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Abstract: Cell migration plays an important role in the identification of various diseases and physiologi-
cal phenomena in living organisms, such as cancer metastasis, nerve development, immune function,
wound healing, and embryo formulation and development. The study of cell migration with a real-time
microscope generally takes several hours and involves analysis of the movement characteristics by
tracking the positions of cells at each time interval in the images of the observed cells. Morphological
analysis considers the shapes of the cells, and a phase contrast microscope is used to observe the shape
clearly. Therefore, we developed a segmentation and tracking method to perform a kinetic analysis by
considering the morphological transformation of cells. The main features of the algorithm are noise
reduction using a block-matching 3D filtering method, k-means clustering to mitigate the halo signal
that interferes with cell segmentation, and the detection of cell boundaries via active contours, which
is an excellent way to detect boundaries. The reliability of the algorithm developed in this study was
verified using a comparison with the manual tracking results. In addition, the segmentation results
were compared to our method with unsupervised state-of-the-art methods to verify the proposed
segmentation process. As a result of the study, the proposed method had a lower error of less than 40%
compared to the conventional active contour method.

Keywords: cell migration; phase contrast microscope; segmentation; tracking; noise reduction

1. Introduction

Cellular dynamics are important with respect to many biological processes that directly
affect human health [1]. Cell migration is a basic cell function that is the source of cell
life and plays a fundamental role in various diseases [2] and physiological phenomena,
such as cancer metastasis, nerve development, immune function, wound healing, and
embryo formulation [3]. Thus, analysis of the migration characteristics and motility of cells
is essential for physiological and pathological research [4–6]. Analysis of the migration
characteristics of metastatic cancer cells is essential for detecting the deterioration of cancer
cells, and as a basic study, an analysis of the individual motility of each cell is being
conducted [7]. In the case of immune cells, studies on the effectiveness of antigen targeting
and the individual motility of cells to enhance the effectiveness are being conducted [8].
These eukaryotic cells have different motor forms and properties, and although they are
affected by different types of extracellular matrixes, the types of feet that the cells use to
exercise, such as the pseudopodium, characterize their basic motility [9]. The study of these
cell migration characteristics is generally conducted through probabilistic model analyses,
such as persistent random walk and levy walk, by tracking the positions of cells at each
interval in the images of the observed cells after several hours of taking a picture with a
real-time microscope [7,10]. Although cell tracking is an effective method for quantitative
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analysis of cell migration characteristics, this requires a lot of effort and cost. Therefore,
many studies have been conducted on automatic cell tracking methods [11–13].

Recently, research has been conducted on the analysis of migration characteristics
based on the morphological transformation of cells [14]. When cells migrate, they move
through the pseudopodium and lamellipodia, where the shapes of the cells change in
various ways, and studies are being conducted to predict mobility through the probabilistic
calculation of the direction or shape in which they extend [7,15]. Thus, an important goal
is to change the dynamic properties of cells, for example, by suppressing the motility
of parasites. In addition, morphological changes in cells play an important role in the
phagocytosis of immune cells in the antigen or host cells by parasites in the “immune
synapses” [16]. To proceed with these studies, it is necessary to observe the shape of a
cell precisely. Additionally, these depend on accurate information about the cell positions,
requiring computational shape segmentation and tracking methods. Moreover, manual
segmentation or tracking is avoided because these studies analyze a large number of cell
images and require a high level of precision. Since manual segmentation is subjective,
errors can occur, especially when analyzing cell movement characteristics at short intervals,
resulting in relatively large errors.

To perform a kinetic analysis considering the morphological transformation of cells, it
is necessary to detect and consider all the pseudopodium, podosomes, etc., to determine
the shape of the entire cell. A microscope is needed to observe these structures, and phase
contrast microscopes can be used to visualize a particular structure (such as a filament) [17].
Thin, transparent areas, such as the pseudopodium, can be observed more clearly [18].
Therefore, phase-contrast microscopic images are utilized in many cell migration studies
because they are easy to analyze using images [19].

