
complete genome for species identification (Knights et al., 2011).
Certain proportions of short contigs (6.47, 9.66, 10.07, 9.05%,
for 4 samples, respectively) were also filtered out during contig
binning (Figure 4B). Data loss at read level is almost negligible
(<2%) in reads assembly and contig binning (Figure 4C).

By contrast, analysis results on the data loss issue by Velvet
was unsatisfactory, indicating its inability to deal with highly
contaminated data. At contig level, over 35% contigs were lost
after contig binning and mapping of Velvet-processed data in
all four samples. At read level, Velvet performed comparably as
MEGAHIT in three samples, except that in Simu_BS_5%, 61.6%
reads were lost after contig assembly by Velvet.

Base and Gene Coverage Analysis
QC-Blind results have nearly perfect coverage of genomic
information regardless of the different complexities of the
samples. Through mapping these reads back to the genome, on
average 93.5% of the bases could be covered for one or more
times, indicating the potential of this method to reconstruct
a complete genome (Figure 5A). More notably, this coverage
is consistent among the four samples (94.1, 92.9, 93.2, 93.8%),
which suggests that QC-Blind is able to work with samples of
different complexities. Similarly, most of the annotated genes
are also covered with processed reads (on average 93.8%). The
Arginine biosynthesis pathway, a critical pathway for B. subtilis’s

metabolism (Kunst et al., 1997), was selected as an example for
examination (Figure 5B); all the 20 genes that are involved in
this pathway could be found in the processed reads (after quality
control) of the four datasets (Figure 5C).

The above assessments of QC-Blind based on simulated
data have not only demonstrated the possibility but also the
high fidelity of the reference-free QC. This performance can
be attributed to the fact that the vast majority of target
contigs were binned into a single cluster. Certainly, the
selection of marker genes was very crucial, as their uniqueness
among microbial community would assure high specificity in
target/contamination classification.

Hence for simulated data, the resultant near-perfect coverage
proved that the additional work performed on screening is
worthwhile. We have put other simulation settings and results in
Supplementary File 1 including analytical results of Datasets B,
C, and D (Figure 1A).

Analysis Based on ab initio and
in vivo Datasets
Before bacterial contamination screening, QC-Blind was able to
capture the genetic information of target species in ab initio and
in vivo datasets that were contaminated by large proportion of
human-oriented reads (416,679,339 reads were identified from
bacteria floras of human saliva in this study). This might affect
the contig assembly and clustering process.

Single dominant cluster for the target species B. subtilis were
successfully determined in each ab initio and in vivo dataset,
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FIGURE 5 | Coverage and pathway reconstruction based on simulated data. (A) Y-axis represents base coverage (red line, squares) and gene coverage (blue line,

triangles) of target genome as described in Materials and Methods section of this paper. X-axis stands for four samples with target species from 5 to 95%. (B) Arginine

biosynthesis pathway of B. subtilis from KEGG. (C) Genes successfully found in processed data marked with orange squares, and four squares stands for each

sample, in which orange and white stands for exist and non-exist, respectively.

with cluster 34 in AB_BS 35% containing 99.6% target reads,
cluster 33 in AB_BS 65% containing 99.9% target reads, cluster
32 in AB_BS 95% containing 99.5% target reads and cluster 14,
65, 78 together containing 59.7% of target reads (Figure 6A),
while a lot of contigs from contamination species with very few
sequences were not classified into independent cluster in AB_BS
65% and AB_BS 95%. All three dominant clusters were identified

by marker genes with high specificity (Figure 6B). However, the
sensitivity of AB_BS 65% at read level dropped to 47.5% while
the sensitivity of AB_BS 35% and AB_BS 95% and Real_BS
remained high.

For data loss ratios, our method’s performance on read
datasets remained high level (Figure 7A), except that <20%
contigs remained in AB_BS 65% with <30% reads after
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FIGURE 6 | Evaluation of contig binning and contaminations removal for real data. (A) Target distribution and concentration in four samples. In the bar charts, clusters

with the largest number of target contigs were shown, combined with all other clusters that has at least one target contig. The green bar represents target species,

while the orange bar represents other species. Distributions of all target contigs were also shown in pies. The green portion stands for the cluster with the largest

number of target contigs, while the orange portion stands for other clusters containing target contigs. The clusters are marked by original cluster ID from QC-Blind

