
EMBO
open

The coupling of synthesis and partitioning of
EBV’s plasmid replicon is revealed in live cells

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
distribution, andreproduction inanymedium,provided theoriginalauthorandsourcearecredited.This licensedoesnot
permit commercial exploitation or the creation of derivative works without specific permission.

Asuka Nanbo1, Arthur Sugden2

and Bill Sugden1,*
1McArdle Laboratory for Cancer Research, University of Wisconsin,
Madison, WI, USA and 2Astronomy Department, Wesleyan University,
Middletown, CT, USA

Epstein–Barr virus (EBV) is an exceptionally successful

human viral pathogen maintained as a licensed, plasmid

replicon in proliferating cells. We have measured the

distributions of EBV-derived plasmids in single live cells

throughout the cell cycle in the absence of selection and

confirmed the measured rates of duplication and partition-

ing computationally and experimentally. These analyses

have uncovered a striking, non-random partitioning for

this minimalist plasmid replicon and revealed additional

properties of it and its host cells: (1) 84% of the plasmids

duplicate during each S phase; (2) all duplicated plasmids

are spatially colocalized as pairs, a positioning that is

coupled to their non-random partitioning; (3) each clone

of cells requires a certain threshold number of plasmids

per cell for its optimal growth under selection; (4) defects

in plasmid synthesis and partitioning are balanced to yield

wide distributions of plasmids in clonal populations of

cells for which the plasmids provide a selective advantage.

These properties of its plasmid replicon underlie EBV’s

success as a human pathogen.
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Introduction

Multiple human tumor viruses maintain their genomes ex-

trachromosomally using host cell machinery for many of

their replicative functions (Chow and Broker, 2006; Fanning

and Pipas, 2006; Hammerschmidt and Sugden, 2006; Seeger

and Mason, 2006). Epstein–Barr Virus (EBV), which causes

both lymphomas and carcinomas, is an extreme example of

this cellular parasitism, minimally encoding two cis-acting

elements, a Dyad symmetry (DS) as an origin of DNA

synthesis, a Family of Repeats (FR) as a maintenance ele-

ment, and a trans-acting protein, EBV nuclear antigen

(EBNA1) that binds these DNA elements to foster their

activities (Hammerschmidt and Sugden, 2006). EBV depends

on its human host cell for all other functions required for

synthesis and partitioning of its plasmids. Studies of EBV

plasmids have helped not only to elucidate the mechanisms

of their synthesis, but also to understand the cellular activ-

ities on which they depend. Examination of EBV’s origin of

plasmid replication, oriP that consists of FR plus DS (Figure 1A),

has shown, for example, that DS binds EBNA1, and with its

particular spacing thereby recruits the origin replication com-

plex (ORC) (Bashaw and Yates, 2001; Chaudhuri et al, 2001;

Dhar et al, 2001; Schepers et al, 2001; Wang et al, 2006). oriP is

also a paradigm for a mammalian autonomously replicating

sequence (ARS), which can be efficiently introduced and main-

tained under selection in cells expressing EBNA1.

It is not clear, although, how EBV and plasmids derived

from it are maintained and partitioned in proliferating cells.

EBNA1 has been proposed to mediate these events by binding

FR site specifically and tethering the bound plasmids to

chromosomal sites (Marechal et al, 1999; Sears et al, 2003),

either by associating with specific cellular proteins (Kapoor

et al, 2005) or by binding AT-rich cellular DNA through its AT-

hook activity (Sears et al, 2004). This proposal would yield

random partitioning; a result not obviously compatible with

analyses of the rate at which cells lose oriP vectors following

removal of selection and become susceptible to being killed

on reapplication of the selective agent (Yates et al, 1984;

Kirchmaier and Sugden, 1995). We have resolved this appar-

ent contradiction by monitoring individual EBV plasmids

throughout the cell cycle.

DNA sequences can be detected in fixed cells by fluores-

cence in situ hybridization (FISH) and in live cells by their

binding fluorescent proteins. We have used both approaches,

modifying the latter to optimize its detection of EBV-derived

plasmids, without perturbing their replication. Robinett et al

(1996) used a derivative of the Lac repressor fused at its

amino terminus to GFP to detect 256 binding sites for the

repressor in the dihydrofolate reductase (DHFR) locus with or

without its amplification. This derivative, unlike the wild-

type repressor, binds DNA in the presence of the inducer,

isopropyl-1-thio-b-D-galactopyranoside (IPTG). This property

posed a problem in our studies, because long-term occupancy

of 264 sites on EBV plasmids selects for their integration into

host DNA (J Komano and B Sugden, unpublished findings).

We therefore constructed and used wild-type Lac repressor

fused at its carboxyl terminus to a tandem dimer of RFP

(Campbell et al, 2002) and a nuclear localization signal

(NLS), and carried cells in the presence of IPTG to prevent

binding of the repressor except when plasmids were visua-

lized. One earlier study visualized EBV-derived plasmids with
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the GFP-Lac repressor fusion of Robinett et al (1996) before

the plasmids became established (Kanda et al, 2001). EBV

plasmids are lost at apparent rates of X25% per cell genera-

tion for the first 2 weeks following their introduction into

cells, after which they are established and lost at apparent

rates of 3–5% per cell generation (Leight and Sugden, 2001).

We consequently monitored EBV-derived plasmids in cells

after their establishment in order to measure their dynamics

at a steady state.