However, in phase contrast microscopy, a favorable high contrast at the cell boundary
leads to problems, such as halo patterns, which can complicate cell segmentation [20]. While
segmentation techniques are becoming increasingly common in the field of fluorescence
microscopy, less accurate and robust methods have been developed for segmenting in
phase-contrast images. Several methods have been developed for detecting and counting
or tracking cells in a phase contrast image, but the focus has not been on detecting the
shapes of cells [21–29]. In particular, there are not many studies that have conducted precise
segmentation considering halo effects and it is rare to fundamentally eliminate the halo
effect itself [30–33]. State-of-the-art techniques include deep learning-based supervised
learning methods that are learned with correct answers and unsupervised methods using
threshold values. Since our task is an unsupervised learning method, we compare the
Empirical Gradient Threshold [29] (EGT) method using image histogram and the phase
contrast microscopy segmentation toolbox [33] (PHANTAST) method using local contrast
thresholding and halo effect removal with the proposed method.

It is necessary to obtain a boundary to detect the shape of an object in an image. Several
segmentation methods, including active contour, which is a precise high-performance
technique, have been recently employed. In addition to the cell detection, the active
contour method is widely used as a method for detecting objects in various fields such
as skin disease detection, tumor detection, heart detection, etc. [34,35]. In our study, the
active contour model was adopted to precisely segment and detect the boundary of cells.
However, since the active contour method requires an initial point for each object, it is
difficult to implement when the number of cells is large. Therefore, we are limited to single
cell research.

When an active contour method is applied to phase contrast microscopic images, it
is difficult to distinguish between the cell boundaries and the halo. The contrast varies
depending on the thickness or substance of the boundary in a cell, which makes the
halo effect less constant [36]. Because of this, non-uniform results are obtained while
calculating the energy value of the boundary required by the active contour. Therefore,
this study proposes a novel method to eliminate the halo effect itself to solve this halo
effect. Using the K-means clustering method, which is a machine learning (ML) method
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that is mathematically simple and rapidly calculated and converged and can be easily
implemented [37], only the halo effect is extracted and removed. By eliminating halo effects,
the active contour model, which guarantees excellent performance for precise segmentation,
but was difficult to use due to its dependence on initial value, was easily available and
precise segmentation was performed. The K-means clustering method is particularly
widely used for classification purposes in data statistics and analysis studies, and also
for image segmentation purposes such as cell nucleus extraction and white blood cells
extraction in imaging fields [38]. It is mainly used for the purpose of obtaining a desired
target, but our study shows a new applicability in that it was used as a pre-processing
method to remove specific problem phenomena.

In summary, the contributions of our proposed work are as follows:

1. An active contour model showing strong performance in shape detection was used
for acquiring the shape of the cell in a phase contrast microscope.

2. Since the halo effect that occurs in the phase contrast microscope interferes with the
precise segmentation of the cell shape, we propose a solution to remove it.

3. The conventional methods have performed the segmentation for the cell boundary
through various complex image processing techniques that distinguish between the
halo effect and the cell boundary. In this work, we propose a novel method that uses
the ML technique K-means clustering method to separate and correct halo effects
from the background signals and cell boundaries, eliminating the basic problem cause
itself after denoising.

4. The method of this study, which performed segmentation by removing the halo
effect, was verified by comparing two methods, the method performed by the manual
method, which is a basic method and is used a ground truth for the proposed method,
and the method performed by segmentation without removing the halo effect.

5. The results ensure the novelty and reliability of the method proposed in this study.

In the following chapters, we described the process through which the shapes of
cells can be accurately detected. First, the noise in the microscope image is removed, and
background correction is utilized to mitigate the halo signal. Second, the shape of the cell
is detected using the active contour method, followed by the center of mass. Based on
the manual tracking results, we compared the tracking results of the images where the
halo signal was not removed with those where it was removed and verify the reliability
of the algorithms developed in this study. Furthermore, we verified the effectiveness of
segmentation through comparisons with other state-of-the-art techniques. Finally, the
paper concludes with future works.

