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a b s t r a c t

Francisella tularensis is the causative agent of the highly, infectious disease, tularemia. Amongst the genes
identified as essential to the virulence of F. tularensis was the proposed serine hydrolase FTT0941c.
Herein, we purified FTT0941c to homogeneity and then characterized the folded stability, enzymatic
activity, and substrate specificity of FTT0941c. Based on phylogenetic analysis, FTT0941c was classified
within a divergent Francisella subbranch of the bacterial hormone sensitive lipase (HSL) superfamily, but
with the conserved sequence motifs of a bacterial serine hydrolase. FTT0941c showed broad hydrolase
activity against diverse libraries of ester substrates, including significant hydrolytic activity across alkyl
ester substrates from 2 to 8 carbons in length. Among a diverse library of fluorogenic substrates,
FTT0941c preferred α-cyclohexyl ester substrates, matching with the substrate specificity of structural
homologues and the broad open architecture of its modeled binding pocket. By substitutional analysis,
FTT0941c was confirmed to have a classic catalytic triad of Ser115, His278, and Asp248 and to remain
thermally stable even after substitution. Its overall substrate specificity profile, divergent phylogenetic
homology, and preliminary pathway analysis suggested potential biological functions for FTT0941c in
diverse metabolic degradation pathways in F. tularensis.
& 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Francisella tularensis, the causative agent of the disease tular-
emia, is a highly toxic, endemic gram-negative bacterium [1]. F.
tularensis is the most virulent member of a genus of gram-negative
bacterial species, including other weak human and mammalian
pathogens (F. holarctica and F. novicida) [1–3]. Due to its ability to
be spread by aerosol and to its high virulence and mortality, F.
tularensis has been marked as a category A potential bioweapon by
the Centers for Disease Control and Prevention (CDC) [1,4]. Cur-
rently, F. tularensis infection is treated by an antibiotic regiment of
streptomycin and fluoroquinolone, but recent outbreaks have
made F. tularensis into a re-emerging infectious disease [1,5].

Multiple large-scale transposon mutagenesis screens in vivo
and in vitro have identified a large number of genes (�20% of the
total genome) and gene products involved in the pathogenesis and
virulence of F. tularensis [6–9]. Comparison of the overlap of these
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transposon data sets indicated multiple conserved pathways in-
volved in virulence [5,8]. These pathways include the 33 kb pa-
thogenicity island, a set of proteins involved in the Type VI se-
cretion system, that was identified in all screens [7]. Gene pro-
ducts involved in metabolism, protein stability and folding, and
the bacterial envelope were also reproducibly identified in the
screens [8,10].

Amongst F. tularensis genes identified in multiple screens by
different methodologies as essential to its pathogenesis and viru-
lence was the FTT_0941c gene, a predicted esterase/lipase that has
been loosely assigned the name lipP based on limited sequence
similarity to the lipP-1 protein from Sulfolobus solfataricus (Swis-
sProt: Q97VW1) [6,7]. Although disruption of the FTT_0941c gene
did not ablate virulence, the level of virulence attenuation with
disruption of the FTT_0941c gene suggested that this gene was an
important component of the virulence machinery [7]. Further
analysis of the initial virulence screens confirmed that the
FTT_0941c gene was required for virulence in macrophages and
specifically for intracellular replication within macrophages [11].
The FTT_0941c gene has been loosely assigned as involved in
metabolism, although the gene was not expressed in the presence
of high extracellular lipids [8,12].

Herein, we examined the phylogeny of the FTT0941c protein to
confirm its assignment as a serine hydrolase and to highlight its
unique sequence conservation within the Francisella genus. We
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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then heterologously expressed and purified the FTT0941c protein
and characterized its biochemical features, including protein
folding and enzymatic activity. Using libraries of ester substrates,
we then determined the comprehensive substrate specificity of
FTT0941c to begin to assign its biological function. Based on its
substrate specificity profile and pathway analysis of neighboring
genes, we propose potential roles for FTT0941c in Francisella
specific metabolism that make it essential to the survival and
virulence of F. tularensis within its hosts.
2. Materials and methods