Clones of HeLa cells harboring on average two to four

copies of EBV-derived plasmids were examined for their

individual numbers of plasmids in the absence of selection

throughout the cell cycle. These analyses indicated that 84%

of all plasmids were duplicated in S phase, and all of these by

the end of S phase appeared as colocalized pairs with signal

intensities close to two-fold those of the unduplicated plas-

mids. This colocalization of newly synthesized sister plas-

mids is without precedent in mammalian cells. A total of 88%

of these colocalized pairs partitioned faithfully, separating at

anaphase; 12% segregated to only a single daughter cell. The

16% of plasmids that failed to be duplicated segregated

randomly, and less than 0.3% of all plasmids detected in

G2 failed to being detected in daughter cells following mito-

sis. These experimentally determined rates were used in

computer simulations to predict the evolution of plasmids

in cells over time. The distribution of plasmids in a starting

population of HeLa cells with an EBV-derived plasmid and in

293 cells with intact EBV were determined, selection re-

moved, and the distributions again measured after 10 and

25 cell generations. These measured distributions were con-

gruent with those predicted by the computer simulations,

validating the experimentally determined rates of synthesis

and partitioning of the plasmids.

The measurements of EBV plasmids were extended to

cells under selection. The distribution of genomic EBV in

clones of EBV-immortalized B-cells was measured by FISH.

These measurements revealed that selection for EBV

plasmids yields cells with widely varying numbers of

plasmids, but that there is a heritable, mean optimum for a

given number for each clone. The measured distributions of

plasmids in cells under selection have also been modeled

with computer simulations. These combined analyses sup-

port a model that reflects the population dynamics of EBV

plasmids in proliferating cells. EBV has evolved its replication

with minimal viral contributions to balance the gain and loss

of its genome in cells to which it provides a selective

advantage.

Results

Measurements of EBV-derived plasmids in HeLa cells

in the absence of selection

We followed the fate of individual EBV plasmids in prolifer-

ating cells in order to elucidate their synthesis and partition-

ing. To do so we first developed and characterized EBV-

derived plasmids that can be detected visually in live cells.

An EBV-derived plasmid (pLON-33K) containing oriP, 264

copies in tandem of Lac operator (LacO), and a neomycin-

resistance gene (Figure 1A) was introduced into and estab-

lished in clones of HeLa cells stably expressing EBNA1

Figure 1 Visualization of EBV-derived plasmids in live cells. (A) A map of an EBV-derived plasmid (pLON-33K). pLON-33K contains oriP, 264
copies of LacO, and a neomycin-resistance gene (neoR). OriP consists of two functional elements, a family of repeats (FR), and a Dyad
Symmetry (DS), which contain 20 and 4 EBNA1-binding sites, respectively. (B) Two independent HeLa-EBNA1 clones carrying on average 3–4
copies of pLON-33K plasmids per cell (clones A and B) were isolated. The distributions of the viral plasmids in these clones were measured
after treatment with aphidicolin, either by FISH (gray bars) or by live-cell imaging (blue bars). The average copy numbers of EBV plasmids with
their standard deviations are shown. The distributions of the plasmids in the cell populations measured by the two assays are overlapping, thus
confirming the utility of the live-cell assay.
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(HeLa-EBNA1). These clones were infected with a retroviral

vector expressing wild-type Lac repressor fused to a tandem

dimer red fluorescent protein, tdimer2(12) (wtLacI-tdRFP)

and an NLS. Different cells expressed different levels of the

fusion protein in their nuclei, producing varied levels of a

diffuse background. Plasmids were detected as individual

dots by their binding of the fluorescent derivative of the

Lac repressor, and confirmed as such by their detection in

parallel by FISH. Two individual clones (clone A and B)

carrying three to four copies of plasmids on average were

isolated and used for further experiments. We confirmed that

the EBV-derived DNAs in these clones were maintained

extrachromosomally dependent upon EBNA1 by Southern

blot analysis, by their loss in the absence of selection, and

by their replication being inhibited by a dominant-negative

derivative of EBNA1 (Supplementary Figures 1A and B). The

distributions of the established plasmids in these two cell

clones were measured by visualization with wtLacI-tdRFP

and by FISH after aphidicolin treatment. Aphidicolin inhibits

the replicative DNA polymerases and thereby blocks cells in S

phase. Importantly, the distributions of the plasmids in these

clones determined by these two different assays ranged from

0 to 30 plasmids per cell and were indistinguishable, validat-

ing this visualization of EBV plasmids as a means of enumer-

ating them (Figure 1B). We assayed the number, stability, and

distribution of plasmids over time under all the conditions

used to visualize them. The presence or absence of IPTG for

different times in S, G2/M, or both phases, as well as a

double-aphidicolin block had no detectable effect on the

maintenance of plasmids or their average numbers per cell

(Supplementary Figures 2A, B and C).

