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Abstract: During the last few decades, mucormycosis has emerged as one of the most common
fungal infections, following candidiasis and aspergillosis. The fungal order responsible for causing
mucormycosis is the Mucorales. The main hallmarks of this infection include the invasion of blood
vessels, infarction, thrombosis, and tissue necrosis, which are exhibited at the latest stages of the
infection. Therefore, the diagnosis is often delayed, and the rapid progression of the infection
severely endangers the life of people suffering from diabetes mellitus, hematological malignancies,
or organ transplantation. Given the fact that mortality rates for mucormycosis range from 40 to
80%, early diagnosis and novel therapeutic strategies are urgently needed to battle the infection.
However, compared to other fungal infections, little is known about the host immune response against
Mucorales and the influence of inflammatory processes on the resolution of the infection. Hence,
in this review, we summarized our current understanding of the interplay among pro-inflammatory
cytokines, chemokines, and the host-immune cells in response to mucoralean fungi, as well as their
potential use for immunotherapies.

Keywords: zygomycosis; phagocytosis; phagocytes; macrophages; monocytes; epi- and endothelium;
Mucoromycotina; Rhizopus; Rhizomucor; Mucor; Lichtheimia; innate immune system

1. Introduction

The life-threatening infection mucormycosis is currently the third most common invasive fungal
infection [1,2]. Most of the incidences occur in patients with diabetes mellitus, hematological
malignancies, organ transplantation, and in few cases also in immunocompetent individuals [1–4].
Mucormycosis is caused by fungi belonging to the order Mucorales, mainly by Rhizopus, Mucor,
and Lichtheimia (ex Absidia) species (Figure 1) [5,6]. This infection is characterized by a fast invasion
of blood vessels that further leads to infarction, thrombosis, and tissue necrosis. As a consequence,
most of the patients suffer devastating results, such as massive removal of infected tissue, loss of
organ functionality, and death in the worse scenario [7,8]. Contrary to candidiasis and invasive
aspergillosis, mucormycosis cases are normally diagnosed in advanced stages of the infection.
Furthermore, treatments against this infection are limited to liposomal amphotericin B, isavuconazole,
and posaconazole, which represents a disadvantage in the case of antifungal drug resistance [5,9].

Although mucormycosis has become an emerging fungal infection, compared to the most common
fungal invasive infections, aspergillosis and candidiasis, little is known about the host immune response
against Mucorales [4,10]. Hence, understanding the molecular mechanisms involved in the recognition
and immune response to Mucorales could provide novel insights for antifungal therapies and diagnosis.
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Therefore, in this review, we will summarize our current understanding of the molecular interaction
among host cells in response to mucoralean fungi. In particular, we will focus on the production of
cytokines and chemokines, which enables communication among leukocytes, and plays an essential
role in the regulation of different cellular processes during infection, such as phagocytes recruitment,
inflammation, antigen presentation, activation, and immune cell maturation [11]. Moreover, during this
review, we will emphasize three relevant aspects of the host response upon Mucoralean infections:
(i) the cytokine profile produced by immune cells in response to Mucorales. (ii) The influence of
cytokines and chemokines on the activation of adaptive immune cells. (iii) The potential usage of
cytokines as an adjuvant for immunotherapies during invasive mucormycosis. We will not address
virulence factors and specific cell-mediated response to Mucorales, since these topics have been
previously summarized [12,13].
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Figure 1. The most common pathogenic mucoralean fungi. Rhizopus oryzae (syn.: Rhizopus arrhizus), 
Mucor circinelloides, and Lichtheimia corymbifera are the most frequently reported causative agents of 
mucormycosis. The left panel depicts the colony morphologies of four-week-old R. oryzae and L. 
corymbifera cultivated on malt extract agar, as well as the colony morphology of one-week-old M. 
circinelloides cultivated on potato dextrose agar. The right panel represents the corresponding 
micromorphologies including sporangia (marked with arrows), in which the sporangiospores are 
produced. Sporangium of R. oryzae presents a dark-brown coloration, while M. circinelloides exhibits a 
yellow color and L. corymbifera a dark grey pigmentation. 

