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A B S T R A C T   

Objective: BRCA1/2 status is a key to personalized therapy for invasive breast cancer patients. This 
study aimed to explore the association between ultrasound radiomics features and germline 
BRCA1/2 mutation in patients with invasive breast cancer. 
Materials and methods: In this retrospective study, 100 lesions in 92 BRCA1/2-mutated patients 
and 390 lesions in 357 non-BRCA1/2-mutated patients were included and randomly assigned as 
training and validation datasets in a ratio of 7:3. Gray-scale ultrasound images of the largest plane 
of the lesions were used for feature extraction. Maximum relevance minimum redundancy 
(mRMR) algorithm and multivariate logistic least absolute shrinkage and selection operator 
(LASSO) regression were used to select features. The multivariate logistic regression method was 
used to construct predictive models based on clinicopathological factors, radiomics features, or a 
combination of them. 
Results: In the clinical model, age at first diagnosis, family history of BRCA1/2-related malig
nancies, HER2 status, and Ki-67 level were found to be independent predictors for BRCA1/2 
mutation. In the radiomics model, 10 significant features were selected from the 1032 radiomics 
features extracted from US images. The AUCs of the radiomics model were not inferior to those of 
the clinical model in both training dataset [0.712 (95% CI, 0.647–0.776) vs 0.768 (95% CI, 
0.704–0.835); p = 0.429] and validation dataset [0.705 (95% CI, 0.597–0.808) vs 0.723 (95% CI, 
0.625–0.828); p = 0.820]. The AUCs of the nomogram model combining clinical and radiomics 
features were 0.804 (95% CI, 0.748–0.861) in the training dataset and 0.811 (95% CI, 
0.724–0.894) in the validation dataset, which were proved significantly higher than those of the 
clinical model alone by DeLong’s test (p = 0.041; p = 0.007). To be noted, the negative predictive 
values (NPVs) of the nomogram model reached a favorable 0.93 in both datasets. 
Conclusion: This machine nomogram model combining ultrasound-based radiomics and clinical 
features exhibited a promising performance in identifying germline BRCA1/2 mutation in pa
tients with invasive breast cancer and may help avoid unnecessary gene tests in clinical practice.   
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1. Introduction 

1.1. Background 

Breast cancer has become the most commonly diagnosed malignancy and the leading cause of cancer-related mortality in women 
worldwide [1]. Pathogenic mutations of breast cancer susceptibility genes 1 and 2 (BRCA1/2), two distinct tumor suppressor genes 
playing an integral part in DNA damage repair by homologous recombination [2], are present in about 3%–5% of unselected breast 
cancer patients in China and worldwide [3,4]. The cumulative risk of breast cancer in a lifetime is 38%–90% for pathogenic BRCA1 
mutation carriers and 37%–69% for BRCA2 mutation carriers [5–7]. Breast cancer patients carrying pathogenic BRCA1/2 mutations 
have a higher incidence of a contralateral or a new ipsilateral disease [8] and have different choices in chemotherapy and targeted 
therapy. For BRCA1/2 carriers, platinum agents, rather than taxanes, are recommended for patients with advanced breast cancer [9]. 
Furthermore, olaparib, a poly ADP-ribose polymerase (PARP) inhibitor targeting the DNA damage response in BRCA1/2-mutated 
tumors, also expanded the options for BRCA1/2-mutated patients with HER-2 negative or advanced breast cancer [10]. Therefore, 
determining BRCA1/2 status in patients with breast cancer is of great help in predicting prognosis and making treatment decisions in 
clinical practice. 