Measurement of the distribution of EBV plasmids from

G2 through mitosis

To characterize the partitioning of an EBV plasmid (pLON-

33K) during mitosis in detail, distributions of the plasmids

were monitored before and after mitosis in live cells. HeLa-

EBNA1 clones carrying the plasmids were synchronized by

double-aphidicolin or double-thymidine block in the presence

of IPTG and G418. These two treatments efficiently blocked

cells at the beginning of S phase. After removal of IPTG and

the G418, the cells were released from the second synchro-

nization, incubated, and analyzed twice during 12 h, follow-

ing S phase at 9 h after release from the block and 3 h later

following mitosis (Figure 2A). Only healthy cells as judged by

their successfully completing mitosis and having intact per-

ipheries without blebs were studied. The distributions of 370

plasmids in 106 mitoses (1–13 plasmids/cell in G2) were

characterized by the measurements of the number of dots

and the average fluorescent intensities per pixel of the

individual dots following S phase and after the subsequent

mitosis (Figure 2B). Of the 370 plasmids examined, 310

appeared in G2 as colocalized pairs (Table I). These 310

colocalized plasmids thus appeared as 155 single signals in

G2, which following mitosis yielded 310 signals with inten-

sities close to one-half of that measured in the preceding G2

phase. The remaining 60 plasmids appeared in both G2 and

following mitosis as single signals whose intensities de-

creased only slightly, presumably as a result of photobleach-

ing. Seven of these single plasmids in G2 were the only

plasmids in the cell, and were passed onto a single daughter

cell. Of the 155 pairs colocalized in G2, 130 (88%) partitioned

equally to daughter cells following mitosis; 19 partitioned to a

single daughter cell yielding two signals in these cells (the

daughter cells receiving these pairs are denoted with asterisks

in Table I); and the partitioning of six could not be deter-

mined. The 53 single plasmids accompanying one or more

colocalized pairs in G2 partitioned into daughter cells inde-

pendently of those pairs. For example, 14 cells in G2 had one

colocalized pair and one single plasmid. Following mitosis 13

of the resulting pairs of daughter cells had 1 and 2 plasmids,

and one pair of daughters had 3 and 0 plasmids. All of the 370

plasmids detected in G2 were found in cells following mitosis,

indicating that the rate of loss of EBV plasmids during mitosis

is less than 0.3%.

Spatial–temporal analysis of 12 colocalized pairs of plas-

mids during mitosis demonstrated that the plasmids asso-

ciated with condensed mitotic chromosomes as single signals

were segregated at the onset of anaphase, and these pairs

partitioned equally to daughter cells. The separated plasmids

were frequently localized on the sister chromosomes symme-

trically at the end of mitosis (Figure 2C).

Wild-type LacI forms a tetramer and can bind to two

LacO sites (Lewis, 2005). It is formally possible that the

colocalization of two sister plasmids in G2 reflects their

being linked by wtLacI. To test this possibility, we expressed

a derivative of wtLacI-tdRFP that can only dimerize and thus

bind only one LacO site. Cells were synchronized with

aphidicolin, released, and the distributions of 16 plasmids

were analyzed before and after mitosis. Of these 16 plasmids,

14 were detected as colocalized pairs (seven signals) in

G2, 12 partitioned equally to daughter cells; and two did

not (data not shown). The frequency of colocalization of

pairs of plasmids bound by a derivative of wtLacI-tdRFP

that can only dimerize was the same within experimental

error as when the plasmids were bound by the wild-type

repressor that can tetramerize (P¼ 0.54, Fisher’s one-sided

exact test), indicating that forming pairs of EBV plasmids

in G2 is independent of the repressor’s ability to form

tetramers.

Analysis of the distribution of EBV-derived plasmids

throughout the cell cycle

To measure the distributions of plasmids throughout the cell

cycle, cells were incubated for 24 h without an imposed

synchronization and sampled three times. Cells that rounded

up for mitosis yielded daughter cells that adhere and flatten at

the beginning of G1. The distribution of the plasmids in these

cells and the average fluorescent intensities of the pixels in

each dot were measured late in G1, late in S, and early in the

subsequent G1 (Figure 3A). The intensities were determined

for images from the single z-section having the most intense

signal measured without gain, and corrected for background

by subtracting the average signal of the surrounding pixels.

The intensities in each pixel were less than 6% of the

maximum of the 14 bit camera we used and thus in its linear

range.

A total of 26 of 31 plasmids duplicated in S phase,

colocalized as pairs in G2 phase, and partitioned equally

during mitosis. Five of the plasmids did not duplicate during

S phase, were maintained during G2/M phase, and distrib-

uted to one daughter cell. The ratio of the average fluorescent

intensities in the plasmids that were duplicated in S phase,

colocalized as pairs in G2 phase, and partitioned equally in M

Coupling of synthesis and partitioning of EBV
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phase, increased approximately 1.5-fold during S phase

(Figure 3B). On the other hand, the ratio of intensities of

the plasmids that failed to duplicate decreased slightly (0.8-

fold). These results indicate that 84% of plasmids duplicated

successfully, yielded colocalized sister molecules in G2 and

early M phase, and usually partitioned faithfully. A total of

16% of the plasmids fail to be synthesized in S phase. This

defect in synthesis is the only means by which EBV plasmids

are detectably lost from a population of proliferating cells;

missegregation, however, can contribute to a daughter cell’s

failure to acquire a plasmid.

None of these 26 colocalized pairs of sister plasmids

followed in this experiment missegregated. This level of

fidelity is not statistically different from that found in the

experiments (Table I) using imposed synchronies of 12%

missegregation (P¼ 0.08, Fisher’s exact test). That all 26

colocalized pairs of sister plasmids partitioned without syn-

chrony, faithfully, however, leads us to consider the notion

that the imposed synchrony may favor missegregation and

thus the 12% is likely an upper limit to this defective

partitioning.