2.1. Purification of FTT0941c from F. tularensis

A bacterial expression plasmid (pDEST17) containing the
FTT_0941c gene from Francisella tularensis Schu 4 (Genbank:
YP_169934; protein name FTT0941c) was obtained from the Har-
vard Plasmid Repository (Clone ID: FtCD00063741). This bacterial
plasmid (pDEST17-FTT0941c) was transformed into E. coli BL21
(DE3) RIPL cells (Agilent, La Jolla, CA). A saturated overnight cul-
ture of E. coli BL21 (DE3) RIPL (pDEST17-FTT0941c) in LB media
containing ampicillin (100 μg/mL) and chloramphenicol
(30 μg/mL) was used to inoculate LB-media (1 L) containing am-
picillin (100 μg/mL) and chloramphenicol (30 μg/mL) and the
bacterial culture was grown with constant shaking (225 rpm) at
37 °C. When the OD600 reached 0.6–0.8, the temperature of the
culture was decreased to 16 °C and isopropyl β-D-1-thiogalacto-
pyranoside (IPTG) was added to a final concentration of 0.5 mM.
Protein induction proceeded for 16–20 h at 16 °C. Bacterial cultures
were collected by centrifugation at 6000� g for 10 min at 4 °C. The
bacterial cell pellet was resuspended in PBS (40 mL) and stored at
�20 °C.

To disrupt the bacterial cell wall, lysozyme (250 mg) and Bug
Buster solution (4.0 mL of 10X; EMD Millipore) were added and
the cell lysis proceeded on a rotating shaker for 2 h at 4 °C. To
remove insoluble cell material, lysed cells were centrifuged at
16,000xg for 10 min at 4 °C. Ni-NTA agarose (1.0 mL; Qiagen, Va-
lencia, CA) was added to the soluble fraction and allowed to in-
cubate at 4 °C for 15 min. The resin was washed three times with
PBS containing increasing concentrations of ice-cold imidazole
(40 mL each of PBS containing 10 mM imidazole, 25 mM imida-
zole, or 50 mM imidazole) and recollected by centrifugation at
2000� g for 2 min at 4 °C between wash steps. FTT0941c was
eluted in PBS containing imidazole (250 mM; 1000 μL) and dia-
lyzed against PBS overnight at 4 °C with constant stirring (10K
MWCO; Pierce, Rockford, IL).

The purity of FTT0941c was confirmed by SDS–PAGE on a 4–20%
gradient gel and the purity was shown to be greater than 95%
(Supplementary Fig. 1). The expected molecular weight of the
FTT0941c protein was 35.5 kD. The concentration of FTT0941c was
determined by measuring the absorbance at 280 nm and by cal-
culating the extinction coefficient (ε280¼46,300 M�1 s�1 with all
free cysteines) on ExPASy.

2.2. Site-directed mutagenesis and purification

Variants of FTT0941c were produced by QuikChange II site-di-
rected mutagenesis of the pDEST17-FTT0941c template plasmid
DNA using a derivation of the manufacturer's suggested procedure
(Agilent, Santa Clara, CA), the only exception being specific an-
nealing temperatures and the mutagenesis primers (Integrated
DNA Technologies, Coralville, IA) outlined in Supplementary
Table 3. Proper mutations in the FTT0941c DNA sequence were
confirmed by DNA sequencing (Genewiz, South Plainfield, NJ)
using T7 and/or T7-terminal sequencing primers. Plasmids coding
for FTT0941c variants were transformed into E. coli BL21 (DE3)
RIPL cells and variants of FTT0941c were overexpressed, purified,
quantitated, and characterized using the same procedure as for
wild-type FTT0941c.

2.3. Ester hydrolase substrates

p-nitrophenyl substrates were from Sigma-Aldrich. Compounds
1–17 were synthesized as described previously [13 –16].

2.4. Kinetic measurements with p-nitrophenyl substrates

The enzymatic activity of FTT0941c was measured against p-
nitrophenyl acetate, p-nitrophenyl butyrate, p-nitrophenyl oc-
tanoate, and p-nitrophenyl laurate (Sigma–Aldrich) using a 96-
well microplate assay (Fig. 1) [16]. All four substrates, p-ni-
trophenyl acetate (2 M), p-nitrophenyl butyrate (2 M), p-ni-
trophenyl octanoate (200 mM), and p-nitrophenyl laurate
(200 mM) were prepared as stock solutions in acetonitrile and
diluted into PBS containing acetylated BSA (PBS–BSA; 0.1 mg/mL).
The starting concentration for p-nitrophenyl acetate and p-ni-
trophenyl butyrate was 20 mM and for p-nitrophenyl octanoate
and p-nitrophenyl laurate was 2 mM. Eight serial dilutions (1:1;
110 μL into 220 μL total volume; 20 mM to 156 μM final con-
centrations for acetate and butyrate and 2 mM to 15.6 μM for
octanoate and laurate) were made using PBS–BSA containing 1%
acetonitrile. Substrate dilutions (95 μL) were transferred to a clear
96-well microplate and FTT0941c (5 μL of 125 μg/mL; final con-
centration FTT0941c¼6.25 μg/mL; 176 nM) was added to start the
reaction. The absorbance change at 412 nm was measured for
4 min at 25 °C on a Biotek Synergy H1 multimode plate reader
(Biotek Instruments; Winooski, VT). The change in absorbance was
converted to molar concentrations using the extinction coefficient
of p-nitrophenol (Δε412¼1.034 mM�1 cm�1) [17]. The initial rates
of the reactions were measured in triplicate and plotted versus
fluorogenic enzyme substrate concentration. The saturation en-
zyme kinetic traces were fitted to a standard Michaelis–Menten
equation using Origin 6.1 (OriginLab Corp., Northhampton, MA)
and values for kcat, KM and kcat/KM calculated.

