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SUMMARY

Engineering artificial gene networks from modular components is one of the major goals of 

synthetic biology. However, the construction of gene networks with predictable functions remains 

hampered by a lack of suitable components and the fact that assembled networks often require 

extensive, iterative retrofitting to work as intended. Here we present an approach that couples 

libraries of diversified components (synthesized with randomized non-essential sequence) with in 

silico modeling to guide predictable gene network construction without the need for post-hoc 

tweaking. We demonstrate our approach in S. cerevisiae by synthesizing regulatory promoter 

libraries and using them to construct feedforward loop networks with different predicted input-

output characteristics. We then expand our method to produce a synthetic gene network acting as a 

predictable timer, modifiable by component choice. We utilize this network to control the timing 

of yeast sedimentation, illustrating how the plug-and-play nature of our design can be readily 

applied to biotechnology.

INTRODUCTION

Synthetic biology promises to revolutionize biotechnology by applying engineering 

principles to biological systems1. In less than a decade this field has already yielded 

technological applications, providing new avenues for drug manufacture2, 3, biofabrication4 

and therapeutics5, 6, while also offering promises in alternative energy7. A major focus of 

the field is the synthesis of gene networks with predictable behavior8-10, either to endow 

cells with novel functions11-15 or provide study for analogous natural systems8, 16-19. 

Despite a booming community and notable successes, the basic task of assembling a 

predictable gene network from biomolecular parts remains a significant challenge and often 

takes many months before a desired network is realized20. To advance synthetic biology, it 

is essential to identify techniques that increase the predictability of gene network 

engineering and decrease the amount of hands-on molecular biology required to get a 

functional network up-and-running.
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Current approaches of gene network construction typically use a small set of components 

plundered from different natural systems, which are then assembled and tested in vivo, often 

without guidance from a priori mathematical modeling13, 21. Networks rarely behave as 

intended the first time, usually because chosen parts have the correct function but lack the 

specific quantitative properties required. Even for those few synthetic biology studies which 

do utilize computational assistance22-25, in silico results have been mainly used for data 

interpretation, not for guiding design and assembly. Instead, in most projects an initial failed 

network is usually resolved over months of iterative retrofitting20, often by fine-tuning 

imperfect parts by mutation, by identifying alternative parts, or by adding on extra features 

to counterbalance the problems. Directed evolution has been shown to provide a short-cut 

through this phase21, but is complicated by the additional work needed to couple networks 

to selective pressures.

This time-consuming post-hoc tweaking phase stems, in part, from having to work with a 

limited set of imperfect components. Although this lack of reliable parts is being addressed 

by community efforts26, it remains an acute problem due to there being a limited number of 

components and the fact that the majority are inadequately characterized, e.g., many 

promoters are simply characterized as being ‘weak’ or ‘strong’. What is needed to resolve 

this problem and fast-track synthetic biology is a new approach that creates libraries of 

components ahead of any assembly; and then, by starting with a finer granular range of 

choices for each component, modeling can be used to quickly pick out the correct part 

needed to generate the intended network function. This approach offers the added attraction 

of allowing substantially different network outcomes to be chosen in advance, simply by 

selecting functionally-equivalent components with slightly different properties. This exploits 

a feature common to many types of finely-balanced networks, where small changes to one 

component can dramatically impact the behavior of the entire system.

Using regulated promoters as our example, we describe here how a simple synthesis 

technique can be used to rapidly create and parallel-characterize component libraries for 

synthetic biology. Working in S. cerevisiae, we demonstrate how such libraries can be 

teamed with predictive modeling to rationally guide the construction of gene networks that 

have diverse outputs. We also illustrate a plug-and-play application for one of our network 

designs by using it to control the timing of yeast sedimentation.

RESULTS

Parallel Synthesis and Characterization of Regulatory Promoter Libraries

To demonstrate our library-modeling approach, we focused on regulated promoters, as they 

typically control gene network logic and modulate responses to stimuli. Promoter libraries 

have been created using DNA-shuffling/combinatorial approaches27-29 and mutation-

selection techniques30-33. We modified an efficient synthesis-with-degenerate-sequence 

method32 to yield libraries of regulatory promoters that have a range of inputs and outputs. 