Prediction of the distribution of EBV-derived plasmids

for multiple generations in the absence of selection by a

computer simulation and its experimental confirmation

We predicted the distributions of EBV plasmids for multiple

generations in the absence of selection by a computer-based

simulation. The distribution of plasmids in a cell clone

carried under selection and initially containing 2.072.1

copies of plasmids per cell on average was used as starting

point for the simulation. Each plasmid in each cell in G1 was

given an 84% chance of being duplicated; duplicated plas-

mids were given an 88% chance of being partitioned equally

to two daughter cells and a 12% chance of being partitioned
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Figure 2 Time-lapse analysis of EBV-derived plasmids in synchronized cells. (A) A scheme of the experiment to measure partitioning. HeLa-
EBNA-1 clones carrying viral plasmids were synchronized by double-aphidicolin or double-thymidine block in the presence of 10 mM IPTG and
600mg/ml G418. After removal of IPTG and G418, the cells were released from a second block and incubated for 9 h (S phase) and a subsequent
3 h (G2/M phase). The distributions of 370 plasmids in 106 mitoses (1B13 plasmids/cell in G2) were characterized by the measurement of the
number of dots and the average fluorescent intensities in individual dots in G2 and early in G1. Only cells judged as being healthy by their
successful completion of mitosis and having intact peripheries without blebs were studied. (B) Examples of the distributions of pLON-33K in
G2 and early in G1. The distributions of the viral plasmids in G2 and early in G1 are categorized into the following three types: (1) plasmids
were present as colocalized pairs in G2 and partitioned equally following mitosis; (2) plasmids were localized as single molecules in G2 and
partitioned randomly following mitosis; (3) plasmids were present as a colocalized pair in G2 and segregated to only one daughter cell. In these
examples, the measured intensities of each signal after correcting for the background are shown under the drawing of each cell to the right.
Bars, 10mm. The varied intensities of the backgrounds in the nuclei likely reflect different levels of expression of wtLacI-tdRFP in them.
(C) Spatial–temporal analysis of the segregation of pLON-33K during mitosis. The distribution of the plasmids at each stage of mitosis is shown.
Two pairs of colocalized plasmids were segregated at the onset of anaphase, and distributed equally to the daughter cells. Bar, 10 mm.
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to one daughter cell or the other; unduplicated plasmids were

partitioned randomly to either daughter cell. The program

was begun with approximately 100 cells having the measured

distributions in the analyzed clones and run to simulate 10

and 25 generations. Each run was repeated 40 times with the

same initial assumptions, and the 40 results were averaged.

We also measured experimentally the distributions of the

plasmids in the HeLa clone following removal of selection for

10 and 25 generations. The measured and predicted distribu-

tions of EBV plasmids are shown in Figure 4A and closely

parallel each other, indicating that the experimentally deter-

mined frequencies of duplication and partitioning of the

plasmids describe well their fate in proliferating cells in the

absence of selection.

Similar experiments were performed to test whether the

measurements made with pLON-33K in HeLa cells could be

extended to intact EBV plasmids in a different host cell, 293.

EBV confers a selective advantage on the B-cells it infects, but

not on established cells such as 293. Intact EBV plasmids can,

however, be maintained in established cells under selection if

they encode a drug resistance gene (Delecluse et al, 1998).

The distribution of full-length, genomic EBV plasmids encod-

ing resistance to hygromycin B in a clone of 293 cells was

measured with FISH, the hygromycin B removed, the cells

propagated, and the distributions of plasmids again deter-

mined after 10 and 25 cell doublings. In parallel, a computer-

based simulation was run, with the distribution of plasmids

determined by FISH before removal of the hygromycin B as

the starting point. The rates of duplication and partitioning of

plasmids measured in HeLa cells were also used in these

simulations. The results predicted by these simulations par-

alleled the measured distributions at 10 and 25 cell genera-

tions (Figure 4B), and indicate that the rates of synthesis and

partitioning measured for pLON-33K in HeLa-EBNA1 cells are

similar to those of intact EBV in 293 cells. When this program

was used in simulations with the same starting distribution of

EBV as in Figure 4B but with different, assumed rates for its

synthesis or partitioning, the predicted distributions differed

(Supplementary Figures 3A and B) from those measured

(Figure 4B). The sensitivity of the simulations to changes in

these rates demonstrates the robustness of this computational

approach.

The distribution of EBV plasmids in cells proliferating

under selection

We determined the distribution of EBV plasmids in the EBV-

transformed lymphoblastoid cell clone 721, which requires

EBV for its survival and proliferation (Kennedy et al, 2003).

The parental cell population (Kavathas et al, 1980), which

has been propagated for more than 100 generations, was

synchronized at G1/early S phase or M phase by treatment

with aphidicolin or nocodazole, respectively. The distribution

of EBV plasmids in the cell population was analyzed by FISH.

The numbers of the viral plasmids in the individual cells

varied widely in the population. The measurements of the

distribution of the viral plasmids are summarized in Figure 5.

The distribution was broad, with the mean number of

plasmids centered on 9.774.1 and 19.576.3 in aphidicolin-

or nocodazole-treated cells, respectively.

Four independent subclones were isolated from the parental

721-cell population by limiting dilution, propagated for 25

generations, and their distributions of viral plasmids deter-

mined by FISH. The distributions in all four subcloned popula-

tions were similarly broad, with the average number of

plasmids centered on 6.7–9.6 plasmids in aphidicolin-treated

cells, and 11.9–15.1 plasmids in nocodazole-treated cells

(Figure 5), indicating that the broad distribution of viral

genomes in 721 cells was generated within only 25 generations.

The constancy of these mean numbers of plasmids indicates

that this mean number of EBV genomes in 721 cells provides

this clone and its descendants an optimal selective advantage.

We modeled the behavior of EBV plasmids in 721 cells in

order to determine if the frequencies of plasmid duplication

Table I A summary of the distribution of 370 pLON-33K plasmids
observed from G2 through M phase, with a cartoon illustrating two
examples of the classification system used

Plasmid content of
cells in G2

Plasmid content of pairs of
daughter cells following mitosis

N cells with [P]
co-localized plasmid
pairs and (S) single

plasmids

N pairs of daughter cells where
one daughter has (i) and the other

(j) plasmids
N (i) (j)

N [P] (S)

1 [6] (1) - 1 (6) (7)
1 [5] (0) - 1 (5) (5)
2 [4] (0) - 2 (4) (4)
4 [3] (1) - 4 (3) (4)
4 [3] (0) - 2* (2) (4); 2 (3) (3)
2 [2] (2) - 1 (2) (4); 1 (3) (3)
8 [2] (1) - 3* (1) (4); 5 (2) (3)

18 [2] (0) - 2* (1) (3); 16 (2) (2)
2 [1] (3) - 2 (2) (3)
5 [1] (2) - 3 (1) (3); 2 (2) (2)

14 [1] (1) - 1* (0) (3); 13 (1) (2)
35 [1] (0) - 11* (0) (2); 24 (1) (1)
3 [0] (2) - 3 (1) (1)
7 [0] (1) - 7 (0) (1)

*Pairs of daughter cells with demonstrably unequally partitioned
plasmids derived from plasmids pairs co-localized in G2.