  

Figure 1. The most common pathogenic mucoralean fungi. Rhizopus oryzae (syn.: Rhizopus arrhizus),
Mucor circinelloides, and Lichtheimia corymbifera are the most frequently reported causative agents
of mucormycosis. The left panel depicts the colony morphologies of four-week-old R. oryzae and
L. corymbifera cultivated on malt extract agar, as well as the colony morphology of one-week-old
M. circinelloides cultivated on potato dextrose agar. The right panel represents the corresponding
micromorphologies including sporangia (marked with arrows), in which the sporangiospores are
produced. Sporangium of R. oryzae presents a dark-brown coloration, while M. circinelloides exhibits a
yellow color and L. corymbifera a dark grey pigmentation.

2. Inflammation in Antifungal Response

Inflammation has been traditionally defined according to its main features: redness, warmth,
pain, and swelling. However, one of the latest definition of inflammation includes its protective
role in response to invading pathogens or endogenous signals, resulting in the elimination of the
initial cause of injury, clearance, and tissue repair [14]. Furthermore, the activation and resolution
of the inflammatory response are strictly regulated to protect the organism from collateral damages.
In this regard, specialized cell-surface receptors known as pattern-recognition receptors (PRRs) activate
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inflammatory cascades upon the recognition of pathogen-associated molecular patterns (PAMPs) or
endogenous signals, such as damage-associated molecular patterns (DAMPs) [15]. Consequently,
activation of PRRs triggers the release of proinflammatory cytokines and chemokines—which are
secreted proteins that exert further pro-inflammatory cascades and recruit additional immune cells
to the site of infection [11]. In the case of an antifungal inflammatory-mediated response, PRRs of
the host-cells recognize conserved microbial structures known as microbial associated molecular
patterns (MAMPs), which are mainly found in the fungal cell-wall and comprise β-1,3-glucan, chitin,
mannans, mannoproteins, and unmethylated DNA [16]. Furthermore, fungal growth and invasion
by pathogenic fungi also induce local damage, promoting the release of DAMPs and amplifying the
inflammatory response [17].

3. Clinical Features of Inflammation in Mucormycosis

Angioinvasion, thrombosis, and tissue necrosis are the most common hallmarks of
mucormycosis [7]. However, inflammatory responses accompanied by these hallmarks have not been
widely characterized in clinical trials. A study by Ben-Ami et al. analyzed histopathologic features
in cancer patients diagnosed with pulmonary mucormycosis (PM). The authors found that 100%
of the patients with PM showed angioinvasion; on the contrary, only 30% of the patients exhibited
inflammatory infiltrates, such as aggregates of macrophages in the margin of necrotic tissues [18].
Furthermore, patients within the same cohort that underwent allogeneic hematopoietic stem cell
transplantation (HSCT) had more inflammatory cell infiltration compared to non-HSCT patients [18].
Similarly, most of the mucormycosis incidences in patients with diabetes as primary disease exhibited
inflammatory infiltration of neutrophils, multinucleated giant cells, and phagocytes in the site of
infection, as well as tissue damage and necrosis [19–21]. Therefore, we postulate that the recruitment
of inflammatory cells during mucormycotic infections is likely dependent on pre-existing primary
diseases in the patients. Nevertheless, more studies are needed to understand the correlation among
these clinical observations.