In this technique, promoters are constructed with runs of unspecified (‘N’) sequence 

separating key motifs32; the fixed motif sequences ensure promoter function, and the 

random bases surrounding them modulate their efficiency, presumably by subtly altering 

local DNA conformation34.
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Our first library was designed to yield yeast promoters repressed by TetR (Tn10.B 

Tetracycline repressor35) and inducible with the TetR-inhibitor anhydrotetracycline (ATc). 

Jensen and Hammer’s Klenow-based synthesis method using inexpensive 

oligonucleotides31, 34 was utilized to build promoters containing the TATA box and start 

site from the commonly-used GAL1 promoter36. To introduce controlled regulation, we 

placed two tandem TetR operators (Tn10 operator tetO2) into the promoter at positions 

previously shown to provide tight repression29.

A schematic of our library synthesis technique is shown in Figure 1 and detailed in the 

Methods section. To permit screening, libraries were cloned in a vector with the strong 

constitutive TEF1 promoter37 directing TetR expression and the GAL1 upstream activation 

signal (UAS) region placed upstream of the engineered promoter to direct the removal of 

nucleosomes from the promoter in the presence of galactose38. We arbitrarily chose to build 

a library of 20 promoters (T1-T20) covering a wide range of expression and inhibition 

levels. We used flow cytometry detection of yeast-enhanced green fluorescent protein 

(yEGFP39) to quantitatively measure the promoters for minimum repressed output (Smin) 

and maximum unrepressed output (Smax) (Table 1). The approach was designed to yield 

interchangeable promoters that are identical except for Smin, Smax, and inter-motif 

sequences. This was confirmed by comparison to TX, a control promoter retaining the GAL1 

wild-type sequence between defined motifs, as well by DNA sequencing (Supplementary 

Fig. 1) and dose-response curves (Supplementary Fig. 3).

Feedforward Loop Networks

To demonstrate how our approach can be applied in a gene network, we used the TetR-

regulated promoter library with in silico modeling to investigate the incoherent type II 

negative feedforward loop network. This is a genetic motif found in S. cerevisiae and 

mammalian cells that consists of an output gene regulated by two repressor genes, one of 

which is also inhibited by the other40.

For our network, we used TetR and a eukaryotic-optimized version of the E. coli Lac 

inhibitor41 (LacI), as repressors (Fig. 2A). Each controlled yEGFP expression by regulating 

a hybrid GAL1-based promoter (POR-LT) containing both the K-12 E. coli O1 Lac Operator 

(OLac) and a tetO2 site, thus acting as an OR-gate promoter. TetR expression was 

constitutive from the TEF1 promoter, while LacI expression was driven by TetR-regulated 

promoters selected from our library (PLibT). By varying the concentrations of two inputs - 

ATc and the LacI inhibitor Isopropyl β-D-1-thiogalactopyranoside (IPTG) - the repressive 

effects of TetR and LacI could be tuned, modulating yEGFP expression output.

Before any network assembly, we used component properties from our experimental 

characterization steps to build a mathematical model to predict how network output would 

change when input levels (ATc/IPTG) and promoter properties were varied. The model 

served as a guide, predicting which components from the library could be selected to yield 

different network outcomes, and what dosage of induction would be most experimentally 

informative. In the model, the experimentally determined Smax and Smin values for the 

promoters (Table 1) were utilized; generic values were assumed for other parameters (see 

Supplementary Information for modeling details).

Ellis et al. Page 3

Nat Biotechnol. Author manuscript; available in PMC 2009 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A simulation with PLibT = TX (control promoter: Smax 918.0, Smin 7.46) leads to an 

interesting non-monotonic expression landscape with an output peak at intermediate inputs 

(Fig. 2B). This occurs because TetR has simultaneously opposing effects on yEGFP output - 

inhibiting the production of yEGFP by binding to POR-LT, while also relieving LacI 

inhibition of yEGFP by binding to PLibT and repressing LacI production. This is consistent 

with previous in situ studies of naturally occurring negative feedforward loops42. Our 

synthetic library-modeling approach enables the investigation of this motif without the 

hindrance of inter-connected regulatory networks42-44.