However, due to the complexity and heterogeneity of BRCA1/2, the detection of pathogenic BRCA1/2 mutations is highly 
dependent on next-generation sequencing technology [11], which is expensive, time-consuming, and of low availability. Because of 
these limitations, guidelines only recommend genetic testing for patients who meet certain criteria and, therefore, bear a relatively 
high risk of carrying pathogenic or likely pathogenic (P/LP) BRCA1/2 mutations [12]. The criteria proposed by the National 
Comprehensive Cancer Network (NCCN) are mainly comprised of clinicopathological characteristics, including diagnosis at a young 
age, triple-negative breast cancer (TNBC), a second breast cancer, personal or family history of other BRCA1/2-related malignancies, 
etc [12]. However, the NCCN criteria showed limited power in identifying BRCA1/2 mutations. In a retrospective cohort study 
involving 4196 breast cancer patients, the BRCA1/2 mutation rate was 9.4% in patients who met the NCCN criteria, while 7.9% in 
those who did not [13]. It was estimated that merely 30% of breast cancer patients with BRCA1/2 mutations had been identified in the 
United States [13], indicating that underdiagnosis of BRCA1/2 mutations in clinical practice is far from negligible. A more efficient 
method is needed to recognize BRCA1/2 mutation carriers. 

Ultrasound (US) is widely used to screen and evaluate breast lesions. Compared to other imaging techniques, e.g., MRI or 
mammogram, US offers the advantages of real-time display and radiation-free nature, as well as being convenient and affordable. US- 
based radiomics also has been attracting attention in recent years. In radiomics studies, high-throughput quantitative features are 
extracted from digital medical images [14]. The features could be used to identify tumor information beyond the recognition of naked 
eye, hence carrying the potential for reflecting biological behaviors and characteristics at the genetic or molecular level [15,16]. For 
breast cancer, several radiomics models based on US images have been constructed and proved useful in distinguishing benign and 
malignant tumors, identifying lymph node metastasis, classifying molecular subtypes, evaluating Ki-67 levels, and predicting neo
adjuvant treatment response, etc [17–20]. These indicated that US-based radiomics analysis carries a great potential for identifying 
BRCA1/2 mutation in breast cancer patients. 

Fig. 1. Flow chart of patient enrollment. US, ultrasound; P/LP, pathogenic or likely pathogenic; gBRCA1/2, germline BRCA1/2.  
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To the best of our knowledge, this is the first study to explore the association between BRCA1/2 status and US radiomics features of 
breast cancer lesions. The present study aimed to explore whether radiomics features of gray-scale US images could be utilized to 
identify BRCA1/2 mutation, and further develop a model combining radiomics features and clinical factors to assist identifying 
BRCA1/2-mutated patients with invasive breast cancer. 

2. Methods and materials 

2.1. Patient enrollment 

This study was approved by the Institutional Review Board of Sun Yat-sen University Cancer Center, with the requirement for 
informed consent waived. Breast cancer patients who took the BRCA1/2 gene test from Nov 2017 to Dec 2021 in Sun Yat-sen Uni
versity Cancer Center were investigated. 

The inclusion criteria were (a) female patients with US-suspected breast masses pathologically diagnosed as invasive breast cancer; 
(b) patients who took the BRCA1/2 gene test by next-generation sequencing technology using blood samples. BRCA1/2 genetic testing 
was recommended by physicians when risk factors, e.g. diagnosis at a young age, were detected in patients and brought concerns about 
familial breast cancer. Genetic testing was also done when requested by patients who did not necessarily carry risk factors. Patients 
were included in either case. 

The exclusion criteria were (a) patients carrying BRCA1/2 variants of uncertain significance, whose impact on protein function is 
unknown; (b) patients who underwent treatment or invasive biopsy before US examination; (c) non-invasive carcinoma, e.g., ductal 
carcinoma in situ; (d) missing images or images of low quality, e.g., massive lesions beyond the limited width of the US probe; (e) 
incomplete clinicopathologic information, e.g., for multiple lesions observed in a single patient, the ones without separately reported 
immunohistochemical staining results were excluded; (f) difficult to match US images and pathological reports. The flow chart of the 
study population is shown in Fig. 1. 

2.2. Clinical information collection and US image acquisition 

Medical records of the patients were thoroughly reviewed. The age at first diagnosis of breast malignancy, and personal or family 
history of any BRCA1/2-related malignancy, including breast, ovarian, pancreatic, and prostate cancers, were recorded. 