2.5. Kinetic measurements with fluorogenic ester substrates

The enzymatic activity of FTT0941c was measured against the
fluorogenic ester substrates (Fig. 2) using a 96-well microplate
assay [16,18]. Fluorogenic substrates were prepared as stock so-
lutions in DMSO (10 mM) and were diluted into PBS containing
acetylated BSA (PBS–BSA; 0.1 mg/mL) to starting concentrations
between 10–1000 μM, depending on the Km value of FTT0941c for
the substrate. The majority of the substrates (substrates 1–5; 9–17)
had the same starting concentration (10 μM) with substrates 6–8
(100 μM) requiring higher starting concentrations. Eight serial
dilutions (1:2; 60 μL into 180 μL total volume) of each substrate
were made using PBS–BSA. Fluorogenic substrate dilutions (95 μL)
were then transferred to a black 96-well microplate (Corning,
Lowell, MA).

FTT0941c protein (5 μL of 125 μg/mL; final concentration
FT941c¼6.25 μg/mL; 176 nM) was added to the diluted fluoro-
genic substrates in the 96-well microplate (100 μL final volume)
and the fluorescence change (λex¼485 nm, λem¼528 nm) was
measured for 4 min at 25 °C on a Biotek Synergy H1 Multimode
plate reader (Biotek Instruments; Winooski, VT). For FTT0941c
variants, the concentration of enzyme was increased by 3-fold to
detect even low enzymatic activity for the variants (5 μL of
375 μg/mL; final concentration FT941c variants¼18.75 μg/mL;
528 nM). The fluorescence change was converted to molar con-
centrations using a fluorescein standard curve (30–0.23 nM for



Fig. 1. Biochemical characterization of FTT0941c. (A) Phylogenetic relationship between FTT0941c and homologous bacterial hydrolases. The amino acid sequence of
FTT0941c was aligned with the 17 other bacterial hydrolases and a cladogram of the aligned proteins was constructed with percent similarities from Clustal Omega. Detailed
sequence analysis is given in Supplementary Table 1. (B) Sequence conservation of residues adjacent to the proposed catalytic triad. Relative weightings and motif analysis
performed using Weblogo [41]. Detailed sequence analysis given in Supplementary Table 1. (C) and (D) Kinetic activity of FTT0941c against p-nitrophenyl acetate (C2), p-
nitrophenyl butyrate (C4), and p-nitrophenyl octanoate (C8). The kinetic activity of FTT0941c for C2 and C4 was measured from 20 mM to 156 μM and for C8 from 2 mM to
15.6 μM to account for its lower Km value and solubility. Data points were fitted to the Michaelis-Menten equation and are shown 7SE. Values for kinetic constants are given
in Table 1. (E) Catalytic efficiency of FTT0941c against p-nitrophenyl substrates (p-nitrophenyl acetate (2), p-nitrophenyl butyrate (4), p-nitrophenyl octanoate (8), and p-
nitrophenyl laurate (12)). Catalytic efficiency values (kcat/Km) are given 7SE. Detailed kinetic values are given in Table 1. (F) Thermal stability of FTT0941c. The folded to
unfolded transition for wild-type FTT0941c (0.3 mg/mL in PBS) was observed by DSF. The measurement was completed in triplicate and is shown 7SE.
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10 μM starting substrate concentrations and 300–2.3 nM for
higher starting concentrations), whose fluorescence was measured
simultaneously. The initial rates of the reactions were measured in
triplicate and plotted versus fluorogenic enzyme substrate con-
centration. The saturation enzyme kinetic traces were fitted to a
standard Michaelis–Menten equation using Origin 6.1 (OriginLab
Corp., Northhampton, MA) and values for kcat, KM and kcat/KM

calculated.
2.6. Thermal stability measurement

Similar to previously published methods, the thermal stability
of FTT0941c and variants of FTT0941c was determined using dif-
ferential scanning fluorimetry (DSF) [16,19]. Wild-type FTT0941c
(0.3 mg/mL) and variants of FTT0941c (0.30–0.50 mg/mL) were
diluted in at least triplicate in PBS containing a 1:250 dilution of
Sypro Orange (Invitrogen, Carlsbad, CA). The samples was heated
from 15 °C to 85 °C at 1.0 °C/min in a thermocycler (Bio-rad C1000