pipeline (e.g., Cluster34). (B) Sensitivity and specificity of the results of the three groups at MEGAHIT-BLAST. The blue lines with squares stand for read level results

and the red lines with triangles stand for contig level results.
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FIGURE 7 | Data loss assessment for real data. (A) Proportion of target contigs and reads preserved in each step (read assembly, contig binning, marker gene

mapping), for MEGAHIT pipeline. The four circles in a row represent groups in which the frequency of target species increases from 35, 65 to 95%, as well as real BS

sequencing data. The orange portions represent preserved reads, the blue portions represent preserved contigs, while the white portions represent lost data. (B) Data

loss in the steps of read assembly, contig binning, and marker gene mapping of MEGAHIT-BLAST pipeline at contig level. The red, blue, green, and yellow lines

represent the samples in which the frequency of target species increases from 35, 65 to 95%, as well as real BS sequencing data. (C) Data loss of MEGAHIT-BLAST

pipeline at read level. All results were calculated based on simulated dataset A.

assembly (Figures 7B,C). For possible explanation for this
abnormal phenomenon, we found that the N50 and average
contig length of AB_BS 65% were the lowest among the
three (Table 2), a large number of its contigs were filtered
due to the 600 bp cutoff of CONCOCT. This stringent cutoff
was set to remove low quality reads and keep specificity at
high level, which if set lower, might recover the data loss
(Supplementary File 3). No more than 6% of reads were lost in
marker gene mapping.

For base- and gene-level coverage, the performance of QC-
Blind on real datasets was consistent with that on simulated
datasets, as the analytical results of AB_BS 35%, AB_BS 95%
and Real_BS datasets all show coverage of over 98%, except for
AB_ BS 65% (Figure 8A). The results reaffirmed the potential of
QC-Blind to reconstruct genome from real sequencing data with
contaminations (Figures 8B,C).

Comparison With Existing QC Tools
There is no existing reference-free QC tool similar to QC-
Blind up till now, so it is difficult to conduct a completely
fair performance comparison with QC-Blind. Here we briefly

describe three reference-based methods, followed by a simple
comparison study.

Firstly, Kontaminant is a k-mer-based contamination
screening tool (Ramirez-Gonzalez, 2013), which has proved to
be effective in host filtering for novel viral discovery. Compared
to QC-Blind, Kontaminant is limited by the completeness of
existing k-mer database, which lead to its inability to work on
unknown contaminations. Another general QC analytical tool
is FastQC, which is able to generate a comprehensive report on
the quality profile of the reads (Andrews, 2010; Brown et al.,
2017). With respect to contaminant identification, it could
detect the overrepresented sequence through assessing per
base sequence content, per base GC content and per sequence
GC content, which can be used as evidence that the library
is contaminated (Andrews, 2010). Although FastQC is
able to detect unknown contaminations, it cannot remove
contaminants well, especially in situations where there are
multiple contaminating species. Compared to FastQC, QC-blind
implements species-based contigs binning method (ideally
one cluster is from one species), which performs better in the
case that the contaminant is a mixture of multiple species.
The third reference-based method is QC-Chain (Zhou et al.,
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FIGURE 8 | Coverage and pathway reconstruction for real data. (A) Y-axis represents base coverage (red line, squares) and gene coverage (blue line, triangles) of

target genome as described in Materials and Methods section of this paper. X-axis stands for four samples with proportion of target species from 5 to 95%.

(B) Arginine biosynthesis pathway of B. subtilis from KEGG. (C) Genes successfully found in processed data marked with orange squares, and three squares stands

for each sample, in which orange and white stands for exist and non-exist, respectively.

2013), which has good performance in identifying and removing
contaminations. However, the false positive rate remains high.
Compared to this method, the purity of target clusters in
QC-Blind is much higher, and marker genes can map the
target clusters accurately, which could ensure higher true
positive rate.

As it is still valuable to compare QC-Blind with commonly
used reference-based QC tools in terms of contaminant
identification and filtration, while the above-mentioned
reference-based QC tools are all based on certain assumptions,
here we have conducted a simple yet direct comparison of QC-
Blind with reference-based Bowtie2 method (https://sourceforge.
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net/projects/bowtie-bio/files/bowtie2/). Since Bowtie2 is simply
a set of mapping tools, it is obvious that if all reference genomes
are provided, Bowtie2 would yield the best specificity for target
identification and read assignment.