All included lesions were diagnosed as invasive breast cancer with available immunohistochemical (IHC) staining results. Estrogen 
receptor (ER) or progesterone receptor (PR) negative were defined as <1% positive tumor cells, while positive as 1% or more positive 
tumor cells [21,22]. The cut-off value for Ki-67 was set to 20%. When Ki-67 ≥ 20%, it is marked as high expression level; otherwise, as 
low expression level [23]. Regarding human epidermal growth factor receptor 2 (HER2) status, 3+ was defined as HER2 positive, 

Fig. 2. Workflow of construction of predictive models for gBRCA1/2 mutation in patients with invasive breast cancer. Details of each step are 
shown on both sides. US, ultrasound; gBRCA1/2, germline BRCA1/2. 
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while 0 or 1+ as HER2 negative. When IHC results were scored as 2+, it should be further confirmed by fluorescence in situ hy
bridization (FISH) according to ASCO/CAP guidelines [24]. 

All included patients underwent US examination before receiving any treatment or invasive biopsy. The US examinations were 
performed by qualified radiologists using multiple ultrasound systems, including LOGIQ E9 and LOGIQ S8 (GE Healthcare, Chicago, IL, 
USA), MyLab Twice (Esaote, Genoa, Italy), Aloka Arietta 60 (Hitachi Healthcare Corporation, Tokyo, Japan), EPIQ 7 (Philips 
Healthcare, Best, the Netherlands), Acuson Sequoia and Acuson Juniper (Siemens Medical Solutions USA, Malvern, PA, USA), Aplio 
400 (Toshiba Medical Systems, Tochigi, Japan), Resona 7T, I9S and DC-8 (Mindray Medical International Co., Ltd., Shenzhen, China), 
all with a 6–15L or 6–18L linear array transducer. US images were saved in the format of JPEG. US and pathological reports were 
compared carefully to match the images with the pathological results. For each lesion, the largest longitudinal image of satisfying 
quality was included in further analysis. 

2.3. Region of interest (ROI) segmentation and feature extraction 

Segmentation of the ROIs was manually performed by delineating the tumor areas on gray-scale images in NovoUltrasound Kit 
(NUK, version 1.5.0, GE Healthcare, Shanghai, China), a software for quantitative analysis of medical images, by two experienced 
radiologists (Fig. 2). Radiomics features included first-order, shape, and textural features including gray-level co-occurrence matrix 
(GLCM), gray-level run-length matrix (GLRLM), gray-level size zone matrix (GLSZM), neighbourhood gray-tone difference matrix 
(NGTDM), gray-level dependence matrix (GLDM) features. From each US image, 1032 radiomics features were extracted. Part of the 
features were obtained from the wavelet transform that uses two orthogonal filters, low-pass (L) and high-pass (H), to generate 4 
subgroups of signals from a single image, including one approximation (LL) and three detailed features of different directions [hor
izontal (LH), vertical (HL) and diagonal (HH)], therefore providing multi-resolution time/spatial-frequency analysis for texture of 
medical images [25]. 

Fifty US images were randomly chosen for further stability analysis. One radiologist segmented the ROIs twice with an interval of 
eight weeks to evaluate intra-observer agreements, and two radiologists segmented the ROIs independently to evaluate inter-observer 
agreements. The intra-class correlation coefficients (ICCs) were utilized to evaluate intra- and inter-observer agreements of the 
extracted features. Features with intra- or inter-observer ICCs less than 0.75 were considered of relatively low reproducibility and were 
removed from the following analysis. 

2.4. Data preprocessing 

The cohort was randomly assigned to either the training or the validation datasets in a ratio of 7:3. The training and the validation 
datasets were utilized to develop and evaluate the predictive models, respectively. The included radiomics features were standardized 
by Z-score standardization before analysis. 

2.5. Feature selection and model construction 

Logistic models were developed from the training dataset and validated by the validation dataset. Using age, menopause status, 
personal and family history of BRCA1/2-related malignancies, and pathological findings, the clinical model was developed. Features 
with a p-value < 0.05 in the univariate logistics regression analysis were further involved in multivariate logistics regression analysis, 
which was done in a backward stepwise manner. In each step, factors with a p-value > 0.05 were omitted, and those with a p-value <
0.05 in the final step were considered significant predictors of BRCA1/2 mutation. 