4[3](0)

Four cells with three co-localized plasmid
pairs (  ) and zero single plasmids (  )

Early G1G2

1(6)(7)

One pair of daughter cells where one
daughter has six single plasmids and

the other seven single plasmids

1[6](1)

One cell with six co-localized plasmid pairs
(  ) and one single plasmid (  )

2(2)(4); 2(3)(3)

Two pairs of daughter cells where one
daughter has two single plasmids and the
other four single plasmids and two pairs of

daughter cells where one daughter has three
single plasmids and the other has three

single plasmids

+

+

+

+

+

Early G1G2
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and faithful partitioning measured for EBV plasmids in the

absence of selection apply to those in 721 cells in which EBV

is required both for the survival and proliferation of these

cells. In order to model this behavior, it was necessary to

understand the relationship between the number of viral

genomes in a cell, and the selective advantage those genomes

provide it. Two experimental measurements were used to

define a cell’s dependency on an EBV-derived plasmid for its

survival. First, the rate of loss of plasmids from HeLa and 293

cells from which drug selection was removed was measured

directly to be 6.7% per generation (Table II). Second, in

related, historical experiments in which a selection was

removed and after time reapplied, the rate at which cells

lost sufficient EBV-derived plasmids to become sensitive to

being killed by reapplication of the selective agent has been

found to be 3–5% per generation (Yates et al, 1984;

Kirchmaier and Sugden, 1995). That these two rates differ

indicates that cells dependent on an EBV-derived plasmid lose

their selective advantage when their number of plasmids

drops below some non-zero, threshold number. Loss of

plasmids in cells above this threshold number would not

affect the selective advantage conferred on the cell. Because

cells dependent on EBV-derived plasmids have a broad dis-

tribution of plasmids per cell (Figure 5); more cells can lose

some plasmids per generation than succumb to the selective

disadvantage. These considerations allowed us to model the

behavior of EBV plasmids with our simulation, based on the

initial distribution of the number of EBV genomes in indivi-

dual cells of the 721 parental population. A simulation was

made with the rates for duplication and partitioning found for

pLON-33K in the HeLa clones. In this simulation the initial

conditions were for a single cell with a specified number of

plasmids. The simulation was repeated for the number of

times a cell with that given number of plasmids was found in

the measured parental population of parental 721 cells

(Figure 5), and repeated for all given numbers in that parental

population. These initial conditions thus mimic the cloning of

the parental 721 cells that yielded the four subpopulations.

An additional parameter was added to simulate a threshold

such that five plasmids per cell yielded 100% survival; cells

with four plasmids had an 80% chance of survival; the

chance for cells with three plasmids was 60%; with two

Figure 3 Time-lapse analysis of EBV-derived plasmids in unsynchronized cells. (A) A scheme of the experiment to follow plasmids throughout
the cell cycle is shown. After removal of selection HeLa-EBNA1, clones carrying pLON-33K early in G1 were incubated for 12 h (G1) in the
presence of 10mg/ml IPTG. After removal of IPTG, the cells were incubated for 9 h (S phase) and 3 h (G2/M phase). The distributions of 18
plasmids in 11 cells (1B2 plasmids/cell in G2) were characterized by the measurements of the number of dots and the average fluorescent
intensities in individual dots late in G1, late in S, and subsequently early in G1. (B) Time-lapse analysis of the average fluorescent intensities of
pLON-33K plasmids throughout cell cycle. Representative images of the following two types of the partitioning of the plasmid are shown: (1)
the plasmids synthesized in one S phase are colocalized and partitioned faithfully and (2) the plasmids that fail to be replicated in one S phase
can not be partitioned faithfully. The top row of images reflects the single z-stack with the most intense signal, from which the intensities were
measured and corrected for background. The second row of images reflects deconvolved signals, which are computationally derived and are an
indication of the size of the signal. The third row of images is derived by differential interference contrast (DIC) and illustrates the health of the
cells. The fourth row are cartoon images giving the average fluorescent intensities of the signals measured late in G1, late in S, and early in G1
after correction for their background is shown under the drawing of each cell. Bars, 10 mm.
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was 40%; with one was 20%; and with none was 0%. We

used this parameter of proportional survival because an

abrupt threshold with 0% survival yielded an unphysiologi-

cal distribution of no survivors beyond that threshold. We

selected this particular parameter because test simulations in

which the threshold for 100% survival was set either to 4 or 6

plasmids per cell, generated distributions with peak values

that were either less than or greater than that measured for

the average of the 721 subclones (Figure 5). The results of

the simulations were averaged over 40 trials and are shown

relative to the average of the distributions measured for

the four subclones of 721 cells grown for 25 generations

(Figure 5). The congruence of these measured and simulated

distributions is consistent with the rates measured for the

duplication and partitioning of EBV-derived plasmids in live

HeLa cells applying to EBV genomes in B-cells transformed

by EBV. This conclusion was being further substantiated by

testing the dependence of this simulation on the rate of

plasmid duplication of 84% per cell cycle, derived from

measurements of pLON-33K in HeLa-EBNA1 cells by arbitra-

rily substituting values of 74 and 94% for it, and running the

simulations again (as for intact EBV in 293 cells in

Supplementary Figure 3A). Decreasing or increasing the

rate of plasmid duplication used in the simulation shifted

the center of the predicted distributions to the lower or higher

values, respectively, than that using 84%, which does center

on the average of the measured distributions (Figure 5).