By changing the Smin and Smax values of PLibT in the model, we can examine 

computationally how different promoters from our library affect this response landscape. 

The model predicts significant changes in output, and two examples most divergent from the 

TX simulation are shown in Figure 2B. Increasing the Smin value of the TetR-regulated 

promoter removes almost all expression in low concentrations of IPTG (PLibT = T8: Smin 

30.88), whereas decreasing the Smax value shifts peak expression to occur only at higher 

concentrations of ATc (PLibT = T18: Smax 51.75). This demonstrates quantitatively that the 

same external induction (ATc or IPTG) can elicit very different responses from the motif 

simply due to small changes in promoter strength.

To test these in silico predictions, we assembled the three negative feedforward loop 

networks shown in Figure 2B using corresponding components from our libraries, and 

quantified their output responses to varied ATc/IPTG inputs using flow cytometry 

measurement of yEGFP. The experimental data (Fig. 2C) correlated very well with our 

computational predictions, particularly considering the many non-fitted generic parameters 

used in the model. These results demonstrate how small changes in promoter strength can 

have dramatic consequences on network responses. These findings also show that a model 

built from just component data and generic parameters can offer insights into a network 

response landscape, and such a model, when teamed with component libraries, can serve as 

a useful, rapid guide for producing networks with different predictable characteristics.

Genetic Timer Networks

Having demonstrated our approach in a relatively simple network using one promoter 

library, we next utilized two promoter libraries in a more complex network with a richer set 

of dynamics. Using the mutual-repression motif of the genetic toggle switch14, we set out to 

produce predictable genetic ‘timers’. These timers exploit the finely-balanced nature of a 

mutual inhibitory network14, where changes in opposing repressor levels can disrupt 

bistability, and memory of induction can be lost as the system resets back to its original 

default state. These timers are effectively genetic toggle switches operating in a monostable 

regime, and their rate of resetting is directly related to relative expression levels of the two 

repressors - the further they are from the balanced values required for bistability14, the more 

rapidly memory of induction is lost.

For yeast timers, we used LacI and TetR as the two mutually-repressive genes (Fig. 3A). 

LacI is expressed from a TetR-regulated promoter (PLibT) selected from our component 

library described above, and TetR is expressed from a LacI-regulated promoter (PLibL) taken 

from the second component library. This second library of promoters (L1-L20 plus control 
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LX) was synthesized and characterized as before, but with the Lac operator (OLac) in place 

of the tandem Tet operators (promoter data are shown in Table 1 and sequences in 

Supplementary Fig. 2). To follow the expression state of the timers, yEGFP was placed 

under the control of the LX promoter, giving an expression read-out directly correlated to 

TetR expression (Fig. 3A).

An initial model built with component properties from both libraries gave us qualitative 

insights into how timers can be set via imbalanced mutual inhibition (see Supplementary 

Information). However, a model built solely from component data cannot in this case 

capture important quantitative features of the network. The initial model with generic 

parameters revealed that changing the ratio of expression from the two opposing promoters 

affects the reset time, but it was not able to predict accurately by how much the reset time 

would change. The temporal dynamics of this system cannot be quantitatively predicted 

without first seeing a system in action to dissect some of the lumped parameters that remain 

fixed for all possible timers (see Supplementary Information for details). To address this, we 

assembled and tested a single example timer using the two control promoters (TX-LX); we 

then used the experimental data (Fig. 3B) from this system to calibrate a quantitatively 

predictive model for the other 440 possible timers afforded by our libraries.