2. Materials and Methods
2.1. Sample Preparation and Experiment

The immortalized line of human T lymphocyte cells, Jurkat cells, was selected for
tracking. The Jurkat cells were cultured in Roswell Park Memorial Institute 1640 medium
(Gibco, Grand Island, New York, USA), supplemented with 10% (v/v) fetal bovine serum
(Gibco, Grand Island, New York, USA), 1% (v/v) penicillin–streptomycin (Invitrogen,
Carlsbad, California, USA), 1% 1M HEPES (Gibco, Grand Island, New York, USA), 1%
MEM non-essential amino acid solution (Gibco, Grand Island, New York, USA), and
1% sodium pyruvate (Gibco, Grand Island, New York, USA). They were subsequently
incubated at 37 ◦C in 5% CO2.

After attaching the Jurkat cells to a 60∅ dish coated with fibronectin human plasma
(Sigma, St. Louis, Missouri, USA) at 20 µg/mL, the camera started capturing it after 30 min
of stabilization. A confluency of 2% was used to ensure a sufficient distance between cells.
Before stabilizing the cell, a live cell microscopic device (OKOLAB, Ottaviano, NA, Italy)
was employed for sufficient heating of the device. A Nikon TE1000 microscope with a 10×
phase contrast microscope (Nikon, Minato-ku, Tokyo, Japan) was utilized for image cell
migration using a charge-coupled device camera. Images were taken every 2 min for 4 h,
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and we used the perfect focus system in the microscope to avoid the defocus problem from
long-lasting capture.

2.2. Image Acquisition and Processing

Image processing algorithms were implemented using the MATLAB and Image Pro-
cessing Toolbox Release 2019b. Multiple cell images, taken using phase-contrast micro-
scopes, were saved by cropping each individual cell. A tracking process was conducted for
each cell. The entire pipeline, i.e., the process of cropping an image from the entire image
to each cell described earlier, is presented in Figure 1.

Figure 1. Entire pipeline of the cell segmentation and tracking algorithm. (a) is a denoised original
image, which is obtained using the method described in the next section. (b) shows Halo effect
elimination image. After denoising, the Halo effect remains, and Halo effect elimination is performed.
(c) is the edge detection process. (d) shows the center point finding for cell tracking. (e) shows the
cell tracking result using the proposed methods.

2.2.1. Denoising

In microscopic images, noise can be modeled mainly as a Poisson and Gaussian
distribution. Gaussian noise can be modeled as an additive and an independent form in the
images, whereas Poisson noise can be modeled as a multiplicative and image-dependent
form, which is difficult to handle. To eliminate these noises, three steps were performed.

The first step is noise estimation, which estimates the variance of Gaussian noise and
Poisson noise [39]. In the noise estimation step, the image is divided into several patches,
and each patch’s noise component and variance are calculated locally. By fitting this
result to the estimated value of the noise component of the original image, the total noise
component can be estimated. The following step is an Anscombe transformation [40] step,
which is a variance-stabilizing transformation. Through the Anscombe transformation, the
variance of the Poisson noise is fixed at a constant value, such as the variance of Gaussian
noise. Therefore, scanning transmission electron microscopy images can be modeled to
have Gaussian noise only. The final step is block matching 3D (BM3D) filtering, an effective
denoising method for Gaussian noise [41]. Figure 2 presents a flowchart of BM3D filtering.
BM3D filtering consists of two main stages.

Figure 2. BM3D flowchart. Adapted from ref. [41].
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The first stage is to organize images into blocks, group them into a 3D formation, and
co-filter them to create images for use in the second stage. The distance between the blocks
is calculated, and blocks smaller than a certain thresholding value are set to similar blocks.
The distance between the blocks can be calculated as follows:

Distnoisy (BxR , Bx) =
‖BxR − Bx‖2

2(
Nht

1
)2 (1)

where ‖·‖2 is the l2 − norm, BxR is the reference block for xR ∈ X, Bx is the block for x ∈ X,
and Nht

1 indicates the length of the image. If ZxR and Zx do not overlap, this distance can
be expressed as a chi-squared random variable. The expected values and variance of the
distance are expressed as follows:

