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The biomaterials’ success within the tissue engineering field is hinged on the

capability to regulate tissue and cell responses, comprising cellular adhesion, as

well as repair and immune processes’ induction. In an attempt to enhance and

fulfill these biomaterials’ functions, scholars have been inspired by nature; in this

regard, surface modification via coating the biomaterials with polydopamine is

one of the most successful inspirations endowing the biomaterials with surface

adhesive properties. By employing this approach, favorable results have been

achieved in various tissue engineering-related experiments, a significant one of

which is the more rapid cellular growth observed on the polydopamine-coated

substrates compared to the untreated ones; nonetheless, some considerations

regarding polydopamine-coated surfaces should be taken into account to

control the ultimate outcomes. In this mini-review, the importance of

coatings in the tissue engineering field, the different types of surfaces

requiring coatings, the significance of polydopamine coatings, critical factors

affecting the result of the coating procedure, and recent investigations

concerning applications of polydopamine-coated biomaterials in tissue

engineering are thoroughly discussed.
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1 Introduction

Material selection and other critical qualities of scaffolds, including possessing an

adhesive surface, biodegradability, biocompatibility, mechanical stability, etc., must be

meticulously considered so that the various tissues can be successfully regenerated (Zhang

et al., 2019; Ghorbani et al., 2020b). Concerning this subject, surface engineering of

OPEN ACCESS

EDITED BY

Behafarid Ghalandari,
Shanghai Jiao Tong University, China

REVIEWED BY

Arturo E. Aguilar-Rabiela,
Friedrich-Alexander Universität,
Germany
Xiaojun Zhou,
Donghua University, China

*CORRESPONDENCE

Dejian Li,
lidejian880820@163.com
Baoqing Yu,
doctorybq@163.com

†These authors have contributed equally
to this work and share second
authorship

SPECIALTY SECTION

This article was submitted
to Biomaterials,
a section of the journal
Frontiers in Bioengineering
and Biotechnology

RECEIVED 28 July 2022
ACCEPTED 17 August 2022
PUBLISHED 12 September 2022

CITATION

Sarkari S, Khajehmohammadi M,
Davari N, Li D and Yu B (2022), The
effects of process parameters on
polydopamine coatings employed in
tissue engineering applications.
Front. Bioeng. Biotechnol. 10:1005413.
doi: 10.3389/fbioe.2022.1005413

COPYRIGHT

© 2022 Sarkari, Khajehmohammadi,
Davari, Li and Yu. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Bioengineering and Biotechnology frontiersin.org01

TYPE Mini Review
PUBLISHED 12 September 2022
DOI 10.3389/fbioe.2022.1005413

https://www.frontiersin.org/articles/10.3389/fbioe.2022.1005413/full
https://www.frontiersin.org/articles/10.3389/fbioe.2022.1005413/full
https://www.frontiersin.org/articles/10.3389/fbioe.2022.1005413/full
https://www.frontiersin.org/articles/10.3389/fbioe.2022.1005413/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fbioe.2022.1005413&domain=pdf&date_stamp=2022-09-12
mailto:lidejian880820@163.com
mailto:doctorybq@163.com
https://doi.org/10.3389/fbioe.2022.1005413
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://doi.org/10.3389/fbioe.2022.1005413


biomaterials using various techniques is gaining increasing

prominence in tissue engineering (TE) applications, and

surface modification, as a popular surface engineering

strategy, is utilized to alter the microenvironment of cells and

transform the scaffolds’ surface into an adhesive one (Arab-

Ahmadi et al., 2021; Davari et al., 2022).

Compared to other coating substances, including proteins

(Gennadios, 2002), particular peptide sequences (Pagel and

Beck-Sickinger, 2017), ceramics (Montazerian et al., 2022),

and metals (Yin et al., 2021), polydopamine (PDA), a

melanin-like mussel-inspired coating polymer (Ghorbani

et al., 2022), possesses a variety of desirable properties, such

as outstanding adhesion features (Ghalandari et al., 2021;

Feinberg and Hanks, 2022), extraordinary hydrophilicity (Li

et al., 2018), biodegradability (Zhang and King, 2020),

uniform shape (Saeed et al., 2021), biocompatibility (Zeng

et al., 2020), and thermal stability (Yim et al., 2022).