The quantitative model gave us predictions as to how reset time could be varied by promoter 

selection, specifically by adjusting the ratio of relative expression from opposing promoters 

(using Smax-Smin to determine relative expression for each). We used the model to 

quantitatively predict the reset behavior of two timers (T18-LX and T4-LX) with ratios 

greater than that for TX-LX, and two timers (T7-L18 and TX-L14) with smaller ratios. 

These timers were assembled and tested in yeast. The experimental data for all four 

networks fell within the upper and lower bounds of the model predictions, validating our 

approach and ability to make quantitative predictions (Fig. 3C,D,E,F).

The model with calibrated parameters provides us with a “confidence interval” of reset times 

for all ratios, shown as blue lines in Figure. 3G. Closer inspection of the model reveals that 

reset times of different timer networks with low Smin values are approximately proportional 

to the reciprocal of the square root of the distance between the Smax-Smin ratio and the 

bifurcation ratio (the ideal Smax-Smin ratio for bistability). Mathematically, this is due to a 

temporal lag in resetting caused by the network passing through a ‘bottleneck’ as it leaves 

bistability45, 46. This direct relationship, shown in Figure. 3G, allows timers with any reset 

time between 50 and 150 hours to be chosen simply based on the strengths of the two 

promoters selected from the respective libraries.

Control of Yeast Sedimentation Timing

To demonstrate how our approach can be readily applied in a biotechnology scenario, we 

used the plug-and-play nature of our timer networks to control the flocculation of yeast. 

Flocculation occurs when yeast cells express FLO1, which functions as yeast-specific 

adhesin that causes cells to clump together and sediment from the medium47-49. The 

phenotype is crucial in industrial beer, wine and bioethanol fermentation, as it allows for 

easy removal of yeast sediment after all sugars have been converted to ethanol48.
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Since the reset times of T4-LX and T18-LX are very close to that of TX-LX, we chose TX-

LX, T7-L18 and TX-L14 to test the application of genetic timers. Using these three 

networks, we controlled the timing of sedimentation by replacing yEGFP with the FLO1 

gene (Fig. 4A). In our laboratory yeast strain, FLO1 is not expressed, but replacing its native 

promoter with a strong promoter re-activates flocculation, causing sedimentation to occur 

when a threshold of FLO1 expression is passed. The timing of sedimentation can therefore 

be tied to the resetting of each timer network by choosing an appropriate regulated promoter 

from the libraries. With the 441 possible timers, and a choice from two library sets of 

promoters for controlling FLO1 expression, we had the potential to produce >17,000 

different flocculating networks. We selected the L7 promoter, which has relatively high 

Smax and very low Smin, to give a wide dynamic range. When LacI was abundant, the 

minimal expression from this promoter did not elicit sedimentation, allowing yeast to grow 

in suspension.

We experimentally determined the threshold of FLO1 expression that causes sedimentation 

(see Supplementary Information). Rescaling the timer data in Figure 3B,E,F to match the 

Smax and Smin values for the L7 promoter allowed us to plot estimates as to when this 

threshold would be passed for our networks (Fig. 4B). We tested these predictions by 

assembling the networks in yeast, and then growing the yeast cultures until sedimentation, 

days after the initial induction (ATc) was removed (Fig. 4C). For the TX-LX, T7-L18 and 

TX-L14 networks, sedimentation was seen at 60, 60 and 168 hours, respectively. These 

findings closely matched the predicted times assuming a 12-hour lag, presumably due to a 

longer phenotype maturation for flocculation compared to yEGFP fluorescence. This 

experiment demonstrates that we can quickly apply predictable networks built with our 

approach to control an industrially-relevant phenotype. Such accurate control of flocculation 

timing provides a wide window of opportunity to harvest fermentation product from cells 

and could be applied to improve biomass recycling in the biofuels industry.

DISCUSSION

This work establishes a new approach that can be used to rapidly increase the number of 

network components as well as decrease the time and effort required to engineer gene 

networks with desired functions. Our approach is compatible with plug-and-play synthetic 

biology and provides a platform to fast-track gene network construction. Here we focused 

on generating, characterizing and utilizing component libraries of promoters, but our 

approach is also applicable to other biomolecular components, as diversity in non-essential 

sequence also affects functional efficiency in proteins and RNA.