E
{

Distnoisy(BxR , Bx)
}
= Distnoisy(BxR , Bx) + 2σ2 (2)

Var
{

Distnoisy(BxR , Bx)
}
=

8σ4(
Nht

1
)2 +

8σ2Distnoisy(BxR , Bx)(
Nht

1
)2 (3)

However, the probability densities of other Distnoisy(BxR , Bx) are likely to be severely
overlapped by a relatively large sigma or small N. To solve this problem, coarse prefiltering
is used to measure the distance between two blocks. Coarse prefiltering involves the
application of a normalized 2D linear transformation to the blocks and hard thresholding
of the obtained coefficient values. The applied distance expression is as follows:

Dist(BxR , Bx) =
‖γ
(

Tht
2D(BxR)

)
− γ

(
Tht

2D(Bx)
)
‖

2

2(
Nht

1
)2 (4)

where γ is a hard thresholding operator, and Tht
2D is a normalized 2D linear transformation.

The results, grouped into block matching, are expressed as a set containing blocks similar
to BxR as follows:

Sht
xR

=
{

x ∈ X : d(BxR , Bx) ≤ τht
match

}
(5)

To construct the Nht
1 × Nht

1 ×
∣∣∣Sht

xR

∣∣∣-sized 3D block, group BSht
xR

is obtained by stacking

matched blocks Bx∈Sht
xR

. Co-filtering on group BSht
xR

was performed in the 3D transformation

area. The formula is expressed as follows:

Ŷht
xR

= Tht
3D
−1(γ(Tht

3D(BSht
xR
))) (6)

where Tht
3D is a 3D transformation, Tht

3D
−1 is an inverse 3D transformation, and Ŷht

xR
is a

co-filtered group estimate.
In aggregation, which is the last step of the first stage, the basic estimate of the actual

image is calculated using a weighted analysis of all the overlapped block unit estimates.
The weight values for the group estimates are as follows:

wht
xR

=

{ 1
σ2 NxR

ht
, i f NxR

ht ≥ 1

1, otherwise
(7)

where NxR
ht is the number of non-zero coefficients after hard thresholding.

The overall basic estimate, ŷbasic, is available as the weighted average of the block-unit
estimate.

ŷbasic(x) =
∑xR∈X ∑xm∈Sht

xR
wht

xR
Ŷht,xR

xm (x)

∑xR∈X ∑xm∈Sht
xR

wht
xR

κxm(x)
(8)
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where κxm : X → {0, 1} is the characteristic function of the square support in blocks
located at xm ∈ X.

In the second stage, improved grouping and co-Wiener filtering were performed using
the basic estimates obtained in the first stage. Because the noise in ŷbasic is assumed to be
significantly reduced, the distance is replaced by the square of the normalized l2 − norm
calculated within the underlying estimate. The block set for co-Wiener filtering is calculated
as follows:

Swien
xR

= {x ∈ X :
‖Ŷbasic

xR
− Ŷbasic

x ‖2
2(

Nwien
1

)2 ≤ τwien
match} (9)

where set Swien
xR

is used to divide Ŷbasic
Swien

xR
and BSwien

xR
into two groups.

The Wiener shrinkage coefficients can be obtained as follows:

WSwien
xR

=

∣∣∣∣Twien
3D

(
Ŷbasic

Swien
xR

)∣∣∣∣2∣∣∣∣Twien
3D

(
Ŷbasic

Swien
xR

)∣∣∣∣2 + σ2

(10)

The co-Wiener filtering of BSwien
xR

is implemented as an element-wise multiplication of

the 3D transform coefficient Twien
3D (BSwien

xR
) of noisy data with Wiener shrinkage coefficient

WSwien
xR

. Subsequently, the inverse transform, T, produces the following group estimates:

Ŷwien
Swien

xR
= Twien

3D
−1(WSwien

xR
Twien

3D (BSwien
xR

)) (11)