Discussion

EBV uses plasmid replication to maintain itself in proliferat-

ing cells. This plasmid replication underlies its pathogenicity

in cancers such as Burkitt’s lymphoma, where the viral

plasmids are present in the proliferating cells characteristic

of these diseases; but few viral genes are expressed (Rowe

et al, 1987; Hammerschmidt and Sugden, 2004). We have

analyzed the synthesis and partitioning of EBV plasmids in

order to shed light on the details of this viral plasmid

replicon.

One unexpected property of this replicon is the frequency

with which it fails to duplicate; 16% of EBV plasmids remain

unduplicated in each cell cycle. This frequency is initially

surprising, given that EBV’s origin of plasmid replication oriP

was identified by an ARS assay in mammalian cells, is a

licensed replicon, and is the most efficient mammalian

licensed ARS characterized yet (Sugden et al, 1985).

However, we have found that polymerizing a licensed repli-

cator, Rep*, which functions as does DS, but is less efficient,

increases Rep*’s frequency of duplication (Kirchmaier and

Sugden, 1998; Wang et al, 2006). There is thus no reason now

to expect a priori that DS of oriP is maximally efficient and is

always duplicated in each cell cycle.

A second fundamental property of EBV’s plasmid replicon

uncovered here is the colocalization of sister plasmids on

being synthesized, and that this positioning in space is
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Figure 4 Computer simulations predict the distributions of EBV-derived plasmids in proliferating cells in the absence of selection. (A) A clone
of HeLa-EBNA1 cells carrying pLON-33K was cultured after removing the selective agent, G418, for 25 generations. The distributions of the
plasmids in the cells before removing G418, day 0, and at day 10, and day 25 after its removal were determined by live-cell imaging (green
bars). The distributions of the plasmids in the cells were also predicted (red bars) by computer simulations in which the measured distribution
at day 0 was used as the starting point, and the rates of plasmid duplication and partitioning determined experimentally (Figures 2 and 3; and
Table I) were used to predict the distribution of the plasmids each cell generation. The computer simulations were repeated 40 times and
averaged to provide the smooth curves shown. (B) A clone of 293 cells carrying the intact EBV genome encoding resistance to hygromycin B
was cultured after removing the selective agent for 25 generations. The distributions of the plasmids in the cells before removing hygromycin B,
day 0, and at day 10, and day 25 after its removal was determined by FISH (green bars) and predicted (red bars) as described above. The
average number of plasmids per cell and its standard deviation are shown for each condition.
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coupled to their non-random partitioning. This colocalization

of newly synthesized sister plasmids has not been detected

before, probably because detection of established EBV plas-

mids has been carried out with FISH, which requires dena-

turation and spreading of DNA, conditions that would be

expected to dissociate the tethered complexes. For example,

approximately twice the number of EBV plasmids is detected

by FISH in clones of cells blocked with nocodazole as with

aphidicolin (Figure 5). Pairs of EBV plasmids are also fre-

quently found in mitosis to be symmetrically positioned on

sister chromatids, when detected by FISH (Supplementary

Figure 4) (Delecluse et al, 1993) or by binding tagged EBNA1

(Kanda et al, 2007). In 10 mitotic spreads, for example, 60%

of the EBV plasmids were detected as colocalized pairs and

97% of all plasmids were overlapped by chromosomal stain-

ing (examples shown in Supplementary Figure 4). These

measurements are consistent with EBV plasmids being asso-

ciated with sister chromatids and the spreading forces used to

separate mitotic chromosomes also acting to separate some of

the colocalized sister plasmids. This colocalization of sister

plasmids in conjunction with EBNA1’s ability to tether DNA

such as FR to which it binds site specifically to chromosomal

DNA leads to a plausible model for the mechanism of EBV’s

partitioning (Figure 6) as follows: (1) in G1, an EBV plasmid

is tethered to a chromosomal site probably directly by

EBNA1’s AT-hook activity. We favor this mechanism rather

than the alternative of indirect tethering by EBNA1’s binding

the cellular protein, EBP2, because derivatives of EBNA1 that

cannot bind EBP2 but have AT-hook activity behave as wild-

type EBNA1 in supporting replication. We have found that a

fusion of the cellular protein, high-mobility group A (HMGA)

1a, to EBNA1’s DNA-binding and dimerization domain,
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Figure 5 Computer simulations predict the distribution of EBV genomes in transformed B-cells. A clone of EBV-transformed B-cells, 721,
propagated for more than 100 generations, and four of its subclones propagated for approximately 25 generations were analyzed after being
blocked in S phase with aphidicolin or in M phase with nocodazole, for their distributions of EBV plasmids per cell by FISH. The average
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which deletes EBNA1’s binding site for EBP2 (Altmann et al,

2006), or a second derivative of EBNA1 that cannot bind

EBP2, 2XLR1 (Mackey and Sugden, 1999; Shire et al, 1999),

supports wild-type levels of plasmid synthesis and partition-

ing (Supplementary Figure 5). Both derivatives do have AT-

hook activity (Sears et al, 2004); (2) during S phase, the

chromosomal site and the tethered EBV undergo synthesis

synchronously by their spatial colocalization, placing them in

the same replication compartment (Sadoni et al, 2004;

Kitamura et al, 2006). This synchrony needs be only within

an hour or so, though; synthesis through FR is slow, leading it

to being scored as a ‘replication fork barrier’ that protracts its

own synthesis to be longer than that required to synthesize

160 000 bp of EBV unidirectionally (Gahn and Schildkraut,

1989); (3) newly synthesized EBV sister plasmids bind to the

same nearby sites on each sister chromatid, or to the original

site if it can accommodate them both. Our measurements

indicate that sister plasmids individually associate with sister

chromatids 88% of the time. Cohesin holds the sister chro-

matids together (Nasmyth, 2005) and we hypothesize indir-

ectly holds the tethered EBV plasmids together within the

resolution of fluorescence microscopy. EBV plasmids are

found in association with chromosomes early in prophase

and embedded in mitotic chromosomes detected by staining

for cohesin consistent with this hypothesis (Supplementary

Figures 4 and 6); (4) when the sister chromatids separate at

anaphase, the tethered EBV sister plasmids do so too.