4. Common Pro-Inflammatory Cytokines and Chemokines during Mucoralean Infection

During infection by diverse mucoralean species, leukocytes communicate with each other by
producing a wide range of cytokines and chemokines (Table 1). Interleukin-1 beta (IL-1β) has been
described to play an important role in response to pathogenic fungi [22,23]. This interleukin is involved
in the induction of other pro-inflammatory proteins, hematopoiesis, differentiation of TH17 cells,
and development of IL-10 [11]. The tumor necrosis factor α (TNF-α) mediates the host-apoptosis and
inflammation, where it has a dual role as an activator and immunosuppressor of the inflammatory
response [24]. Another common interleukin is IL-6, which mediates trafficking of leukocytes,
induces the production of acute-phase proteins, promotes T-cell proliferation, B-cell differentiation,
survival, and plasma cell production of IgG, IgA, and IgM [25]. Similarly, the interleukin IL-12
promotes the development and maintenance of Th1 cells, the activation of natural killer (NK) cells,
and the maturation of dendritic cells (DCs) [11]. IL-12 also controls the production of interferon-γ
(IFN-γ), which is a major product of Th1 cells and induces antiviral responses, cellular growth,
apoptosis, leukocyte trafficking, and activation of macrophages [26]. Furthermore, an effective
immune response requires the recruitment of leukocytes to the side of infection by chemoattractant
proteins, such as interleukin-8 (IL-8), which mediates the recruitment of neutrophils, NK cells,
T cells, basophils, and eosinophils [27]. Meanwhile, the monocyte chemoattractant protein-1
(MCP-1/CCL2) regulates the trafficking of monocytes/macrophages to the infected tissue [28]. Finally,
the granulocyte-macrophage colony-stimulating factors (GM-CSF) enhance survival, activation,
and differentiation of monocyte/macrophages, neutrophils, and eosinophils [29].
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Table 1. Cytokine and chemokine production in response to pathogenic mucoralean species—an
overview of current studies.

Categories of the
Immune Response Cellular Type Cytokines/Chemokines Mucorales Species Reference

Innate immune response polymorphonuclear
neutrophils (PMNs)

IL-1β, TNF-α, IL-8
R. oryzae *,

R. microsporus,
L. corymbifera

[30,31]

IFN-γ and GM-CSF
enhanced IL-1β, TNF-α, IL-8

production

Rhizopus microsporus,
L. corymbifera [30]

Macrophages
mRNA of interleukin-1β

(il1b), tumor necrosis factor
α (tnfa) and il22

M. circinelloides [32]

Peripheral blood
mononuclear cells (PBMCs)

TNF-α, IL-1β, IL-6, IL-8,
MCP-1, and GM-CSF

R. arrhizus *
Cunninghamella bertholletiae,

M. circinelloides,
M. hiemalis,

L. corymbifera,
Rhizomucor pusillus,

R. microsporus

[33]

Epithelial cells Reduced CCL2 and CCL5
R. arrhizus *,

C. bertholletiae,
Rh. pusillus

[34]

Dendritic cells IL-1β, IL-6, IL-8, IL-12,
TNF-α, CCL2, and CCL5

R. arrhizus *,
C. bertholletiae,

Rh. pusillus
[34]

Natural killer (NK) cells

reduced levels of IFN-γ and
RANTES (CCL5) R. oryzae * [35]

IFN-γ

Lichtheimia ramosa,
L. corymbifera,

M. circinelloides,
R. microsporus

[36]

Adaptive immune response T cells

reduced IFN-γ production R. oryzae * [37]

IL-10, IFN-γ, and IL-4 in
hematological malignances Non-specified Mucorales [38]

IL-2/IL-7 induce expansion
of specific T cells R. oryzae * [37]

IL-13, IL-5, TNFα, and IL-10 R. oryzae * [37]

IFN-γ, TNF-α, IL-5, IL-1β,
and IL-17A R. arrhizus * [39]

IL-17A induced by IL-23 R. arrhizus [40]

IL-1β: interleukin-1 beta; TNF-α: tumor necrosis factor α; IFN-γ: interferon-γ; IL-8: interleukin-8; GM-CSF:
granulocyte-macrophage colony-stimulating factors. * R. oryzae is considered as a synonym of R. arrhizus [41].
However, both names have been cited according to the original references.