In step 2, aggregation is performed similarly to step 1, resulting in the final estimate,
ŷ f inal . The weight value applied to each xR ∈ X is expressed as follows:

wwien
xR

= σ−2‖WSwien
xR
‖2

2
(12)

Finally, ŷ f inal can be obtained using the weights obtained as follows:

ŷ f inal(x) =
∑xR∈X ∑xm∈Swien

xR
wwien

xR
Ŷwien,xR

xm (x)

∑xR∈X ∑xm∈Swien
xR

wwien
xR

κxm(x)
(13)

2.2.2. Halo Effect Elimination

Figure 1b depicts the process for removing the halo effect, which has been the focus of
this study. Statistical classification of the signal characteristics of each grid is performed
using image patch grids that show only the background or categorize the signal char-
acteristics of each grid as a mixture of background and background pixels. Thereafter,
the K-means clustering method [42] was employed to classify a given set of data using a
predetermined number of clusters to estimate the background signal and correct the halo
signal as a background signal. The detailed process is illustrated in Figure 3.
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Figure 3. Background correction algorithm. (a) Original image, (b) sub-image “Tiles,” (c) divide two
clusters using K-means clustering, (d) only background signal, and (e) divide original image into
background image.

The image array, I(x,t), of 255 bits is divided by the sub-image ‘tile’, as shown in
Figure 3b. The intensity distribution of the tiles differs between the signal and the back-
ground. These tiles are divided using statistical classification and returned to two clusters
using the K-means clustering method. As shown in Figure 3c, background tiles are col-
lected in low-density volumes because they are almost identical in statistical distribution.
The mean intensity of the tiles that are classified as belonging to the background is defined
as the background image, B(x,t), and the original image, I(x,t), is divided by B(x,t). Steps
(d) and (e) in Figure 3 are shown in Figure 4. In I(x,t) and B(x,t),the signal corresponding to
the cell in I(x,t) is smaller than 1 and closer to 0 because the signal that corresponds to the
cell in I(x,t) is smaller than B(x,t). The signal corresponding to the halo of I(x,t) has a value
greater than B(x,t); hence, it is divided by a value greater than 1, and a value greater than
1 is specified as a signal similar to the background signal. When this result is imaged, as
shown in Figure 3e, the background and image of the cell morphology with the halo effect
removed are derived.

Figure 4. Cell signal after background correction.

2.2.3. Edge Detection of Cells

As shown in Figure 1c, an active contour method was used to detect the shape of
a cell in the image that had been removed from the halo effect. Localizing region-based
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active contour [43] was applied to develop the method devised by Chan–Vese [44]. The
total governance formula can be expressed as follows:

E(C1, C2, φ) = µ
∫

δ(φ)|∇φ|dx + ν
∫

H(φ)dx
+λ1

∫
|u0 − C1|2H(φ)dx + λ2

∫
|u0 − C2|2(1− H(φ))dx

(14)

C1(φ) =

∫
u0(x)H(φ(x))dx∫

H(φ(x))dx
, C2(φ) =

∫
u0(x)(1− H(φ(x)))dx∫

(1− H(φ(x)))dx
(15)

∂φ

∂t
= δ(φ)

{
µ∇·

(
∇φ

|∇φ|

)
− ν− λ1(u0 − C1)

2 + λ2(u0 − C2)
2
}

= 0 (16)

The Chan–Vese method is simplified into a stair function in the Mumford–Shah [45]
method, and the level set method is applied. C1 and C2 are the mean values of intensity
inside and outside and are defined by formula (15). As shown in Equation (16), the active
contour finds that the energy is minimal, which is the boundary of an object.

In the Chan–Vese method, the method developed based on the localized region is
expressed as follows:

C1(φ) =

∫
B(x, y)u0(x)H(φ(x))dx∫

B(x, y)H(φ(x))dx
, C2(φ) =

∫
B(x, y)u0(x)(1− H(φ(x)))dx∫

B(x, y)(1− H(φ(x)))dx
(17)

B(x, y) =

{
1, |x− y| < r
0, otherwise

(18)

As the active contour converges, it is calculated by considering only the regions within
the r range at the initial mask image boundary as a function of B(x,y). In Figure 1d, the
mass center was calculated by considering all of the calculated cell boundary coordinates
to the internal coordinates, and this was taken as the center point of the cell. If the center
points of the cell images are crossed over time, the path of cell movement can be identified,
as shown in Figure 1e. This process is automatically performed in one parameter setting.