Fig. 2. Substrate specificity of FTT0941c against fluorogenic hydrolase substrates. (A) Activation of fluorogenic substrates by FTT0941c. Hydrolysis of the ester bond on the
diacyloxymethyl ether fluorescein substrates by FTT0941c converts the fluorescein core from the nonfluorescent lactone form to the highly fluorescent quinoid form. The rate
of fluorophore activation is measured at a range of substrate concentrations to determine the kinetic constants for fluorophore activation. (B) Fluorogenic substrate library.
Each of the substrates is composed of diacyloxymethyl ether fluorescein (1A) with varying R-groups. The differing R-groups have been organized into classes based on
chemical functionality. All of the substrates were synthesized as described previously [13,15,16]. (C) Kinetic activity of FTT0941c against substrates 1 (open circles), 2 (closed
squares), and 3 (open diamonds). All measurements completed in triplicate and shown 7SE. (D) Global comparison of the catalytic specificity (kcat/KM) of FTT0941c against
each of the 17 substrates (structures and numbering given in Fig. 2B). The substrate specificity against alkyl ester substrates (blue) and against cycloalkyl ester substrates
(green) illustrates the substrate selectivity of FTT0941c based on alkyl chain length, the size of the cyclic ring, and the distance from the ester carbonyl. Detailed kinetic
results for each substrate are provided in Table 1.
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Thermocycler with CFX96 Real-time System, Hercules, CA) and the
change in Sypro Orange fluorescence followed over time (λex
¼450–490 nm, λem¼610–650 nm). The melting temperature (Tm)
was determined by plotting the first derivative of fluorescence
versus temperature and finding the temperature at the midpoint
of the transition. As in previous analyses [20], all graphs were
normalized so that minimum fluorescence was set to 0 and
maximum fluorescence set to 1.

2.7. Phylogenetic analysis of FTT0941c

The amino acid sequence of FTT0941c was aligned using Clustal
Omega (EMBL EBI). The catalytic triad amino acids were then ex-
tracted from the alignment based on sequence conservation and
the presence of the catalytic motif (G-x-S-x-G). A cladogram of the
aligned proteins was then constructed using Drawgram from the
Mobyle Pasteur (Fig. 1 and Supplementary Table 2). The sequences
used in the alignment were from Francisella tularensis subsp. tu-
larensis SCHU S4 (56708038), Francisella tularensis subsp. novicida
U112 (118497410), Francisella philomiragia subsp. philomiragia
ATCC 25017 (167598025), Aspergillus oryzae RB40 (169776543),
Penicillium rubens Wisconsin 54-1255 (255949072), Shewanella
frigidimarina NCIMB 400 (114564803), Oceanicola batsensis
(497492433), Pseudomonas aeruginosa (489180078), Pseudomonas
putida KT2440 (26990910), Mycobacterium tuberculosis H37Rv
(15610107), Mycobacterium tuberculosis H37Rv (15608537), Dei-
nococcus maricopensis DSM 21211 (320333828), Bacillus mega-
terium QM B1551 (294499059), Alicyclobacillus acidocaldarius
(47168664), Sulfolobus solfataricus P2 (15899234), Archaeoglobus
fulgidus DSM 4304 (11499305), Clostridium botulinum A str. ATCC
3502 (148380141) and Listeria monocytogenes EGD-e (16804128).
Sequences for alignment were chosen based on protein BLAST
analysis of FTT0941c and extracting unique protein sequences with
significant percent similarity (420%).

2.8. Homology modeling

Structural models for FTT0941c were constructed using three
validated web server based protein modeling programs (Swiss-
Model, RaptorX, and Phyre2) [21–23], as FTT0941c has been re-
calcitrant to ongoing structural determination efforts. In each
model, the complete protein sequence for FTT0941c was sub-
mitted to the web based server and homology structures were
evaluated using the provided evaluation statistics. For Swiss-
Model, the homology model was constructed based on the struc-
ture of an enantioselective esterase from Pyrobaculum calidifontis



Table 1
Kinetic characterization of FTT0941c.