5. Cytokine Modulation by Polymorphonuclear Neutrophils (PMNs)

Polymorphonuclear neutrophils (PMNs) belong to the first line of defense in the innate immune
response and play an essential role in controlling fungal infections. These cells rapidly migrate
into the infected tissue, produce reactive oxygen species, and release neutrophil extracellular traps
(NETs) [42]. Furthermore, PMNs modulate the host immune response against R. oryzae, R. microsporus,
and L. corymbifera by producing IL-1β, TNF-α, and IL-8 [30,31]. Interestingly, PMNs treated with a
combination of IFN-γ and GM-CSF increased the production of TNF-α in response to R. microsporus
and L. corymbifera, while incubation with only IFN-γ suppressed PMNs’ ability to release IL-8 after
infection with these fungi [30]. The treatment with IFN-γ and GM-CSF did not only modulate the
cytokine production of PMNs but did also increase the percentages of hyphal damage to R. oryzae,
R. microsporus, and L. corymbifera [30]. The immune response mediated by PMNs differs among different
fungal species [31]. In this regard, a pioneering study revealed that PMN-mediated fungal activity
against R. arrhizus sporangiospores was significantly lower compared to A. fumigatus and C. albicans,
whereas G-CSF administration to healthy donors enhanced by fifteen-fold PMNs-mediated killing
of R. arrhizus [43]. Moreover, Andrianaki et al. showed that PMNs from immunocompetent mice
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have a lower phagocytic rate of R. oryzae compared to A. fumigatus [44]. Based on these observations,
we hypothesize that the effectivity of PMNs-mediated antifungal response could be influenced by the
cytokines profile in response to different fungal species.

6. Macrophages Inflammatory Response to Mucorales

Although tissue-resident macrophages are one of the first immune cells that recognize and clear
fungi, little is known about the inflammatory mechanisms driven by macrophages in response to
Mucorales [45]. In 2018, Lopez et al. developed an adult zebrafish model of Mucor circinelloides infection.
In this study, the authors revealed 857 differentially expressed genes after infection with this mucoralean
fungus. Several of these genes were involved in the regulation of immune responses; for example,
the mRNA levels of IL-1β, TNF-α, IL-22 were increased in response to germination and invasion by
M. circinelloides [32]. These observations were additionally confirmed in murine J774 macrophages.
Moreover, infection with M. circinelloides depleted neutrophils and macrophages in the kidney, the major
hematopoietic organ in zebrafish [32]. In addition, a recent study revealed the role of the heat-shock
protein A8 (Hspa8) in the recognition of L. corymbifera by murine alveolar macrophages [46]. In this
study, the authors showed by LC-MS/MS, colocalization analyses, and blocking antibodies, that Hspa8
plays a role in the recognition of L. corymbifera and opens new venues for therapeutic approaches
against this fungus [46].

Iron homeostasis has been closely related to the pathogenicity of different fungal species and the
modulation of the inflammatory response by macrophages [44,47,48].In addition to eradicating pathogens,
macrophages play an important role in iron-recycling from senescent erythrocytes, a process by which the
iron transporter ferroportin (Fpn1) is crucial [49]. The deletion of Fpn1 in murine macrophages led to the
accumulation of iron in vital organs and enhanced expression of the pro-inflammatory cytokines TNF-α
and IL-6 [49]. Interestingly, pro-inflammatory cytokines also affect the iron homeostasis of macrophages
by blocking the intracellular traffic of this metal, resulting in a host nutritional strategy to reduce its
availability for pathogens [48]. In this regard, Adrianaki et al. observed that iron starvation inside alveolar
macrophages inhibited R. oryzae growth despite its intracellular persistence [44]. Since iron homeostasis
and the inflammatory response are mutually regulated [48], more studies in this regard could provide a
better understanding of the host-pathogen nutritional interplay.