Based on radiomics features, another logistic model was developed. A maximum relevance minimum redundancy (mRMR) algo
rithm was used to rank the radiomics features and select a subset of features. The mRMR method aims to select features that correlate 
with the target class the most (high relevance) while being mutually exclusive (low redundancy) [26] and is widely used in the analysis 
of medical images. Then, using multivariate logistic least absolute shrinkage and selection operator (LASSO) regression, features were 
further narrowed down. Cross-validation was used to determine the optimal coefficients. The features remaining in LASSO regression 
were included in the radiomics model. 

The radiomics scores were calculated and combined with significant clinical predictors to construct a comprehensive logistic 
model. A nomogram was developed according to the results. Fig. 2 shows the workflow of this study. 

2.6. Statistical analysis 

The data were expressed as number (%) or mean ± standard deviation. Model performances were evaluated by depicting receiver 
operating characteristic curves (ROC). Decision curve analyses (DCA) were performed to quantify the net benefits and assess the 
usefulness of the models in instructing clinical decisions. For each model, the optimal cut-off value was determined by maximizing the 
Youden index, which equals sensitivity + specificity - 1. Accuracy, sensitivity, specificity, positive predictive values (PPV), negative 
predictive values (NPV), and area under curve (AUC) values were then calculated; and the DeLong’s tests were used to compare the 
difference between AUCs. For all statistical analyses, Python v3.8.8 was used. A two-tailed p-value < 0.05 was considered significant. 
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3. Results 

3.1. Patient characteristics 

A total of 490 breast cancer lesions in 449 patients were included, among which, 100 (20.4%) lesions identified in 92 patients 
(20.5%) carried pathogenic or likely pathogenic (P/LP) BRCA1/2 mutations. 

BRCA1/2-mutated and non-mutated cases showed differences in many aspects (Table 1). Patients with BRCA1/2 mutation tended 
to be firstly diagnosed with breast malignancy at a younger age (average 40.1 vs 43.1, p = 0.009) and had a higher ratio of having a 
family history of BRCA1/2-related malignancies (47.3% vs 15.5%, p < 0.001). In the analysis of IHC results, BRCA1/2-mutated lesions 
demonstrated a higher ratio of negative ER (42.0% vs 31.3%, p = 0.043), negative HER2 (96.0% vs 74.4%, p = 0.001) and, therefore, a 
higher ratio of TNBC (31.0% vs 18.5%, p < 0.001). Higher expression of Ki-67 was also shown in BRCA1/2-mutated lesions (96.0% vs 
80.3%, p < 0.001). 

The cases enrolled in the study were randomly assigned in a ratio of 7:3 as the training and the validation datasets. The clinical 
characteristics of the patients and the pathological characteristics of the lesions were compared between the two datasets (Table 2). For 
patients, no statistically significant difference was found in terms of the age at diagnosis, menopause status, family history of BRCA1/2- 
related malignancies, bilateral lesions, and previous breast cancer history cancer. For breast lesions, there was also no statistically 
significant difference in tumor size, IHC results including ER, PR, HER2 status, and Ki-67. Similar distributions in molecular subtypes 
were also presented between the training and the validation datasets. 

3.2. Clinical model construction and validation 

The clinicopathologic characteristics were analyzed using univariate and multivariate logistics regression (Table 3). Only factors 
with p-value < 0.05 were further included in multivariate analysis. According to the result, age at first diagnosis (p = 0.007), family 
history of BRCA1/2-related malignancies (p < 0.001), HER2 status (p = 0.003), and Ki-67 level (p = 0.015) were independent pre
dictors for BRCA1/2 mutation. A four-factor clinical model for identifying BRCA1/2 mutation was constructed using the β coefficients 
summarized in Table 3. The AUCs in the training and the validation datasets were 0.768 (95% CI, 0.704–0.835) and 0.723 (95% CI, 
0.625–0.828), respectively (Fig. 6A). 

3.3. Radiomics model construction and validation 

From each gray-scale US image, 1032 features were extracted. Fifty randomly selected lesions were used to evaluate the stability of 
radiomics features. 744 features, in which both intra- and inter-observer ICC were found >0.75, were considered stable and included in 
the following analysis. 