Substrate kcat (s�1) Km (mM) kcat/Km (M�1 s�1)

C2a 4.670.3 0.9270.22 50007700
C4 7.671.2 4.071.9 19007600
C8 0.8270.16 0.2470.15 340071100
C12 0.4270.08 1.870.6 230750

kcat (10�3 s�1) Km (mM) kcat/Km (M�1 s�1)
1b 0.3970.05 1.170.5 3707100
2 0.6770.07 2.770.7 250740
3 0.8570.06 2.270.4 400750
4 0.2170.01 1.270.1 180710
5 0.04970.003 0.4270.10 120720
6 4.270.4 83716 5076
7 3.670.2 8.371.4 340730
8 0.06470.002 0.4870.05 130710
9 0.05370.002 0.3870.06 140710
10 0.7670.03 4.270.4 180710
11 8.770.7 1772 530750
12 0.9370.15 5.972.0 160760
13 0.4370.04 1.170.3 380760
14 0.3370.20 8.670.9 39713
15 0.01270.002 0.4870.04 2673
16 0.02670.006 0.4170.04 6279
17 110710 780740 150710

a Kinetic constants for p-nitrophenyl substrates were determined by measuring
the change in A412 due to ester hydrolysis. Substrates represent different carbon
chain lengths: p-nitrophenyl acetate (C2), p-nitrophenyl butyrate (C4), p-ni-
trophenyl octanoate (C8), and p-nitrophenyl laurate (C12).

b Kinetic constants for substrates 1–17 were determined by measuring the
increase in fluorogenic enzyme substrate fluorescence over time. Data were fitted
to a standard Michaelis-Menten equation to determine the values for kcat, KM, and
kcat/KM. Kinetic measurements for each substrate were repeated three times and
the values are given 7SE.
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(PDB: 2YH2) with 34% sequence similarity to FTT0941c. For Rap-
torX, the model was constructed based on a template of a unique
carboxylesterase from Ferroplasma (PDB: 3WJ1) with 50% se-
quence similarity to FTT0941c, a p-value of 2.23�10�11, and all
305 residues modeled without disorder. For Phyre2, the heuristic
model was constructed using six different hydrolase templates
(1LZL, 3GA7, 4OB7, 2ZSH, 4KRX, and 4C87) with between 16–26%
sequence identity to FTT041c. For this model, 100% of the 305
residues in FTT041c were modeled with greater than 90%
confidence.
3. Results and discussion

3.1. Francisella specific enzyme family

Phylogenetic analysis of FTT0941c based on amino acid simi-
larity and the presence of conserved motifs placed FTT0941c into
group H of four hydrolase subclasses in the ESTHER database and
Group IV of seven subfamilies of bacterial lipolytic enzymes
[24,25]. In each of these subclassifications, FTT0941c was assigned
to the subgroup of bacterial hormone sensitive lipases (HSL; Pfam:
PF07859), an evolutionarily conserved enzyme superfamily with
high sequence similarity to the catalytic subdomain of human HSL
[24,25]. Structurally, bacterial HSL enzymes are grouped into the
α/β hydrolase fold III subclass and commonly contain an
N-terminal CAP domain helix, determining the substrate specifi-
city, and a C-terminal α/β hydrolase fold, containing the catalytic
triad [24]. Detailed sequence analysis of the FTT0941c protein to a
wide range of bacterial hydrolases, however, showcased the di-
vergence of FTT0941c within the bacterial HSL family (Fig. 1A).
Across gram-negative and gram-positive bacterial species,
FTT0941c had less than 30% overall sequence similarity to each
bacterial hydrolase (Fig. 1A). FTT0941c instead shared high
sequence similarity with other Francisella genus proteins (98% to F.
novicida and 85% to F. philomiragia) and together these three
homologs formed a separate subbranch within the phylogenetic
tree (Fig. 1A).

Although the overall sequence identity of FTT0941c to similar
bacterial proteins is low, specific subregions of the amino acid
sequence are highly conserved, including the regions adjacent to
the proposed catalytic amino acids (Fig. 1B and Supplementary
Table 2). The G-x-S-x-G motif centered on the nucleophilic serine
is nearly universally conserved with GDSAG being the dominant
motif (Fig. 1B). Bacterial HSL members containing this GDSAG
motif are the largest subclass of bacterial HSL enzymes, which has
been subdivided based on the sequence motif surrounding the
catalytic serine [24,26]. Conservation of this catalytic motif around
the nucleophilic serine places FTT0941c firmly into the HSL sub-
family [26]. Yet, wide-variation in catalytic reactivity exists within
the HSL subfamily from true lipases to carboxylesterases to ar-
ylamide hydrolases, making predictions of cellular activity difficult
[24,25]. Overall, FTT0941c is a unique Francisella specific member
of the diverse bacterial HSL family with the conserved sequence
motifs of a bacterial serine hydrolase.