Furthermore, its biological properties, including enhanced

cellular proliferation, improved bioactivity, free-radical

scavenging activities, metal ion chelating capacity, and anti-

bacterial capability, originate from its catecholamine and

hydroxyl functional groups (Yu et al., 2017; Ghorbani et al.,

2019b, 2019a; Deng et al., 2021). Notably, solvent selection is of

paramount importance for solution-based chemical reactions

associated with polymers like PDA. Water and ethanol have

been broadly employed among various solvents (Jiang et al.,

2014; Nieto et al., 2021). A self-assembled PDA layer can be

formed on the surfaces of a variety of materials, like metals,

ceramics, polymers, oxides, and semiconductors, when

soaked in a PDA’s weakly alkaline aqueous solution

(10 mM Tris-HCl, pH~8.5) without the addition of

sophisticated connecting agents (Kao et al., 2018; Yang

et al., 2019; Lee et al., 2020; Li et al., 2021b; Park et al.,

2021). Nonetheless, the volume ratio of water to alcohol

strongly influences the PDA spheres’ synthesis. It was

illustrated that neither did PDA microspheres form in the

pure ethanol nor had a perfect shape in the pure water; in

essence, when ethanol and water were mixed with a ratio of

30:70, formation happened in the best way possible (Yan

et al., 2013). Insufficient conductivity has ever been the major

weakness of PDA (Mei et al., 2020). Since the pros of PDA

outweigh its cons, various groups of scientists have modified

the biomaterials’ surfaces by employing PDA with the aim of

augmenting their surface performance. Therefore, within the

last couple of years, PDA has been in the spotlight, with

diverse applications in the field of biomedical engineering

(Lynge et al., 2011), including drug delivery (Huang et al.,

2018), implants (Jia et al., 2019), surface engineering (Yang

et al., 2015), cancer therapy (Abdollahi et al., 2022; Honmane

et al., 2022), TE (bone (Huang et al., 2016; Kaushik et al.,

2020), cartilage (Huang et al., 2021), muscle (Zhou et al.,

2021), skin (Yazdi et al., 2022), tendon (Lin et al., 2019), and

neuron (Qian et al., 2018; Yan et al., 2020)), and microfluidic

systems (Niculescu et al., 2021).

The process parameters of PDA considerably impact the

coating’s quality and characteristics; thus, the experimental

factors, such as coating time, temperature, pH, and DA’s

initial concentration, are properly adjusted so that a coating

layer with outstanding features can be formed (Ghorbani et al.,

2020c).

Within this paper, firstly, the coatings’ significance in the TE

field and various kinds of surfaces in need of coatings are

comprehensively reviewed. Afterward, the PDA coatings’

importance is exhaustively discussed. Ultimately, the

parameters that are regulated to improve the properties of

coatings and the employment of these interesting coatings in

TE by introducing relevant case studies are explained.

2 Polydopamine-coated surfaces

Synthetic polymers, such as polylactic-co-glycolic acid

(PLGA) (Ghorbani et al., 2020c), polyurethane (PU)

(Merceron et al., 2015), polycaprolactone (PCL) (Perez-

Puyana et al., 2021), polydimethylsiloxane (PDMS) (Cunniffe

et al., 2019), poly-L-lactic acid (PLA) (Jenkins and Little, 2019),

polyvinyl alcohol (PVA) (Rodríguez-Rodríguez et al., 2020),

polyhydroxyalkanoates (PHAs) (Aguilar-Rabiela et al., 2021;

Gregory et al., 2022), and polyamide (Razaviye et al., 2022)

are frequently utilized in the fabrication of different scaffolds

due to their superior characteristics, comprising customizable

degradation rate, excellent processability, great mechanical

properties, and wide in-vitro and in-vivo availability.