Table 1 
Clinicopathologic Characteristics of BRCA1/2-mutated and non-BRCA1/2-mutated Patients and Lesions.  

Characteristics Non-gBRCA1/2-mutated gBRCA1/2-mutated P value 

Number of patients 357 (79.5%) 92 (20.5%)  

Age at first diagnosis/year 43.1 ± 10.3 40.1 ± 8.6 0.009 
Menopause 90 (28.2%) 16 (19.8%) 0.131 
Bilateral* 24 (6.7%) 12 (13.0%) 0.054 
Previous BC 28 (4.5%) 11 (8.8%) 0.216 
Family History† 52 (15.5%) 41 (47.3%) <0.001 
Number of lesions 390 (79.6%) 100 (20.4%)  
Tumor Size/mm 25.2 ± 12.3 25.1 ± 10.1 0.986 
Side (Left) 218 (55.9%) 48 (48.0%) 0.157 
ER status Positive 268 (68.7%) 58 (58.0%) 0.043  

Negative 122 (31.3%) 42 (42.0%)  
PR status Positive 237 (60.8%) 53 (53.0%) 0.158  

Negative 153 (39.2%) 47 (47.0%)  
HER2 status Positive 100 (25.6%) 10 (10.0%) 0.001  

Negative 290 (74.4%) 90 (90.0%)  
Ki-67 ≥20% 313 (80.3%) 96 (96.0%) <0.001  

<20% 77 (19.7%) 4 (4.0%)  
Molecular subtype Luminal A 52 (13.3%) 4 (4.0%) <0.001 

Luminal B1 166 (42.6%) 55 (55.0%)   
Luminal B2 67 (17.2%) 5 (5.0%)   
TNBC 72 (18.5%) 31 (31.0%)   
HER2+ HR- 33 (8.5%) 5 (5.0%)  

BC: breast cancer; ER: oestrogen receptor; PR: progesterone receptor; HR: hormone receptor; HER2: human epidermal growth factor receptor 2; 
TNBC: triple-negative breast cancer. 

* Including synchronous and metachronous breast cancer. 
† Family history of gBRCA1/2-related malignancy, including breast, ovarian, pancreatic and prostate cancer. 
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Using the mRMR algorithm, a subset of ten features was acquired and further analyzed using LASSO regression. An optimal Lambda 
of 8.1113 was generated for the LASSO regression, and all the ten radiomics features remained with non-zero coefficients (Fig. 3A and 
B). A multivariate logistics regression model was developed, and the coefficients of selected features were summarized in Fig. 3C. The 
Pearson correlation coefficients between each pair of features were also calculated (Fig. 4). The AUCs of the radiomics model in the 
training and the validation datasets were 0.712 (95% CI, 0.647–0.776) and 0.705 (95% CI, 0.597–0.808), respectively (Fig. 6A). 

3.4. Combined nomogram model construction and validation 

The radiomics scores of the US images were calculated according to the radiomics model. Through another round of multivariate 
logistics regression, a model combining radiomics scores and clinical factors was constructed, and a nomogram was developed (Fig. 5). 
In the nomogram model, age at first diagnosis (p = 0.008), family history of BRCA1/2-related malignancies (p < 0.001), HER2 status (p 
= 0.003), expression of Ki-67 (p = 0.016), and the radiomics score (p < 0.001) were independent predictive factors for BRCA1/2 
mutation (Table 4). 

For comparison between the clinical and the radiomics models, no significant differences were detected in the training (p = 0.429) 

Table 2 
Clinicopathologic characteristics of the patients and lesions enrolled.  