3.2. Biochemical characterization of FTT0941c

To confirm the assignment of FTT0941c as a bacterial hydrolase,
we developed an expression and purification system in Escherichia
coli for FTT0941c that produced 495% pure enzyme in sufficient
yields (�1 mg/L) (Supplementary Fig. 1). The final FTT0941c pro-
tein was well-folded with a clear folded to unfolded transition
with increasing temperature and a Tm value of 53.371.0 °C
(Fig. 1F), which is well above the normal growth temperature of F.
tularensis, but less than many bacterial HSL proteins that are
highly thermally stable [26,27]. The serine hydrolase activity of
FTT0941c was initially characterized using a range of straight-
chain p-nitrophenyl ester substrates from acetate to laurate esters
to subclassify FTT0941c into the general esterase versus lipase
subclasses. (Fig. 1C–E). FTT0941c showed measurable activity
across the full range of substrates with higher turnover rates (kcat
values) against shorter substrates (C2 kcat¼4.670.3 s�1; C4 kcat
¼7.671.2 s�1), but lower Km values for longer carbon substrates
(C8 Km value¼0.1170.07 μM) (Table 1). Weighted together as the
overall catalytic efficiency (kcat/Km), FTT0941c showed broad sub-
strate specificity with nearly identical activity toward p-ni-
trophenyl acetate and octanoate and only a less than 3-fold de-
crease with p-nitrophenyl butyrate (Fig. 1E). Only the longest
carbon substrate (p-nitrophenyl laurate) had significantly de-
creased catalytic efficiency. The increased Km value (1.870.6 μM)
for the longest substrate and decreased overall catalytic efficiency
indicated that FTT0941c was not a lipase with interfacial activation
with large hydrophobic substrates [25,28–30]. Instead, this broad
substrate specificity across alkyl ester substrates subdivided
FTT0941c into the carboxylesterase classification of serine hydro-
lases, encompassing a range of metabolic hydrolysis reactions.

3.3. Comprehensive substrate specificity of FTT0941c

To clarify the substrate specificity of FTT0941c, we utilized a
diverse library of fluorogenic ester substrates (Fig. 2A and B). These
ester substrates based on acyloxymethyl ether fluorescein are
nonfluorescent when ester protected at their phenolic oxygens,
but rapidly produce highly fluorescent fluorescein upon incuba-
tion with a hydrolase such as FTT0941c (Fig. 2A and C) [14,16,31].
The low background fluorescence and high sensitivity of these
substrates allow kinetic measurements for even low activity hy-
drolases against non-optimal substrates [13,15]. The library also
focuses on simple alcohol ester scaffolds of common biological
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ester classes and allows general assignment of hydrolases into
subclasses of hydrolase activity [13,16,32].

Similar to the p-nitrophenyl substrates, FTT0941c showed
classic Michaelis-Menten kinetics across a wide-range of fluoro-
genic substrates (Fig. 2C). Comparison of catalytic efficiency values
across the full range of fluorogenic substrates again reinforces the
broad substrate specificity of FTT0941c with significant measur-
able activity against all 17 substrates (Fig. 2D). FTT0941c showed
highest enzymatic activity against substrates 11 and 13, which
both have six membered cyclic rings appended to their ester bond
(Fig. 2B), but retained comparable activity against other substrates
(3 and 7) with similar overall lengths. Other bacterial hydrolases
tested with the same fluorogenic library have shown only minimal
activity toward these cycloalkyl substrates, suggesting a high de-
gree of selectivity for these substrates by FTT0941c (Fig. 2D)
[13,31,32].

Within the alkyl ester subclass of fluorogenic substrates (Sub-
strates 1–5; blue), FTT0941c showed general enzymatic activity
against all five alkyl esters with no clear size selectivity (Fig. 2D),
matching with the lack of substrate selectivity for short alkyl es-
ters (o10 carbons) observed for p-nitrophenyl ester substrates
(Fig. 1E). This lack of strict length selectivity within alkyl esters
also differentiated FTT0941c from all previous hydrolases char-
acterized against these substrates (Fig. 2D) [13,16,31,32]. The
current substrate library does not, however, differentiate based on
degrees of saturation, which may influence the selectivity for
these short alkyl ester substrates. In comparison to alkyl esters,
higher chemical selectivity was observed with cycloalkyl sub-
strates, where six membered cyclic ring substrates (11 and 13) had
higher activity than four or five-membered cyclic rings (9, 10, and
12) (Fig. 2D; green). The relative attachment distance from the
ester bond to the cycloalkyl ring also influenced the relative cat-
alytic activity of FTT0941c, as insertion of a methylene carbon
between the carbonyl carbon and the phenyl ring decreased the
relative catalytic activity of FTT0941c by almost 10-fold (13 versus
14; Fig. 2D). The catalytic activity of FTT0941c toward six mem-
bered cyclic substrates and its substrate selectivity for small
structural differences in cycloalkyl substrates provided pre-
liminary evidence that six membered cycloalkyl substrates may
represent the natural substrate of FTT0941c.