7. Immune Response to Mucorales by Peripheral Blood Mononuclear Cells

Peripheral blood mononuclear cells (PBMCs) are constituted by approximately 80% of T and B
cells, 10 % of natural killer cells, and 10 % of monocytes, and all of these leukocytes play an essential
role in both the innate and the adaptive immune response [50]. Although different leukocytes induce
a pro-inflammatory profile against pathogenic fungi, the amount and type of cytokine produced by
these cells may vary in response to different fungal species. For example, mucoralean fungi induce the
production of the pro-inflammatory cytokines TNF-α, IL-1β, IL-6, IL-8, MCP-1, and GM-CSF by PBMCs
after nine hours of co-incubation with inactivated R. arrhizus, C. bertholletiae, M. circinelloides, M. hiemalis,
L. corymbifera, Rh. pusillus, and R. microsporus spores and germ tubes. Interestingly, the production
of IL-1β in response to these Mucorales was significantly higher compared to A. fumigatus [33].
Furthermore, Warris et al. also described a similar pattern, where concentrations of IL-6 and TNF-α in
response to R. oryzae were significantly higher compared to A. fumigatus stimulus [51]. Many studies
on antifungal cytokines production were performed with PBMCs. However, when evaluating the
specificity of each cell type, the complexity of these set of leukocytes do not reflect their individual role in
the antifungal response. Nonetheless, the interaction among PBMCs during infection provides a closer
approximation to conditions found in vivo, where leukocytes have crosstalk via cytokine production.

8. Immune Response to Mucorales by Monocyte-Derived Dendritic Cells and Epithelial Cells

Dendritic cells (DCs) are known as “the bridge” between the innate immune response and the
adaptive immune response due to their ability to phagocyte pathogens and present their antigens to
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naive T cells, which results in further immunological memory to that specific pathogen [52]. Therefore,
DCs are thought to play an important role in the antifungal immune response. Wuster et al. in 2017
investigated the influence of pathogenic fungi on the maturation of DCs by evaluating the expression
of co-stimulatory molecules—cell surface molecules that modulate T cells’ activation [52]. The authors
found that after eighteen hours of co-culture with germ tubes and resting spores of R. arrhizus,
the co-stimulatory molecules CD83 and CD86 were significantly upregulated on monocyte-derived
dendritic cells (moDCs), while incubation with A. fumigatus spores did not induce a strong upregulation
of the co-stimulatory molecules [33]. These observations suggested that R. arrhizus promotes maturation
of moDCs, which might translate into a robust induction of adaptive immunity.

DCs reside on tissues, and thus, their response against infection is likely influenced by other
cells in the microenvironment. In this regard, Belic et al. developed an alveolar bilayer model to
study the interaction of epithelial cells and moDCs during the invasion by R. arrhizus, C. bertholleitiae,
and R. pusillus [34]. In this experimental setup, the authors cultivated human pulmonary endothelial
cells-HPAEC, epithelial cells-A549, and moDCs in a trans-well system. In the lower compartment,
they placed endothelial cells, and in the upper compartment, they cultivated epithelial cells, moDCs,
and the mucoralean fungi for thirty hours. After infection with the pathogenic fungi, they found that
the production of IL-1β, IL-6, IL-8, IL-12, TNF-α, CCL2, and CCL5 was significantly increased after the
addition of moDCs. Interestingly, epithelial cells also produced IL-6 and IL-8 in absence of moDCs
and independently of stimuli with the fungi. On the contrary, infected epithelial cells had reduced
production of the chemokines CCL2 and CCL5 in the absence of moDCs [34]. Altogether, the authors
showed the major role of moDCs on the inflammatory cytokine and chemokine secretion during an
in vitro infection model with pathogenic Mucorales.