Characteristics Total Training Validation P value 

Number of patients 449 311 138  

BRCA1/2-mutated 92 (20.5%) 64 (20.6%) 28 (20.3%) 0.944 
Age at first diagnosis/years 42.5 ± 10.0 42.8 ± 10.0 41.9 ± 10.0 0.397 
Menopause 106 (23.6%) 75 (24.1%) 31 (22.4%) 0.704 
Bilateral* 36 (8.0%) 23 (7.4%) 13 (9.4%) 0.467 
Previous BC 39 (8.7%) 26 (8.4%) 13 (9.4%) 0.714 
Family history** 93 (20.7%) 66 (21.2%) 27 (19.6%) 0.690 
Number of lesions 490 343 147  
BRCA1/2-mutated 100 (20.4%) 70 (20.4%) 30 (20.4%) 1.000 
Tumor Size/mm 25.2 ± 11.9 24.9 ± 12.1 25.7 ± 11.4 0.506 
Side (Left) 266 (54.3%) 183 (53.4%) 83 (56.5%) 0.528 
ER status Positive 326 (66.5%) 221 (64.4%) 105 (71.4%) 0.133  

Negative 164 (33.5%) 122 (35.6%) 42 (28.6%)  
PR status Positive 290 (59.2%) 197 (57.4%) 93 (63.3%) 0.230  

Negative 200 (40.8%) 146 (42.6%) 54 (36.7%)  
HER2 status Positive 110 (22.4%) 84 (24.5%) 26 (17.7%) 0.099  

Negative 380 (77.6%) 259 (75.5%) 121 (82.3%)  
Ki-67 ≥20% 409 (83.5%) 289 (84.3%) 120 (81.6%) 0.475  

<20% 81 (16.5%) 54 (15.7%) 27 (18.4%)  
Molecular subtype Luminal A 56 (11.4%) 37 (10.8%) 19 (12.9%) 0.177 

Luminal B1 221 (56.5%) 147 (42.9%) 74 (50.3%)   
Luminal B2 72 (14.7%) 54 (15.7%) 18 (12.2%)   
TNBC 103 (21.0%) 75 (21.9%) 28 (19.0%)   
HER2+ HR- 38 (7.8%) 30 (8.7%) 8 (5.4%)  

BC: breast cancer; ER: oestrogen receptor; PR: progesterone receptor; HR: hormone receptor; HER2: human epidermal growth factor receptor 2; 
TNBC: triple-negative breast cancer. 

* Including synchronous and metachronous breast cancer. 
** Family history of BRCA1/2-related malignancy, including breast, ovarian, pancreatic and prostate cancer. 

Table 3 
Univariate and multivariate logistic regression of clinical and pathological factors in the training dataset.  

Characteristics Univariate Multivariate 

OR (95% CI) P value OR (95% CI) β coefficient P value 

Age 0.959 (0.932–0.986) 0.004 0.957 (0.927–0.988) − 0.044 0.007 
Menopause 0.698 (0.366–1.330) 0.274    
Bilateral BC 1.344 (0.601–3.006) 0.471    
Previous BC 1.473 (0.626–3.466) 0.375    
Family History* 5.207 (2.910–9.318) <0.001 4.941 (2.670–9.143) 1.598 <0.001 
ER positive 0.730 (0.427–1.250) 0.252    
PR positive 0.792 (0.467–1.342) 0.386    
HER2 positive 0.335 (0.153–0.731) 0.006 0.280 (0.122–0.639) − 1.274 0.003 
Ki-67 ≥ 20% 5.130 (1.551–16.962) 0.007 4.609 (1.343–15.831) 1.528 0.015 
TNBC 1.738 (0.962–3.139) 0.067    

BC: breast cancer; ER: oestrogen receptor; PR: progesterone receptor; HER2: human epidermal growth factor receptor 2; TNBC: triple-negative breast 
cancer. 

* Family history of BRCA1/2-related malignancy, including breast, ovarian, pancreatic and prostate cancer. 
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or the validation dataset (p = 0.820) (Table 5). The AUCs of the nomogram model were significantly higher than those of the clinical 
model in both the training (0.804 vs 0.768, p = 0.041) and the validation datasets (0.811 vs 0.723, p = 0.007) (Table 5), indicating 
improved diagnostic efficiency brought by radiomics features. 

To further evaluate the performance of the nomogram model, the calibration curves were drawn and the predicted BRCA1/2 status 
closely approximated the truth in both datasets (Fig. 6B). The decision curve analysis (DCA) curves also showed that the inclusion of 
radiomics features enhanced the clinical benefits for patients (Fig. 6C). The sensitivity, specificity, accuracy, PPVs, and NPVs of the 
above-mentioned models were also summarized in Table 5. The nomogram model achieved NPVs of 0.93 and sensitivity of 0.80 in both 
datasets. 