Although screening of mutated parts is not a new technique, our approach represents an 

advance over previous methods by coupling qualitative and quantitative modeling with 

library diversity to guide the construction of synthetic gene networks with predictable 

functions. In robust networks like our feedforward loop, models built entirely from 

component property sets are sufficient to guide the choice of parts required to elicit specific 

network phenotypes, such as high sensitivity to inputs or low maximum output. Although 

previous studies have shown that it is possible, in some cases, to accurately predict network 

behaviors based solely on component properties8, 50, we found that this conclusion cannot 
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be generalized to more complex, finely-balanced networks, such as the timers described 

here. Instead we found that one must first assemble and experimentally characterize a single 

exemplary network of interest, in order to create a generalizable model with quantitative 

predictive capabilities. The experimental work needed to construct and test this one network 

is quickly offset by yielding accurate quantitative predictions for all other possibilities, and 

the benefit of this is especially significant when one considers that each additional 

component library incorporated increases the number of potential networks exponentially.

Our approach effectively moves component ‘tweaking’ to the front-end of gene network 

engineering. This arrangement is instinctively more rational than network retrofitting and 

made feasible by the coupling with mathematical modeling. As component libraries are 

produced in parallel at the same point in the process that individual parts are typically 

characterized for modeling, they require little extra effort in return for significant reward. 

Projects undertaken with this approach will help accelerate synthetic biology by yielding 

many more components for the community, and as library-synthesized components are 

designed to show variation only in intended properties, the need for extensive 

characterization of each component is eliminated or substantially reduced. Our work also 

provides an accessible method for introducing predictable, controlled variability to 

networks, a feature that is increasingly becoming desirable as synthetic biology enters its 

second decade18, 19. With advances in modern DNA synthesis technologies, the range of 

our approach will expand as synthesis becomes faster and cheaper, and as longer regions of 

biomolecules are able to be specifically varied in a systematic fashion.

METHODS

Strains and media

S. cerevisiae strain YPH500 (α, ura3-52, lys2-801, ade2-101, trp1Δ63, his3Δ200, leu2Δ1) 

(Stratagene, La Jolla, CA) was used in all experiments, and all genomic integrations were 

specifically targeted to the redundant ura3-52 locus. Culturing, genetic transformation and 

verification of transformation were done as previously described29, using either the TRP1, 

HIS3 or LEU2 genes as selectable markers.

Plasmid construction

The TetR-regulated promoter library characterization vector (pTVGI, Fig. 1B) was adapted 

from the previously described yeast integrative plasmid pRS4D129, removing the GAL1/

GAL10 promoter region and replacing it with the S. cerevisiae TEF1 promoter directing 

TetR expression and the GAL1 UAS region plus a synthesized library promoter directing 

yEGFP expression. A 489 bp span of arbitrary sequence from the ura3 gene was included 

between these promoters to buffer any cross-talk between them and to allow the vector to 

site-specifically integrate into the ura3-52 locus. For the LacI-regulated promoter library 

characterization vector (pLVGI), TetR was replaced by a synthetic codon-optimized LacI41 

that had been altered to remove both an internal PstI restriction site (without changing the 

codon sequence or efficiency) and the hyper-strong SV40 nuclear localization signal. The 

control TX promoter was amplified directly from pRS4D1, whereas the LX promoter and 

OR-LT promoters were generated, as previously described, by standard oligonucleotide 

Ellis et al. Page 7

Nat Biotechnol. Author manuscript; available in PMC 2009 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



PCR mutation methods from the TX promoter and T123 pRS4D1 promoter, respectively29. 

All plasmids were constructed and transformed into E. coli to harvest DNA for yeast 

transformations, as previously described29.