9. Natural Killer (NK) Cells in Response to Mucorales

NK cells represent about 10–15% of PBMCs and exhibit direct antifungal activity by releasing
cytotoxic molecules such as perforin or granzyme B [53–55]. In addition, NK cells exert indirect
antifungal activity by modulating immune cells via the production of diverse cytokines, including IFN-γ,
TNF-α, GM-CSF, and CCL5, [53,54,56]. Particularly, NK cells can cause hyphal damage to R. oryzae
by releasing perforin but do not affect the viability of fungal resting sporangiospores [35]. However,
this pathogenic mucoralean species exhibits immunosuppressive effects on NK cells by reducing the
production levels of IFN-γ and the pro-inflammatory chemokine RANTES (CCL5) [35], which promotes
chemotaxis and migration of T cells and monocytes to the site of infection [57]. Furthermore,
NK cells pre-stimulated with IL-2 induced cell-mediated damage on clinical isolates of L. ramosa,
L. corymbifera, M. circinelloides, and R. microsporus, with L. corymbifera being among the most affected
Mucorales. In addition, all mucoralean clinical isolates induced similar levels of IFN-γ secretion by
NK cells [36]. Since different pathogenic mucoralean fungi induce similar and effective antifungal
responses by NK cells, elucidating the receptors on NK cells that recognize these fungi would
contribute to our understanding of the host-pathogen interaction and the potential development of
new therapeutic strategies.

10. Production of Cytokines by T Cells in Response to Mucorales

Immunological memory refers to the ability of our immune system to recognize and respond
to a previously encountered antigen. The adaptive immune response accomplishes this function
through specific cells known as T lymphocytes [58]. These cells also contribute to the maintenance,
self-tolerance, and homeostasis of the immune system [58]. T cells are classified into (1) cytotoxic T
cells (CD8+) and (2) helper T cells (CD4+) that differentiate into specific subsets including T helper
1 (Th1), Th2, Th17, and regulatory T cells (Treg) [59]. Each subset of Th cells possesses a specific
cytokine profile that modulates anti-fungal immunity [59,60]. In particular, Th1 releases IFN-γ, TNF-α,
and GM-CSF, which foster the activation of macrophages and neutrophils. Th2 modulates B cell
function via IL-4, IL-5, and IL-13, production. Treg releases the immunosuppressive cytokines
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IL-10 and TGF-β and Th17 produces IL-17—an important cytokine involved in the defense
against fungal infections [60,61]. The development of these subsets is mainly determined by the
cytokine prevailing in the microenvironment during the antigen-presentation [62]. During Th
polarization, the prevailing cytokine has an inhibitory effect on the development of other types
of Th phenotypes, which increases the immune response of each subset at a particular time and
condition [62]. For example, Th1 development is induced by the pro-inflammatory cytokine IL-12
released by antigen-presenting cells [60]. Previous studies have shown that mutations in the IL-12
signaling pathway exert a predisposition to fungal diseases, such as cryptococcosis, candidiasis,
paracoccidioidomycosis, and coccidioidomycosis [61]. Furthermore, IFN-γ produced by Th1 cells
protects against histoplasmosis, aspergillosis, cryptococcosis, and coccidioidomycosis. On the other
hand, the absence of this cytokine increased susceptibility to these fungal infections in mice and
humans. Moreover, adjunctive immunotherapy with IFN-γ augmented protection against the fungi [61].
In addition, Th17 has been well characterized in anti-fungal immunity: particularly against C. albicans.
Here, the cytokines (IL-1β, IL-6, IL-23) and TGF-β are required for priming Th17 differentiation,
expansion, and production of IFN-γ and IL-17 [62,63].

Regarding Th responses to mucormycosis, Chamilos et al. found that Rhizopus hyphae trigger
IL-23 production by DCs via Dectin-1 activation, which drives Th17 responses [40]. A more recent study
revealed that Card9−/−mice exhibited impaired local cytokine production (IL-17, IFN-γ, and TNF-α)
and Th1 cell response to R. arrhizus in a murine infection model [64]. Furthermore, stimulation with
spores and germ tubes of R. arrhizus induced the upregulation of the glycoprotein CD154 (an indicator
of immune cell activation) in CD4+ T cells of healthy donors [33]. Similarly, Mucorales-specific T cells
were detected in hematological patients with invasive mucormycosis (IM), whereas patients with
invasive infections other than IM did not have significant frequencies of specific-T cells [38]. Moreover,
in the patients with hematological malignancies, T cells produced a characteristic cytokine profile
with IL-10 secreted during the initial stages of the infection, followed by IFN-γ and IL-4 production
at later time points [38]. On the contrary, another study showed that T cells from healthy donors
have a low reactivity to R. oryzae and low IFN-γ production [37]. These discrepancies may rely on
the methods used for the evaluation of specific-T cell activity. While some authors measured CD154
expression as an indicator of T cell activation, the latter assessed cytokine secretion after exposure to
the fungi. Nevertheless, each approach may provide helpful information about different aspects of
T cell functionality, either during interaction with antigen-presenting cells or by regulating the immune
response via cytokine production.