Nevertheless, synthetic polymers typically have poor cell

adhesion properties; consequently, combinations with natural

polymers or various modifications are common approaches to

tackle this obstacle (Terzopoulou et al., 2022). Besides, these

modifications are also applied to natural polymers, such as

chitosan (Bock et al., 2020), cellulose (Nishida and Koga,

2018), peptides (Ji and Parquette, 2020), etc., to enhance their

features.

Boosting biomaterials’ performance, modifying their

physicochemical properties, and broadening the applications

of them are possible by conducting the surface modification

procedure (Salatin et al., 2015). Considerable effort has been

dedicated to the substances’ surface modification via employing

various techniques, such as self-assembly monolayer (Kehr et al.,

2015), plasma surface modification (Ghorbani et al., 2020d), and

layer-by-layer assembly (Liu et al., 2016). Despite these

approaches’ multiple benefits, they suffer from some

drawbacks: limited chemical characterization, restricted shape

and dimension of the resultant substances, complicated

equipment, and complex synthesis processes (Liu et al., 2016).

As an alternative, a coating strategy based upon PDA, formed

Frontiers in Bioengineering and Biotechnology frontiersin.org02

Sarkari et al. 10.3389/fbioe.2022.1005413

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.1005413


through covalent polymerization and non-covalent self-assembly

(Hong et al., 2012), is widely employed.

The convoluted structure of PDA incorporates a mixture of

diverse oligomers formed as a result of dopamine (DA)

oxidation, including indole units with varying degrees of

oxidation, carboxylic acid and amino groups, imine units,

indolic/catecholic π-systems, quinone residues, phenol groups,

and open-chain DA molecules (Liu et al., 2014; Ghorbani et al.,

2019c). Of note, the functional groups in the PDA structure

(catechol, imine, and amine) are employed to reinforce the

interaction between the biomaterial and the tissue. What’s

more, within its irregular, cross-linked network with mixed

bonding configurations, radicals are located at quinone

residues (Du et al., 2017). Owing to the presence of a series of

constant π-electron free radicals, PDA is paramagnetic and

operates analogously to a radical trap (Kim et al., 2021b).

As a transitional surface, PDA enables the adhesion of other

materials to scaffolds without demanding pre-functionalization.

This phenomenon is mainly because of the quinone functional

groups that are: 1) electron-deficient and 2) capable of

participating in Schiff base reactions occurring on amines and

stimulating the Michael addition reactions with nucleophilic

groups, including amines and thiols (Rizzo and Kehr, 2021).

Notably, the PDA surfaces’ sensitivity towards the nucleophiles

relies on the catechol/quinone equilibrium; therefore, the

generated alkaline pH speeds up conjugation reactions (Batul

et al., 2017). Other functional groups within the structure or

generated by PDA serve pivotal roles; for instance, amine groups

are involved in displacing hydrated minerals on the surface as

well as bringing catechols closer to the surface to create strong

molecular interactions (Lee et al., 2019). Another example is the

hydroxyl and amine groups produced by PDA on the scaffolds

that can promptly release signals to promote integrin binding,

resulting in the increment of osteogenic activities (Ghorbani

et al., 2020c). The more binding functional groups on the surface,

the higher probability of the molecules and inorganic ions

loading, leading to the improvement of cellular attachment

(Richbourg et al., 2019).

3 Polydopamine coating’s key
process parameters in tissue
engineering applications

Brimming with outstanding features, PDA coatings have

been extensively employed in TE-related investigations. In this

regard, several experiments have achieved favorable outcomes

when utilizing this coating compared with the others (Sharma

et al., 2019; Kopeć et al., 2022). Within a novel study, scaffolds

were coated with PDA and gelatin to evaluate the anti-corrosion

property. The PDA-coated and gelatin-coated samples were

biocompatible and displayed corrosion current density (Icorr)

of 2.95 × 10–3 and 3.72 × 10–3 A
cm2 , respectively, indicating that the

PDA coating layer could delay the corrosive process (Zhou et al.,

2019).