The third fundamental property revealed in these studies

pertains both to EBV-derived plasmids and their host cells.

When these plasmids provide their host cell a selective

advantage, the number of plasmids in a cell that affords the

cell an optimal advantage is a clonally inherited trait. Four

subclones of an EBV-immortalized B-cell generate wide dis-

tributions of plasmids per cell, but each clonal population

retains a similar mean number of plasmids per cell (Figure 5).

This finding is supported by experiments in which the

average number of oriP plasmids per cell was determined

by nucleic acid hybridization, hygromycin B or G418, to

which the plasmids encoded resistance was removed for

20–30 cell generations, the drug was reapplied, resistant

subclones isolated, and the average number of plasmids

measured in them (Kirchmaier and Sugden, 1995). In these

experiments, subclones from five of six different parents had

within experimental error the same average number of

plasmids as did their parents. This property likely underlies

the variation observed in the average number of copies of

EBV between different cell lines (Sternas et al, 1990), and

provides a selection for a given mean number of plasmids per

cell in a clonal population of cells.

The fourth unexpected, fundamental property of EBV

plasmids identified here is that the defects in duplication of

these plasmids are approximately balanced by a defect in

their partitioning. In each generation, 16% of the plasmids

fail to be duplicated, leading to a net loss of 8% of the

plasmids from a population of cells. Each generation 12 of the

84% of duplicated plasmids partition unequally, leading to

approximately half of these daughter cells (5%) having more

plasmids than their parents. Clearly some daughter cells also

have fewer plasmids than their parents, and if they have

fewer plasmids than their threshold number, they will be at

such a selective disadvantage as to be lost from the popula-

tion. This rate of loss is 3–5% of the cells per generation,

while the remaining cells that retain sufficient plasmids can

be afforded selective advantages such as a fostering of their

survival and proliferation as, for example, in the case of

B-cells infected by EBV.

The rates of synthesis and partitioning of EBV-derived

plasmids are surprisingly efficient when compared with

those of derivatives of human chromosomes. These rates

for linear replicons engineered from the human X-chromo-

some are inversely proportional to their length (Spence et al,

2006). Derivatives of the human X-chromosome that are

fives times the length of EBV’s genome and 25 times that of

S

EBV

Prophase Anaphase

88%

+

12%

G1

12%
88%

G2/M

12%

Cohesin

Figure 6 A model for the licensed duplication and non-random
partitioning of EBV plasmids. In G1, EBV plasmids are tethered to
chromosomes by EBNA1 binding to FR of oriP and possibly to AT-
rich chromosomal sites by EBNA1’s AT-hook activity. Duplication of
a plasmid is approximately synchronous with that of the chromo-
somal site to which it is tethered, because the shared location brings
both to one replication compartment synchronously. Cohesin holds
the newly synthesized chromatids in close proximity so that on the
plasmid’s eventual release from FR following a ‘stalled fork pro-
gression’ through FR, in 88% of the cases the duplicated plasmids
bind to the duplicated sites on the adjacent sister chromatids. Their
close proximity means that their fluorescent detection yields one
single, but double-intensity, signal until they separate at anaphase.

Table II Measuring the loss of EBV plasmids in cells without
selection

A. Number of pLON-33K plasmids in HeLa cells over time
Clone Selection Day 0 Day 10 Day 25

A + 2.5 2.9 2.3
� 1.6 0.3

B + 2.0 3.5 2.9
� 1.5 0.74

B. Number of intact EBV plasmids in 293 cells over time
Selection Day 0 Day 10 Day 25

+ 9.7 9.2 9.9
� 5.5 1.7

EBV, Epstein–Barr virus.
For each of the three clones studied, an average of the three
measured numbers of plasmids per cell in the presence of selection
was used as the number present in cells at the time of removing
selection. The average loss of plasmids per day for the three clones
analyzed is 6.771.24%.
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pLON-33K are lost from human cells in culture at rates of 3–

4% per generation, and missegregate at rates up to 16% per

generation (ibid.). That EBV-derived plasmids have similar

rates and are so much smaller in length indicates that the

virus has evolved a particularly efficient mechanism to

persist in proliferating cells.

EBV has evolved a simple, flexible scheme to maintain

itself in a proliferating population of cells to which it provides

a selective advantage. EBV itself drives proliferation of

newly infected B-cells through its LMP1 protein (Kaye et al,

1993; Gires et al, 1997; Dirmeier et al, 2005); it sustains

frank Burkitt’s lymphomas by preventing apoptosis and

driving proliferation requiring its EBNA1 protein (Kennedy

et al, 2003). These selective advantages when coupled

to its mode of synthesis and partitioning, insure that EBV

is maintained in infected normal and malignant proliferating

B-cells.

Materials and methods

Plasmids, cell culture and transfection, and retrovirus infection are
described in the Supplementary data.