T cells are particularly interesting due to their potential use for immunotherapy and diagnostics.
Recently, Castillo et al. found that the treatment of T cells with a combination of IL-2/IL-7 induce a
proper expansion of R. oryzae-specific T cells with a strong production of IL-13, IL-5, TNFα, and IL-10.
Therefore, the authors considered the expansion of rare Mucorales-specific T cells from healthy donors
to be used for potential adoptive immunotherapy [37]. Page et al. evaluated Mucorales-specific T cells
and cytokine profiles in healthy donors as biomarkers of environmental mold exposure. They found
higher CD154+/CD4+ T cell frequencies in a cohort of healthy donors that were highly exposed to
environmental molds, such as R. arrhizus, R. pusillus, and C. bertholletiae, compared to donors with none
or low exposure [39]. Moreover, the authors indicated a significant correlation between A. fumigatus
and Mucorales specific-T cell numbers and suggested a possible cross-reactivity of T cells against
multiple fungi. In this regard, cytokine profiles of highly exposed subjects showed more than two-fold
increased production of IFNγ, TNF-α, IL-5, IL-1β, and IL-17A by PBMCs in response to R arrhizus.
However, statistical significance was observed only for IL-5, contrary to the A. fumigatus stimulus
which also exhibited significant elevation of IL-13, and IL-17A [39].

11. B Cell Lymphocytes and Humoral Response against Mucorales

In contrast to T cells, B cells undergo clonal expansion and secrete specialized proteins known as
antibodies (immunoglobulins) upon activation [61]. These antibodies bind to antigens expressed on the
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surface of pathogenic microorganisms and exert anti-microbial activity via neutralization, opsonization,
complement activation, and antibody-dependent cellular cytotoxicity [61]. The importance of
immunoglobulins in antifungal immunity has been controversially discussed. While some pioneering
studies in the field claimed that antibodies do not play a major role in antifungal clearance,
more recent studies showed that immunoglobulins confer protection against Cr. neoformans, C. albicans,
Pneumocystis spp., and H. capsulatum [65–68]. Nevertheless, studies on the B cell-mediated antifungal
response are still scarce. The spore protein CotH3 binds to the GRP78 receptor in endothelial cells
and was reported to contribute in the humoral response against Mucorales [69]. Polyclonal antibodies
raised against peptides of CotH3 protected mice under neutropenia and diabetic ketoacidosis from
R. delemar, Rhizomucor, Apophysomyces, Lichtheimia, Cunninghamella, and M. circinelloides [69].

12. The Tissue Microenvironment and Its Role in the Inflammatory Response

Microenvironmental factors other than cytokines (e.g., oxygen, lipids, glucose, microbial products,
or salts) are involved in the differentiation of immune cells, which might impact their capacity to control
fungal infections [70–74]. For example, sodium chloride (NaCl) is usually found in peripheral tissues
and promotes differentiation of human and murine Th17 cells with anti-inflammatory properties [70,75].
The NaCl effect is infection-dependent as shown by the promotion of anti-inflammatory functions in
Staphylococcus aureus-specific Th17 cells but not in Candida-specific Th17 cells [75]. On the contrary,
this NaCl anti-inflammatory effect was reversed by the cytokine IL-1β. In the context of Mucorales stress
response to the host-microenvironment, R. arrhizus, and other Zygomycetes (former class Phycomycetes)
exhibited stress tolerance after exposure to high NaCl concentrations [76,77]. Therefore, we hypothesize
that a series of factors, such as NaCl-mediated anti-inflammatory responses, high osmotic tolerance
of Mucorales, and the disbalance of NaCl metabolism in people with risk to develop mucormycosis
(e.g., diabetes) may create an optimal microenvironment for cutaneous mucormycosis [78–80].
Nevertheless, more studies are needed to understand the contribution of sodium chloride in shaping
immune responses in the pathogenesis of the Mucorales.