For PDA polymerization on the surface of the

biomaterials, multiple factors should be considered to

achieve the desired outcomes in research cases. Among

these parameters, coating time, temperature, pH of Tris-

HCl, and initial DA concentration in the DA/Tris-HCl

buffer solution are discussed in the following. Table 1

presents these determining factors and their impacts upon

the formed PDA layer. Furthermore, Figure 1 illustrates the

outline briefly describing the case studies in terms of the

process parameters and their effects.

3.1 Coating time

The PDA coating process commonly occurs at room

temperature in pH 8.5 for 24 h with the initial concentration

of 2 mg
ml; in this regard, an investigation on the effects of PDA

coating upon PVA/PU-polyaniline matrix is an interesting

example in which the matrix was immersed into the DA

solution under normal mentioned conditions. Scholars

reported that the coating enhanced mechanical characteristics;

more specifically, the resultant scaffold’s tensile strength was

34.06 ± 1 MPa compared to the 29.51 ± 1.63 MPa strength shown

without coating. Besides, the surface modification with PDA

significantly improved the osseointegration and promoted the

adhesion and differentiation of rat bone marrow mesenchymal

stem cells (BMSCs), all of which were beneficial for bone TE

(Ghorbani et al., 2020a). Nonetheless, the coating time is one of

the main parameters influencing the produced PDA layer; in

essence, this factor exerts a direct impact on the thickness of

PDA. The more the coating time, the more PDA thickness (Li

et al., 2009). As an instance, Ou and co-workers (Ou et al., 2009)

coated modified silicon (Si) substrates with PDA and concluded

that with the prolonging of deposition time, the coating got

thicker, and the Icorr decreased from 247.73 A
cm2 in 2 h to

11.5.45 A
cm2 in 10 h. The impact of coating time was analyzed

in a research project to make phosphate glass fiber (PGF) suitable

for the PCL/PGF composites formation. Firstly, PGF was dipped

in the DA hydrochloride aqueous solution for varying periods

(30 min–24 h), followed by the formation of PCL/PGF scaffolds

utilizing the in-situ polymerization method. With increasing the

coating time, the PDA quantity on the fiber surface enhanced;

thus, when the time was set to 24 h, the PDA thickness

augmented to 46 nm in comparison with 18 nm after 6 h.

Furthermore, it was concluded that the combination of

annealing and coating processes could yield better results for

the bone TE applications compared to the sole coating procedure.

Regarding this matter, flexural strength and modulus of

annealed/coated, annealed/non-coated, and non-annealed

fibers retained at nearly 70–75%, less than 20%, and less than

10% of the day one characteristics (strength: 120 MPa and

Frontiers in Bioengineering and Biotechnology frontiersin.org03

Sarkari et al. 10.3389/fbioe.2022.1005413

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.1005413


modulus: 14 GPa) after 56 days, respectively. The achieved

features associated with annealed-coated fibers successfully

met the target for bone repair for the upper extremities at

least (Figure 2A) (Felfel et al., 2021).

Multiple studies have suggested the direct influence of

coating time on the PDA layer roughness (Ou et al., 2009;

Dang et al., 2015; Liu et al., 2020). Concerning this matter,

Kim and co-workers engineered high robust PDA-coated

polybenzimidazole membranes under different coating times

(5, 10, and 30 min). The atomic force microscope image of

the PDA layer illustrated that with increasing time, the

roughness enhanced from nearly 1 nm in 5 min to 4 nm in

30 min (Kim et al., 2021a).

As an intermediate layer, PDA coating has been employed in

various experiments. Recently, Zia et al. (Zia et al., 2021) used a

PDA layer between chitosan and porous PLA via applying

different polymerization times (1, 6, 12, 18, and 24 h). It was

observed that the PDA layer thickness increased with time; to

delineate, although some uncovered areas lacking the PDA layer

were found after 1 h, a layer with an acceptable thickness

appeared when polymerization continued for 6 h. Moreover,

the scaffold’s diameter and hydrophilicity were both enhanced

by time; to elucidate on, the diameter increased from 1.2 μm after

6 h to 1.8 μm after 24 h, and the water contact angle decreased

from 85° at 6 h to 70.6° at 24 h.