Homology models of the binding pocket of FTT0941c structu-
rally reinforced the ability of FTT0941c to accept a range of ester
substrates, including bulky cycloalkyl substrates (Fig. 3). Three
Fig. 3. Binding pocket models for FTT0941c. Binding pocket models for FTT0941c were
surface accessible binding pocket is colored with the nucleophilic serine shown in stick
model was constructed based on the structure of an enantioselective esterase from Pyrob
Model, the homology model with the lowest Qmean4 score was chosen for analysis. (B)
template of a unique carboxylesterase from Ferroplasma (PDB:3WJ1) with 50% sequence
modeled without disorder. (C) Phyre2 heuristic model of FTT0941c. Model was constructe
with between 16–26% sequence identity to FTT041c. For this model, all 305 residues of FT
90% confidence.
different homology models were constructed, as each validated
program identified a separate structural template for FTT0941c,
but each structure converged on a similar architecture for the
binding pocket and overall fold for FTT0941c (Fig. 3 and Supple-
mentary Fig. 2). The surface accessible binding pocket of the three
different modeled FTT0941c structures showed a broad, open
binding pocket that can accommodate a range of esters, including
bulky fluorescein derivatives (Fig. 2A). The modeled binding
pockets begin to narrow around the catalytic serine, but still
maintained sufficient width to accommodate the full range of ester
substrates (Fig. 3). Similar to FTT0941c (Figs. 1E and 2D), the
homologous bacterial HSLs used to build the structural homology
models of FTT0941c in Fig. 3A and B also showed broad substrate
specificity toward a range of ester substrates [27,33]. Interestingly,
one close homologue, the enantioselective esterase from Pyr-
obaculum calidifontis, displayed highest catalytic activity against
six-membered aromatic esters with selectivity for cyclic ring at-
tachment (Fig. 3A) [33]. The substrate specificity and enantios-
electivity of this esterase from P. calidifontis was explained based
on broad substrate access tunnels, similar to the broad access
channels modeled for FTT0941c [33].

Among bacterial pathways utilizing six membered ester sub-
strates similar to substrates 11 and 13 and matching with the
binding pocket structure of FTT0941c, multiple metabolic hydro-
lysis steps involving cyclic ester substrates have been hypotheti-
cally assigned to FTT0941c in the KEGG pathway database. These
proposed pathways were hypothetically assigned to FTT0941c
based on analogy to metabolic pathways in similar bacteria and
neighboring gene operons to FTT0941c and include bisphenol
(KEGG entry ftu00363) and aminobenzoate (KEGG entry
ftu00627) degradation pathways [34–36]. These substrates mimic
the ester substrates of 11 and 13 based on ring size and attachment
distance and the selectivity for the hydroxylation on the phenyl
ring may explain the increased activity of FTT0941c toward sub-
strates 7 and 8 (Fig. 2D). Such degradation pathways are not main
metabolic pathways for these bacteria, but have been connected to
metabolic pathways required for growth under opportunistic
metabolic conditions [10,36–38]. The variable identification of
FTT0941 as a virulence gene in F. tularensis based on the screening
conditions may also be reflective of a similar niche metabolic role
for FTT0941c [6–8,11].
constructed using three validated protein modeling programs. In each model, the
s and labeled. (A) Homology model of FTT0941c from Swiss-Model. The homology
aculum calidifontis (PDB:2YH2) with 34% sequence similarity to FTT0941c. For Swiss-
Homology model of FTT0941c from RaptorX. The model was constructed based on a
similarity to FTT0941c, a p-value of 2.23�10�11, and all 305 residues of FTT0941c
d using six different hydrolase templates (1LZL, 3GA7, 4OB7, 2ZSH, 4KRX, and 4C87)
T041c, including the active site and binding pocket, were modeled with greater than