Promoter library synthesis and screening

Promoters were created from partially-overlapping pairs of 110mer PAGE-purified 

oligonucleotides (listed in Supplementary Information), which were custom synthesized by 

Sigma-Genosys (The Woodlands, TX). Second strand DNA synthesis by Klenow 

polymerase was followed by agarose gel electrophoresis purification to obtain fragments 

ready for insertion into characterization vectors34. Upon ligation, DH5α E. coli (NEB, 

Beverly MA) were transformed with the plasmid vectors and clones were selected by 

ampicilin resistance. 104-105 colonies were pooled directly from LB agar plates and 

harvested for plasmid using the QIAprep Spin Miniprep Kit (Qiagen, Valencia, CA). The 

promoter plasmid library was then used to transform yeast as previously described29, 

scaling up by a factor of 10 and plating on 250mm × 250mm plates to yield ∼3500 

individual colonies. 192 of these colonies were transferred to two 96-well plates, and grown 

for 22 hours in 300 μl of media supplemented with 2% galactose and 250 ng/ml ATc. Cell 

fluorescence was measured at 450nm using a SpectraFluor Plate Reader (Tecan, Durham 

NC). Approximately one quarter of clones produced a detectable level of expression when 

TetR was inhibited by ATc, and roughly three quarters of these responded to the removal of 

ATc with a drop in expression, indicating controlled regulation. Expression was 

undetectable in glucose. Colonies selected to create our 20-member library were PCR-tested 

for single genomic integration, and then characterized by flow cytometry in the presence and 

absence of 250 ng/ml ATc. For LacI-regulated libraries, ATc was replaced with 10 mM 

IPTG in the screening and characterization stages.

Flow cytometry and data analysis

Flow cytometry measurements were carried out as previously described8, running samples 

on a medium flow rate until 20,000 cells had been collected within a small forward and side 

scatter gate to reduce extrinsic noise. Data files were analyzed using MatLab (The 

MathWorks, Natick, MA), linearizing log-binned fluorescence intensity values and then 

calculating the median and standard deviation of the gated population. For both promoter 

library data (Table 1) and control ATc and IPTG induction curves, 3 ml cultures were grown 

for 20 hours to an optical density at 600 nm (OD600) of 1.00 at 30°C with orbital shaking 

before measurement. For the negative feedforward loop and genetic timer data, 300 μl of 

cells were grown to OD600 of 1.00 at 30°C in 96-well format. For the negative feedforward 

loop data, cells were grown for 22 hours before measurement. For the genetic timer data, 

cells were grown for 12 hours, a sample was taken for measurement, and then a fraction of 

the remaining cells was diluted into fresh media for the next 12 hours of growth.

Flocculation

To obtain flocculating strains, the L7 library promoter was inserted into pFA6a-KanMX6-

pGAL1 in place of the GAL1 promoter sequences, and PCR amplification from primer pairs 

FL1 and FL2 was used to integrate these in place of the wild-type FLO1 promoter as 
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described previously47. To measure flocculation over time, 1.2 ml cultures were grown for 

12 hours to OD600 = 1.50 at 30°C with orbital shaking. 1 ml was removed for measurement 

and replaced with 1 ml of fresh culture media to continue growth. For measurement, 1 ml of 

culture was vortexed for 5 seconds before sitting for 10 minutes in a clear 3 ml culture tube. 

Cultures were photographed with a light box behind, and the image inverted and auto-

contrasted using Picasa imaging software (Google, Mountain View, CA).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Regulatory promoter library synthesis, screening and characterization
Schematic design for TetR-regulated promoter synthesis. (A) Promoters are constructed by 

Klenow pol extension from two overlapping 110mer oligonucleotides synthesized with 

unspecified nucleotides (N) between defined motifs. (B) Promoters are ligated between the 

GAL1 upstream activation signal (UASGAL1) and the yEGFP coding sequence in the 

characterization vector, which also expresses TetR from the TEF1 promoter (PTEF1). (C) 

Transformation of yeast yields thousands of colonies with the genome-integrated vector. (D) 

Individual colonies are screened in 96-well format by measuring fluorescence in induction 

conditions after 22 hours growth (media supplemented with 2% galactose + 250 ng/ml 