3.2 Temperature

The process temperature has been shown to improve

thickness, roughness, as well as polymerization rate and

shorten the polymerization time of the PDA layer. In an

investigation conducted by a group of researchers (Zhou et al.,

2014), it was illustrated that among various temperatures (25, 37,

and 60°C), 60°C and 300 r
min stirring could hasten the time of

polymerization (30 min) without triggering chemical changes in

the PDA layer compared to the 24-h normal approach.

Regarding the comparison between dynamic and static

conditions, PDA-coated surfaces prepared under the dynamic

condition (stirring) in the range of 1–8 h displayed some superior

features like higher thickness and lower contact angle compared

to the ones fabricated under the static condition during 24 h.

Furthermore, PDA coating endowed the scaffolds with favorable

cytocompatibility since cultivated MG-63 osteoblast cells were

highly viable.

Another effect of temperature is the increment of the PDA

layer’s thickness (Zain et al., 2015; Oymaci et al., 2020) and

roughness (Schaubroeck et al., 2015; Oymaci et al., 2020), which

was carefully assessed in a project. It was reported that the coating

thickness on several materials, such as Si/polyvinylidene fluoride

(PVDF), was augmented by raising the temperature; to be more

precise, thickness increased from nearly 20 nm at 20°C to 65 nm at

45°C. It is also noteworthy to mention that the modified surfaces’

water contact angle decreased with augmenting the reaction

temperature (from 63.9° at 20°C to 53.2° at 45°C). Regarding the

roughness, further tests indicated that the layer roughness increased

from 6.4 ± 0.9 nm (20°C) to 10.4 ± 1.6 nm (45°C) (Jiang et al., 2011).

Concerning the influence of temperature on the polymerization

rate, several studies have reported the rate enhancement with

temperature raising (Deng et al., 2018; Habibi Rad et al., 2018).

In a novel experiment in which PDA-coated Si surfaces were

fabricated, the mentioned effect was investigated within a

TABLE 1 PDA coating parameters and their effects on the formed PDA layer.

PDA coating
parameters

Thickness
increment

Thickness
reduction

Normal
value

Polymerization
rate
increase

Roughness
increment

Refs

Coating time ✓ - 24 h - ✓ Li et al. (2009); Ou et al. (2009); Dang et al.
(2015); Ghorbani et al. (2020a); Liu et al.
(2020); Kim et al. (2021a); Felfel et al.
(2021); Zia et al. (2021)

Temperature ✓ - Ambient
temperature

✓ ✓ Ou et al. (2009); Jiang et al. (2011); Proks
et al. (2013); Zhou et al. (2014);
Schaubroeck et al. (2015); Zain et al.
(2015); Deng et al. (2018); Habibi Rad
et al. (2018); Malollari et al. (2019);
Oymaci et al. (2020); Davidsen et al.
(2021)

pH of
Tris-
HCl

alkaline ✓ - 8.5 ✓ - Yang et al. (2014); Hong et al. (2016);
Dong et al. (2018); Hong et al. (2018);
Salomäki et al. (2018); Mei et al. (2021);
Gan et al. (2022); Szewczyk et al. (2022)

acidic - ✓ - - -

DA initial
concentration

✓ - 2 mg
ml ✓ ✓ Ball et al. (2012); Ding et al. (2014); Hong

et al. (2016); Dong et al. (2018); Oymaci
et al. (2020); Wu et al. (2020); Li et al.
(2021a); Wang et al. (2022)
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FIGURE 1
The effects of PDA process parameters on the produced PDA layer, which are investigated in various experiments throughout the years (T: time,
C: concentration, S: surface, Th: thickness, Temp: temperature, R: roughness, Au: aurum, Ti: titanium, Si: silicon, PU: polyurethane, PC:
polycarbonate, CS: coating speed, PVDF: polyvinylidene fluoride, GR: coating layer growth rate, SS 316L: stainless steel 316L) (Li et al., 2009; Ou et al.,
2009; Ball et al., 2012; Zain et al., 2015; Hong et al., 2016; Habibi Rad et al., 2018; Hong et al., 2018; Zhou et al., 2020; Szewczyk et al., 2022).
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temperature range of 25–35°C. They found that higher temperature

led to the accelerated rate; indeed, polymerization speed increased

from 1.8 nm
hr at 25°C to 2.2 nm

hr at 35°C (Ou et al., 2009).