13. Cytokines for Immunotherapies in the Battle against Mucormycosis

Currently, effective treatments against mucormycosis are based on four fundamental aspects:
early diagnosis, formulation of liposomal amphotericin B, surgical debridement of infected tissue,
and reversal of immunosuppression [9,81]. Hence, some authors suggested that certain cytokines
could contribute to reverse immunosuppressive conditions in patients with mucormycosis [30,81,82].
As an example, treatment with IFN-γ and GM-CSF increased TNF-α production by PMNs in response
to R. microsporus and L. corymbifera [30]. Furthermore, these cytokines increased the percentage
of PMN-mediated hyphal damage to R. oryzae, R. microsporus, and L. corymbifera [30]. Moreover,
IL-2 in combination with IL-7 induced expansion of R. oryzae-specific T cells in healthy donors [37].
These findings support initiatives for cytokine-mediated adoptive immunotherapy, which could
either boost different cellular-types of the innate immune response or promote the expansion of
Mucorales-specific T cells. However, the mechanisms by which these cytokines modulate the immune
response against Mucorales remain poorly understood. Therefore, more studies and clinical reports
in the context of inflammation and cytokine modulation are needed in order to weigh potential
benefits against possible complications, including hyperinflammation, anaphylaxis, or prolonged
anti-inflammatory responses that may potentially expose the host to secondary infections.

14. Future Perspectives

On balance, inflammation plays a crucial role in the resolution of fungal infections by alerting the
host-immune system of external threats and promoting the clearance of the pathogenic fungi [14,15].
As mentioned throughout this review, recognition of mucoralean fungi by diverse host immune cells
triggers inflammatory processes that are regulated by specific cytokines (Figure 2). Hence, we considered
it beneficial to our current knowledge to perform more studies on cytokines-mediated immune response
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against mucoralean fungi. Although our understanding of the host-inflammatory response against
Mucorales has increased during the last decades—especially in response to Rhizopus and Mucor
species—the molecular mechanisms involved in the production of pro-inflammatory cytokines and the
mucoralean-specific antigens triggering the inflammatory response remain unknown. Understanding
this piece of the puzzle could open up new perspectives for novel therapeutic strategies and diagnosis,
such as: boosting immune-cell function against mucoralean fungi, identifying specific cytokine-profiles
in response to Mucorales, improving adoptive cell transfer, or suppressing hyperinflammatory
processes during infection. However, all these strategies must be carefully evaluated in the context of
clinical manifestations and pre-existing conditions of patients suffering from mucormycosis—including
diabetes, neutropenia, solid organ transplants, and hematological malignancies—to reduce deleterious
effects in these patients.
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mucoralean fungal infection. After recognition of germling and spores of the most common pathogen
mucoralean fungi—R. oryzae (syn.: R. arrhizus), M. circinelloides, and L. corymbifera—immune cells
produce specific cytokines and chemokines that promote activation and expansion of other immune
cells, as well as additional recruitment of leukocytes from the bloodstream to the site of infection.
These cytokines regulate the inflammatory response by exerting further pro-inflammatory cascades and
promoting communication among the immune cells. As an example, GM-CSF and IFN-γ produced
by NK cells and T cells enhance the cytokine production of neutrophils, and their percentages of
hyphal damage to R. oryzae, and L. corymbifera. Meanwhile, IL-2 and Il-7 induce the expansion of
Mucorales-specific T cells and their production of IL-13, IL-5, TNFα, and IL-10. Moreover, DCs produce
IL-23 which promotes the release of IL-17A by T cells.
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