Fluorescent in situ hybridization
FISH analysis was performed based on the protocol of Lawrence
et al (1989), with some modifications. Briefly, 721 cells, HeLa-
EBNA1, and 293 clones carrying EBV plasmids were synchronized
by treatment with 15 mM aphidicolin (Sigma) or 100 ng/ml
nocodazole (Sigma) for 16 h. Cells were treated with 0.075 M KCl
for 20 min at 371C, fixed in methanol:acetic acid (3:1) for 30 min at
room temperature, and spread on the slides. Slides were treated
with 4� SSC (1� SSC: 0.15 M NaCl, 0.015 M sodium citrate)
containing 0.5% (v/v) Nonidet P-40 (Sigma) for 30 min at 371C,
dehydrated in a cold ethanol series (70, 80, 90%) for 2 min each, air
dried, and denatured in 70% formamide–2� SSC for 2 min at 721C.
Slides were dehydrated in a cold ethanol series and air dried.
Hybridization probes for detection of EBV plasmids were generated
by nick translation using biotin-11-dUTP (Roche). A 20-mg weight of
a probe was precipitated by ethanol in the presence of 6mg salmon
sperm DNA (Eppendorf) and 4mg human Cot-1 DNA (Invitrogen),
resuspended in CEP hybridization buffer (Vysis), and incubated for
10 min at 701C, for 5 min at 41C, and for 1 h at 371C. A hybridization
mix containing 5 ng probe was placed on each sample and
incubated overnight at 371C in a moist chamber. Slides were
washed in 2� SSC containing 50% formamide for 30 min at 501C
and in 2� SSC for 30 min at 501C. Hybridized probe was revealed
by incubation with 30 ml detection solution containing streptavidin
conjugated to Cy3 (Cytocell) for 20 min at 371C. Slides were washed
twice in 4� SSC containing 0.05% Triton X-100 (Sigma) for 5 min at
room temperature. The chromosomes were counterstained by a
mounting medium containing diamidino-2-phenilindole (DAPI)
(Vector). The images were acquired by an inverted fluorescence
microscope (Axiovert 200 M, Zeiss) equipped with a digital CCD
camera (Axiocam HRm, Zeiss) and a z-motor. Cy3 and DAPI were
visualized using specific individual filter sets for Texas-red and
DAPI. Images were collected by a � 63, 1.4 NA oil objective lens
(Plan Prochromaro, Zeiss) with 5–10 slices of z-stacks, with
exposures of 0.01 and 1 s to detect Cy3 and DAPI, respectively.
AxioVision software (Zeiss) was used for acquisition and computa-
tion of the images. For high-resolution images, captured raw images
were deconvolved with AxioVision software (Zeiss) using an
inverse filter algorithm. All images were digitally processed for
presentation with Adobe Photoshop.

Imaging EBV plasmids in live cells
HeLa-EBNA1 clones were grown in a 35-mm diameter glass-
bottomed Petri dish (MatTek). Cells were synchronized after
removal of G418 by treatment with 15 mM aphidicolin or 2 mM
thymidine for 16 h. They were washed twice in the complete
medium and grown in the absence of aphidicolin or thymidine for
8 h. They were treated again with 15 mM aphidicolin or 2 mM

thymidine for 16 h. After releasing cells from the second block, their
culture medium was replaced with phenol red-free DMEM and
covered with a layer of mineral oil (Sigma). Approximately 50% of
the cells re-entered the cell cycle after removing the second block.
The cells were incubated for 12 h (9 h for S phase, 3 h for G2/M
phase) in a temperature-controlled chamber, which was maintained
at 371C with a humidified atmosphere of 5% CO2 in air. Images
were collected in G2 and early in subsequent G1 to record the
partitioning of plasmids from G2 through M phase. Only those cells
that progressed through these phases of the cell cycle were
analyzed.

Cells in cytokinesis or early in G1 were incubated for 24 h in a
5% CO2-equilibrated chamber maintained at 36.5–371C on the
microscope stage to monitor the plasmids throughout a cell cycle.
Images were collected late in G1, late in S, and early in subsequent
G1. All images were acquired after first manually scanning the cell
for all signals, insuring that no two signals were on top of one
another in different focal planes, and then taking 10–15 optical
sections in 0.1-mm steps, spanning the signal with exposure times of
0.1 s using a filter set for Texas red. The intensities of the signals
were measured without added gain. The signal in each pixel did not
exceed 6% of the maximal level of the 14-bit AxioCam HRm
camera, and thus was in its linear range. The intensities in each
pixel for a signal (9–16 pixels) in the one section with the highest
signal intensity were measured and normalized by subtracting from
their average the average intensity of the surrounding pixels using
AxioVision software (Zeiss). All images were digitally processed for
presentation with Adobe Photoshop.

Time-course analysis of the distribution of pLON-33K
and genomic EBV
HeLa-EBNA1 clones carrying pLON-33K were cultured in the
absence or presence of selection for 25 generations. The distribu-
tions of the plasmids in 4100 cells were analyzed at generations 0,
10, and 25. IPTG was removed 2 h before the measurements. A
clone of 293 cells carrying genomic EBV DNA encoding resistance to
hygromycin B was cultured in the absence or presence of selection
for 25 generations, and analyzed at generations 0, 10, and 25.

Computer simulations
A program was written in C to permit flexible modeling of plasmid
synthesis and partitioning. The likelihood of each plasmid in each
cell to duplicate, and randomly to partition or not, can be varied in
the program; so can the dependence of each cell on its number of
plasmids for survival be varied. An experimentally measured
distribution of plasmids in cells is used as the starting point for a
simulation usually beginning with 100 cells. The program then
determines the fate of each plasmid, whether it duplicates and how
the plasmid and its potential sister plasmid partition, in each cell, in
each ensuing generation. In the simulations used here, the
populations were followed for 10 and 25 simulated generations
and the simulations were averaged over 40 trials to calculate mean
distributions. In order to limit the computational time, simulations
were run consecutively for no more than 14 generations, at which
time the fraction of cells with each number of plasmids was used to
calculate a representative population of 1000 cells and used to seed
the next generation. This adjustment in the size of the population
was made such that the final number of consecutive generations
was no smaller than five and no greater than 14. This program
can be found at http://mcardle.oncology.wisc.edu/sugden/
simulation.txt.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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