Improving the coating stability can be achieved by the

coating’s thermal treatment. In essence, the thermal treatment

affects the number of quinone and amine groups at the PDA

surface (Proks et al., 2013; Malollari et al., 2019). Within an

intriguing study, titanium (Ti)/Si wafer samples were coated via

PDA; specifically, some were thermally treated by storing at

121°C for 24 h, while others were post-treated by 2-week storing

at room temperature. In both treatments, the numbers of the

quinone and primary amine groups increased and decreased,

respectively, improving layer stability and favoring cellular

proliferation. The proliferation of fibroblast, human

keratinocytes (HaCaT), and MC3T3-E1 cells on post-treated

PDA-coated samples was more enhanced in comparison with

the PDA-coated ones (Figure 2B) (Davidsen et al., 2021).

3.3 pH of Tris-HCl

In the synthesis process of PDA coating, various experiments

have reported the creation of a weak alkaline environment (pH >
8.5) with oxygen as the oxidant in the Tris-HCl buffer presence.

When oxygen is constantly present as an oxidant in the reaction, an

even coating of PDA is formed. As another synthesis method,

creating an oxygen gradient can lead to the formation of a PDA

gradient coating (Lee et al., 2019). In some synthesis approaches

with other oxidants, the pH may vary between weakly acidic and

neutral (Wei et al., 2010; Bernsmann et al., 2011; Ghorbani et al.,

2021). Furthermore, PDA can be formed via self-polymerization

within an acidic environment employing hydrothermal methods

(160°C in 6 h) (Zheng et al., 2015).

The pH value directly affects the PDA layer thickness (Hong

et al., 2018) since the initial DA oxidation depends on the amount

of pH (Yang et al., 2014; Salomäki et al., 2018). Regarding this

subject, the influence of pH on the PDA two-dimensional films’

thickness was examined by choosing pH values of 7.5, 8.0, and

8.5. Interestingly, the lowest thickness (24 nm) was achieved at

pH 7.5, whereas the highest one (35 nm) was obtained at pH 8.5.

However, the most favorable result was found in pH 8.0 because

of the fewer variations between the central and external regions

of the film (Figure 2C) (Szewczyk et al., 2022).

Concerning the impact of pH on the polymerization rate,

multiple investigations have revealed that the rate increases with

the pH increment (Dong et al., 2018; Mei et al., 2021). Within an

innovative project, sprayable PDAwith ultra-fast polymerization was

employed to coat solid surfaces. In this regard, the pH was selected in

the range of 7–11, andwhen it went beyond 10.1, no PDA layer could

be formed. Nevertheless, the polymerization speed enhanced from

1.48 A°
min at pH 7.4 to 2.6 A°

min at pH 9–10.1 (Hong et al., 2016).

Given that better outcomes concerning the PDApolymerization

have been produced in the alkaline environment, most studies have

concentrated on this pH range. For example, as a modification

factor, PDAwas grafted onto the hyaluronic acid (HA) chains under

a pH value of 8.0, followed by the production of hydrogel scaffolds

through incorporating PDA/HA complex in a dual cross-linked

collagen type I (Col I) matrix for use in cartilage regeneration. The

final results showed that the employed PDA coating enhanced

BMSCs’ proliferation, improved cellular affinity, and induced

chondrogenic differentiation of cells compared to those of the

cell-seeded scaffolds without the PDA layer. Additionally, it

augmented anti-inflammation capacity, immune modulation

ability, and in-vivo cartilage repair in the rabbit model (Gan

et al., 2022).