ATc). (E) A library of 20 regulated promoters covering a range of expression levels is 

selected from screening data and quantitatively characterized using flow cytometry 

measurement of yEGFP expression after 22 hours growth in media supplemented with 2% 

galactose (GAL) and with 250 ng/ml ATc (GAL + ATc). TX = control promoter, T1-T20 = 

library promoters, and - = null promoter.
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Figure 2. Modeling and synthesis of feedforward loop networks using a promoter library
TetR-regulated promoter library data were used in conjunction with in silico modeling to 

construct negative feedforward loop (NFL) gene networks with different predicted input-

output functions. (A) Schematic of the network, where PTEF1 = TEF1 promoter, PLibT = 

TetR-regulated promoter library, and POR-LT = LacI-TetR dual-regulated promoter. (B) In 

silico modeling of the network from component properties predicts yEGFP expression 

(output) in response to varied concentrations of ATc and IPTG (inputs) when three different 

TetR-regulated promoters are used. (C) The three networks were assembled in S. cerevisiae, 

and median yEGFP expression was measured by flow cytometry after 22 hours growth of 

cells in media supplemented with 2% galactose plus varying concentrations of ATc and 

IPTG. Error bars show the standard deviation of the gated cell population.
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Figure 3. Predictable genetic timer networks constructed from two promoter libraries
TetR- and LacI-regulated promoter libraries were used to construct a mutually-repressive 

gene network that acts as a predictable timer. (A) Schematic of the timer network; PLibL = 

LacI-regulated promoter library, PLX = LacI-regulated control promoter, and PLibT = TetR-

regulated promoter library. (B) In silico model of the network fitted to TX-LX experimental 

data (Supplementary Fig. 4) shows yEGFP expression changing over time after ATc 

induction is removed at time 0. Yeast cells with the TX-LX network genomically-integrated 

were grown for 36 hours with 250 ng/ml ATc to induce the network, washed three times and 

monitored starting from time 0 until the expression state reset to a maximum. Normalized 

yEGFP output (red circles), which was calculated from flow cytometry measurements taken 

every 12 hours, matches the model output (green lines) well. Both upper and lower bound of 

model fittings are plotted (details in Supplementary Information). (C,D,E,F) Median yEGFP 

expression (red circles) was measured by flow cytometry every 12 hours for four different 

promoter combinations (T18-LX, T4-LX, T7-L18 and TX-L14). Cultures were induced and 

treated the same as in (B). Blue lines are model predictions based on parameters inferred 

from (B). Lower and upper bounds use the parameters corresponding to lower and upper 

bounds in (B). (G) The relationship between the reset time and the ratio for all of its values 
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is plotted. Lower and upper bounds use the parameters corresponding to lower and upper 

bounds in (B). The reset time can be approximated as T = C1 + C2/√(|r-C3|), where T = reset 

time, C1 = basal reset time, C2 = scale factor and C3 = bifurcation ratio (details in 

Supplementary Information).
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Figure 4. Controlling the timing of yeast sedimentation using a predictable gene network
The synthetic networks tested in Figure 3B,E,F were used to control the timing of yeast 

sedimentation caused by flocculation. (A) Schematic of flocculation gene networks. 

Flocculation is regulated by replacing yEGFP and PLX in the gene network shown in Figure 

3A with FLO1 under the control of the L7 promoter (PL7). (B) Rescaled yEGFP data from 

Figure 3B,E,F were used to project temporal FLO1 expression levels and predict the timing 

of cell sedimentation due to flocculation (details in Supplementary Information). (C) The 

timing of sedimentation from the three synthetic networks. Cultures induced by growth with 

250 ng/ml ATc for 36 hours were washed twice and grown at high OD600 with shaking and 

diluted into fresh media every 12 hours, until sedimentation cleared the suspension. Images 

shown here are 1ml cultures at 12 hour intervals, 10 minutes after brief vortexing. Controls: 

- = growth in 10 mM IPTG, + = growth in 250 ng/ml ATc.
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