4. Discussion 

BRCA1/2 status is a key to personalized therapy for invasive breast cancer patients [27]. This study aims to identify BRCA1/2 
mutation in invasive breast cancer cases by using both ultrasound (US) images and clinicopathological information. The main findings 
were as follows: (1) Ten US radiomics features of breast cancer lesions were found to be associated with BRCA1/2 status. (2) A 
nomogram model combining a radiomics score and four clinicopathological factors showed significant predictive power for 
BRCA1/2-mutated cases with AUCs of 0.80 and NPVs of 0.93 in the datasets. 

Traditional imaging characteristics were found to have limited association with BRCA1/2 mutation status in breast cancer patients. 
Some studies reported that BRCA1/2-mutated patients were prone to have lower levels of breast parenchymal enhancement in MRI 
[28,29], while different opinions existed that no significant differences were shown in either morphological or kinetic features 

Fig. 3. Figures of logistic LASSO regression. (A) Cross-validation plot for the penalty term. (B) LASSO path plot of the model in the training dataset. 
(C) A non-zero coefficient profile plot of the ten selected radiomics features. 
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between MRI data of BRCA1/2 carriers and non-carriers [30]. For breast US images, multiple studies demonstrated no significant 
differences in tumor size, orientation, shape, margin, echo pattern, and posterior features according to BRCA1/2 status, whether in 
TNBC patients or unselected breast cancer patients [31–33]. 

Radiomics analysis has shown its potential in identifying tumor characteristics at the genetic level. Previous studies mainly focused 
on radiomics features of breast MR, which were found to be associated with gene mutations, e.g., HER-2, TP53, PI3K, to different 
degrees [34–37]. Vasileiou and colleagues [38] utilized 41 breast MRI data to construct a radiomics model for predicting BRCA1/2 
mutation and achieved an AUC of 0.865. However, the small sample size indicated inevitable overfitting and relatively low credibility. 

Fig. 4. Pearson correlation coefficient heatmap of ten selected radiomics features for predicting gBRCA1/2 mutation. The shade of the color 
represents the correlation degree. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of 
this article.) 

Fig. 5. The nomogram model combining a radiomics score and four clinical factors.  
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Recently, a small number of studies have indicated that US radiomics is a useful tool to predict gene mutation in tumors. Wang and 
colleagues [39] utilized US radiomics features of 138 papillary thyroid cancer to predict BRAFV600E mutation and achieved an AUC of 
0.938. However, similar studies that included gray-scale images alone yielded limited AUCs of 0.651–0.685 [40,41]. For breast cancer, 

Fig. 6. The performance of the clinical, the radiomics and the nomogram models. (A) Receiver operating characteristic (ROC) curves in the training 
(left) and the validation datasets (right). (B) Calibration curves of the nomogram model in the training (left) and the validation datasets (right). (C) 
The decision curve analysis (DCA) figure of the three models in the whole cohort. 
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in a study utilizing gray-scale US images of 312 cases to predict PIK3CA mutation, several machine learning and deep learning models 
were constructed and showed relatively strong predictive power (AUC 0.741–0.775) [42]. 

In the present study, US radiomics features demonstrated favorable discrimination of BRCA1/2 mutation. The radiomics model 
based on 10 features significantly elevated the performance of the nomogram model in both datasets, indicating that US radiomic 
analysis could provide a new perspective and act as an effective supplement to clinical information. Among the 10 features, six were 
obtained from the wavelet transform, which provided multi-resolution time/spatial-frequency analysis for texture of the lesions [25]. 
Half of the features were higher-order features, including 2 GLSZM, 2 GLCM and 1 NGTDM features, which evaluate the relationships 
between multiple pixels and demonstrate the characteristic patterns of gray-level distribution. Four features were first-order features 
describing simple pixel intensity characteristics. Only one shape feature, “original_shape2D_Elongation”, was included in the radiomics 
model, which indicated that a less eccentric shape may be associated with non-BRCA1/2-mutated lesions. 