3.4 Concentration

Like other discussed parameters, concentration is another

critical factor impacting the final PDA layer. Of note, the

concentration of the DA monomer must be at least 2 mg
ml to

achieve a layer of PDA. In a novel project, magnesium discs were

coated with a calcium-deficient HA (CDHA) layer using

hydrothermal treatment. Afterward, vascular endothelial

growth factor was bound on the CDHA surface through

PDA’s covalent bonds (2 mg
ml and pH 8.5). It was concluded

that the surface morphology altered when coating with the

PDA layer was smoother, and the coating decreased the rate

of magnesium degradation; therefore, a desirable environment

was created for the growth factor, indicating the good

biocompatibility of this scaffold for prolonged usage (Li et al.,

2021a).

For investigating the effect of concentration on the PDA

layer, the porous Col I-HA scaffold was modified via immersing

into various DA concentrations (0.5, 1.0, and 2.0 mg
ml) prepared in

10 mM Tris-HCl buffer solution at ambient temperature. All

coated sponges maintained their porous structure, and the

scaffold with 2.0 mg
ml DA concentration had the highest

swelling rate, largest reactive oxygen species scavenging

capacity, excellent antioxidant property resulting from the

PDA’s catechol groups, good procoagulant effect, and higher

promotion of diabetic wound healing in the rat model compared

to other groups (Wang et al., 2022).

With respect to the effect of concentration on the polymerization

rate, the rate boosts with the concentration increment (Hong et al.,

2016). For instance, in the DA concentration range of 0.1–5 g
L, the

highest polymerization speed, 4 nm
hr , was obtained in the concentration

of 5 g
L (Ball et al., 2012).

The thickness and roughness of the PDA layer can be

controlled by tuning this factor; regarding this matter, several

studies have stated that lower concentrations result in lower

PDA’s thickness (Dong et al., 2018; Wu et al., 2020) and

roughness (Ball et al., 2012; Ding et al., 2014). To evaluate

these phenomena, a team of scientists (Oymaci et al., 2020)

coated the polyethersulfone membranes with PDA possessing
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FIGURE 2
(A) The influence of PDA coating time upon roughness and thickness of the PDA layer on the PGF (reproduced content is open access) (Felfel
et al., 2021). (B) Post-treatment of the PDA layer present on the PDA-coated Ti samples and the quantification of fibroblast, HaCaT, and MC3T3-E1
cells on the surfaces (reproduced content is open access) (Davidsen et al., 2021). (C) The different pH values of Tris buffer and their effects on the film
thickness illustrated in the comparative chart (I), mapping chart (II), and line chart (III) (reproduced content is open access) (Szewczyk et al.,
2022). (D) The DA concentration impact on the morphology of coating displayed by field emission scanning electron microscopy images. Surface
and cross-section images of (I,V) non-coated polyethersulfonemembranes as well asmembranes coatedwith PDA possessing DA concentrations of
(II,VI) 0.5 g

L, (III,VII) 2.0
g
L and (IV,VIII) 3.0 g

L at 10
5 X and 25 × 104 X magnifications, respectively (reproduced content is open access) (Oymaci et al.,

2020).
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diverse concentrations (0.5–3.0 g
L), and it was demonstrated that

the coating thickness enhanced with the DA concentration

increment. Specifically, using the 0.5 g
L DA solution resulted

in a thin coating layer formation which was not readily visible,

while a PDA layer with higher thickness was produced

employing DA solution with the concentration of 3.0 g
L.

Furthermore, the layer roughness increased when the

concentration of DA was augmented, as observed in the

cross-section images in Figure 2D.

4 Conclusion

According to the ability of PDA as a surface modifier, this

nature-inspired material has been widely employed in TE

applications. Notably, certain conditions and parameters

should be considered for the PDA polymerization process,

including coating time, temperature, pH of Tris-HCl, and

initial DA concentration, to acquire beneficial results. Even

though the mentioned parameters have been given fixed

values (24 h, room temperature, pH 8.5, and 2 mg
ml) in most

investigations, some researchers think outside the box and

change the factors to regulate the coating layer’s features.

There is still a long way to go regarding translating these

innovative coated biomaterials into the clinic; consequently,

successfully managing parameters together for furnishing the

modified scaffolds with the desired properties has become a

prominent goal in the preclinical experiments.
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