For a direct comparison with reference-based method, we
have utilized reference genome for strain B. subtilis 168, as well as
the most abundant oral microbes (HOB10, as detailed in Table 1)
for the assessment. The Bowtie2 mapping tools with default
parameters was used. Results have shown that based on simulated
dataset A (Table 1), when using reference genome for strain B.
subtilis 168, almost perfect quantities of reads could be assigned
to target successfully, which is not surprising. However, when
using HOB10 as reference genome for contaminations, 0.3% of
error could still occur. On in vivo datasets, it was observed that
88.6 ± 1.5% read-level assignment specificity could be achieved
by using reference genome for strain B. subtilis 168. Such results
on in vivo datasets are close to the results of QC-Blind (Figure 6).
Therefore, it is still true that reference-based method is superior
to reference-free method in specificity. However, the gap between
the reference-based method and the reference-free method is
much closer when QC-Blind is adopted, especially on in vivo
sequencing data.

Efficiency Evaluation
On a computational server with Intel Xeon CPU E7-4820 v2
(each core 2.00 GHz, 8 core, 16 processors—we used only 1
processor) and 512GB RAM, QC-Blind ran in <12 h on datasets
with 40 million paired-end reads, with varying time depending
on the sequencing quality and contig number. The greatest
proportion of time was consumed on contig assembly and contig
binning. Due to the time complexity of the clustering algorithm,
the running time increased significantly when working with
larger number of contigs, which result from the use of lower
contig length cutoff values. Thus, a reasonable cutoff, an
improved clustering algorithm, as well as the utilization of
multiple processors could be taken into consideration to reach
higher efficiency.

CONCLUSION

In this study, we proposed the QC-Blind pipeline for assigning
reads to target species. QC-Blind first uses the well-established
16S rRNA approach for species identification. It then employs
read assembly (Velvet or MEGAHIT) and contig binning
(CONCOCT) sequentially to cluster contigs and reads. Finally,
it uses marker genes to identify contig clusters.

A systematic assessment of QC-Blind based on in silico, ab
initio, and in vivo datasets with different fraction of reads from
contaminations, showed QC-Blind performs well on screening
microbial contamination. After being processed by QC-Blind,
contigs and reads were highly concentrated in target clusters and
were easily identified through their marker genes. The clusters
are almost homogeneous even when samples are contaminated
by more than 50% heterogeneous reads. The reads which QC-
Blind recovered consists of a large proportion of the genome
of the target species. However, the performance of QC-Blind
on simulation datasets, ab initio mixture of species and in vivo

real datasets showed certain differences: data loss was more
significant in a few real datasets such as BS 65%.

Our tests show that QC-Blind is able to acquire high-quality
sequencing data, as well as reduce the widely presented “batch
effects” (Weiss et al., 2014) caused by experimental procedure
and human factors (exemplified with human saliva in this study).
We have also shown that reference-free methods work well, and
such performance is not very much dependent on the choice
of assembler. However, it is very hard to completely separate
reads from target and contamination even when using reference-
based method, as exemplified by our comparison study, as
identical sequence fragment usually occur, between target, and
contamination species. Having this in mind, it is clear that
with the application of QC-Blind, the performance gap between
reference-based and reference-free approaches further shrink.
Additionally, unlike traditional reference-based method that
highly depend on reference genome, QC-Blind could accurately
identify and filter sequencing reads from target species utilizing
only a small number of marker genes (Leek et al., 2010).
Moreover, the selection of marker genes is flexible and context-
dependent, thus providing a lot of room for improvement during
actual application.

As a future work, we are considering putting QC-Blind
to the task where both target and contamination species are
unidentified (and without biomarker genes other than 16S
rRNA or a few genes) before sequencing. This problem is
equivalent to the problem of metagenomic read binning, in
which the reads of both target species and contaminations
should be clustered into separate clusters. A more complex
situation is with multiple species as target species, and multiple
known/unknown contaminant species (but without multiple
samples for comparison). Theoretically, contig binning can be
directly applied to this multiple-species problem, and there are
two points worth noticing: First, to increase the accuracy of
marker gene identification, sequences from the same species
have to be precisely clustered. Second, the performance of
assembly and contig binning method should be stable in different
situations, especially when there is a lack of dominant species. All
these would be considered in our future explorations on the QC
issues of high-throughput sequencing data.
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