To be noted, with negative predictive values (NPVs) higher than 0.93 in this study, the nomogram model has great potential in 
avoiding unnecessary gene tests in clinical practice. When patients with breast cancer were considered as low-risk for BRCA1/2 
mutation by the nomogram model, choosing not to take genetic testing might bring more benefits, e.g., reducing medical costs and 
mental stress. Notably, a BRCA1/2 mutation rate of about 20% was shown in this cohort, higher than the previously reported rate of 
cohorts that met the NCCN criteria (3.2%–12.0%) [43], which might be explained by the high proportion of positive family history 
(20.7%, 93/449) in this study. The relatively balanced ratio fortunately created an ideal condition for model construction. However, 
given that BRCA1/2 mutation rate in unselected breast cancer patients was merely 3%–5% [3,4], the nomogram model needs further 
validation or improvement in cohorts with lower mutation rates. 

Another interesting finding is that Ki-67 level was firstly described as an independent predictor of BRCA1/2 mutation (OR 4.609, p 
= 0.015) in breast cancer patients in this study. Although Ki-67 was not mentioned in the NCCN criteria [12] and often neglected in 
BRCA1/2-related studies, higher Ki-67 levels in BRCA1/2-mutated breast cancer patients have been reported in multiple studies [29, 
44–46]. 

Despite several promising findings, the present study still has some limitations. Firstly, despite a relatively large sample size, the 
retrospective nature and single-center source inevitably brought selection bias. Multicenter studies would be desirable in the future. 
Secondly, the images were acquired from multiple US systems and under different acquisition conditions. In this case, radiomics 
predictors might be more robust, but radiomics analysis became much more challenging. Another limitation of this study is that only 
one gray-scale US image of the largest longitudinal plane of each lesion was involved, which might not completely reflect the het
erogeneous characteristics of breast cancer. For future research, multi-modal US images such as shear-wave elastography and multiple 
planes of the lesions might be taken into consideration and help achieve better performance. 

5. Conclusion 

This study constructed and validated a nomogram model combining clinical factors and US-based radiomics features to predict 
BRCA1/2 mutation in patients with invasive breast cancer. The nomogram model demonstrated favorable performance and may 
reduce underdiagnosis of BRCA1/2 mutated cases and avoid unnecessary gene tests in clinical practice. However, future prospective 
multicenter studies are required for further validation or improvement. 

Table 4 
Multivariate logistic regression analysis of clinical factors and the radiomics score.  

Characteristics OR (95% CI) β coefficient P value 

Age 0.957 (0.926–0.989) − 0.044 0.008 
Family History* 4.336 (2.270–8.281) 1.598 <0.001 
HER2 positive 0.272 (0.117–0.634) − 1.274 0.003 
Ki-67 ≥ 20% 4.609 (1.343–15.831) 1.528 0.016 
Radiomics score 1.666 (1.302–2.154) 0.511 <0.001 

HER2: human epidermal growth factor receptor 2. 
* Family history of BRCA1/2-related malignancy, including breast, ovarian, pancreatic and prostate cancer. 

Table 5 
Performance of Different Models in the Training and Validation Datasets of gBRCA1/2 Mutation.  

Dataset Model AUC (95% CI) ACC Se Sp PPV NPV 

Training Clinical 0.768 (0.704–0.835) 0.764 0.671 0.788 0.448 0.903 
Radiomics 0.712 (0.647–0.776)* 0.688 0.700 0.685 0.363 0.899 
Nomogram 0.804 (0.748–0.861)† 0.732 0.800 0.714 0.418 0.933 

Validation Clinical 0.723 (0.625–0.828) 0.626 0.600 0.658 0.273 0.837 
Radiomics 0.705 (0.597–0.808)* 0.639 0.633 0.641 0.311 0.872 
Nomogram 0.811 (0.724–0.894)† 0.721 0.800 0.701 0.407 0.932 

ACC: accuracy; Sp: specificity; Se: sensitivity; PPV: positive predictive value; NPV: negative predictive value. 
* , p > 0.05 in DeLong’s test, compared to the clinical model. 
† , p < 0.05 in DeLong’s test, compared to the clinical model. 
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