Fig. 4. Identification of the catalytic amino acids for FTT0941c. (A) Thermal stability of FTT0941c variants. The thermal stability of each variant was determined by DSF. The
measurement was completed in triplicate and is shown 7SE. (B) Kinetic activity of FTT0941c variants. The kinetic activity of wild-type FTT0941c (closed circles) and the
S115A variant (open squares) were determined against substrate 3. All measurements were completed in triplicate and are shown 7SE. Data were fitted to the Michaelis-
Menten equation using Graphpad Prism 5.0. (C) Relative catalytic activity of FTT0941c variants. The catalytic activity of each of the FTT0941c variants was determined against
substrates 3 and 11. Detailed kinetic and thermal stability analysis for FTT0941c variants are given in Supplementary Table 1.
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3.4. Assignment of key catalytic amino acids

To begin to define the substrate selectivity profile of FTT0941c,
potential catalytic amino acids were analyzed using substitutional
analysis. Based on sequence alignments and sequence motif ana-
lysis, the nucleophilic serine and general base in the catalytic triad
of FTT0941c were identified as Ser151 and His278, respectively
(Fig. 1B and Supplementary Table 1). The third member of the
catalytic triad, an acidic amino acid involved in stabilizing the
general base, was more difficult to pinpoint, as multiple aspartates
were highly conserved across bacterial homologs. Three different
aspartates (Asp90, Asp248, Asp252) were chosen as potential
catalytic triad members based on sequence conservation and
placement in different structural models of FTT0941c.

Each of these five amino acids was individually substituted with
alanine and the resulting FTT0941c variants were purified to
homogeneity and characterized for thermal stability and enzymatic
activity. All five variants were well-folded with thermal stabilities
within 7 °C of wild-type FTT0941c (Fig. 4) with only the substitution
of His278 for the smaller alanine residue causing any deviation in
stability. As expected, substitution of the nucleophilic serine
(Ser151) or general base (His278) completely ablated the catalytic
activity of FTT0941c toward each fluorogenic substrate (Fig. 4B and
C). Multiple aspartate variants showed complete loss of catalytic
activity, as substitution of each of the two closely spaced aspartates
(Asp248 and Asp252) completely abolished the catalytic activity of
FTT0941c, but substitution of a control aspartate residue (D90A) did
not change the activity toward substrate 3. Based on comparison of
FTT0941c to the recent structure and alignment of a bacterial HSL
enzyme from Lactobacillus plantarum, Asp248 is likely the catalytic
aspartate and is conserved to human HSL [39]. The second Asp252
may, however, play a role in structural stabilization, as observed in a
recent structure of a metagenomic bacterial HSL enzyme [26]. Af-
firming the importance of Asp248 and Asp252 to the catalytic ac-
tivity of FTT0941c, the D90A variant of FTT0941c maintained near
wild-type catalytic activity toward substrate 3. The D90A variant
also showed unexpected substrate selectivity with reduced activity
toward the cycloalkyl ester substrate (11), as compared to the
straight-chain alkyl substrate (3). Homology models for FTT0941c
all placed Asp90 near the edge of the substrate-binding pocket of
FTT0941c with Asp90 potentially playing an interesting role in de-
termining the substrate selectivity of FTT0941c (Supplementary
Fig. 2). Thus, FTT0941c catalyzed the hydrolysis of a range of ester
substrates, using the action of a classic serine (Ser151), histidine
(His278), and aspartate (Asp252) catalytic triad with catalytic as-
sistance from other conserved aspartates.
4. Conclusions

FTT0941c represents a potentially key enzyme involved in the
virulence of the highly deadly bacteria, F. tularensis. Sequence
analysis of FTT0941c grouped this enzyme with other bacterial HSL
enzymes and highlighted the unique amino acid structure of
FTT0941c amongst diverse bacterial hydrolases (Fig. 1A). Purifica-
tion and characterization of FTT0941c confirmed its hydrolase
activity with broad specificity toward alkyl ester substrates from
2 to 8 carbons in length and significant hydrolase activity toward a
wide-range of simple, ester scaffolds, irrespective of the carboxylic
acid moiety off the ester bond (Fig. 1C–E and Fig. 2). FTT0941c had
a classic catalytic triad of Ser115, His278, and Asp248 and main-
tained high folded stability even after substitution (Fig. 1B and C
and Fig. 4). Detailed substrate specificity analysis identified cy-
clohexyl esters, as the highest activity substrate class for FTT0941c,
matching with the identified substrates of modeled homologs and
the modeled, broad binding pocket of FTT0941c. With the pro-
posed involvement of FTT0941c in metabolic pathways and with
the potential utility for prodrug targeting in F. tularensis treatment
[40], our biochemical characterization and substrate specificity
profile of FTT0941c – one of only five hydrolases identified in F.
tularensis – might also be used to refine the chemical structure of
ester based prodrugs for F. tularensis infection.
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