3. Results and Discussion

After obtaining microscopic images, we performed denoising, halo effect removal, and
segmentation for tracking the cells with the MATLAB program according to the algorithmic
flow chart described in Figure 1. First, we verified the effectiveness of denoising and halo
effect removal. Second, we validated how the denoising and halo effect removal, which
were performed earlier, affect segmentation. Finally, the proposed method, manual tracking,
and active contour method without the halo effect removal were compared to analyze the
cell migration.

Figure 5 presents the denoising results obtained when Poisson-Gaussian noise is removed
using the block matching 3D method and the halo effect removal results. Figure 5a shows an
original phase contrast microscopic image for analyzing cell migration, and Figure 5b presents
the denoising results. Whereas the original image presented some noises, the denoised image
exhibited noise reduction. However, we note that the halo effect still remained. Therefore, we
performed additional halo effect removal. Figure 5c,d present the halo effect removal results
with denoising and without denoising to validate the effectiveness of the denoising process.
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Figure 5. Noise and halo effect removal results: (a) Original phase contrast microscopic image.
(b) Denoised image. (c) Halo effect removal without denoising. (d) Halo effect removal with denoising.

After preprocessing, we performed segmentation to track the cells. Figure 6 presents
the segmentation results compared to other methods. The active contour, EGT, and PHAN-
TAST methods and the proposed methods were used for comparison. All parameters were
adjusted to the manual based on the default value. The Figure 6a column shows the original
phase contrast microscopic image that has long pseudopodium with noise and halo effect.
The segmentation results using the active contour method are shown in Figure 6b. The
active contour method could not properly segment the cells with pseudopodium affected
by the halo effect. The Figure 6c,d columns present the results of EGT and PHANTAST
method. The EGT method roughly segmented the pseudopodium, but due to the halo
effect, the cell contours were not properly segmented. Although the PHANTAST method
lowered the halo effect, some errors still remain around the cell contour. Moreover, PHAN-
TAST method contains various parameters so that it is hard to optimize the performance.
By contrast, the proposed method significantly reduced the halo effect and segmented the
cell contours precisely including pseudopodium (see the Figure 6e column).

Figure 6. Comparison of segmentation results for different methods. Each column represents the same method results.
(a) Original phase contrast microscopic image. (b) Segmentation result with active contour method. (c) EGT method. (d)
PHANTAST method. (e) Proposed method.
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Figure 7 presents the trajectories obtained as the result of tracking the center points
of the cells calculated from the detected results. Manual tracking results (blue line) using
ImageJ, which were obtained by drawing along the border of the cells with direct hands
and calculating the center of mass, were compared with the results of tracking without
removing the halo effect (green line) and the methods applied in this study (red line). We
observe that the green line has a greater difference from the blue line than the red line.

Figure 7. Trajectories of four cells. Each coordinate was represented by normalizing with respect to the starting point. The
red line represents the proposed method, the green line represents the method that uses active contour only, and the blue
line represents the results tracked manually.

The results of the comparison of the coordinate values of the trajectories are presented
in Table 1. Cell tracking was performed in five cells. A is the difference between the results
of manual tracking and the proposed method in the coordinate data at each time step
location, and B is the difference between the results of manual tracking and the results
of the active contour method only. The average and maximum values of A and B are
compared. For the case of the average value of the errors, the result of A exhibited less
than 0.5 pixels precision from 0.25 to 0.45 pixels, and B exhibited less precision than A
from 0.32 to 0.83 pixels. For the maximum value of the difference, A is from 1.13 pixels to
2.68 pixels and B is from 1.15 pixels to 4.49 pixels. Further, we compared a variance of A
and B. The variance of A ranges from 0.04 to 0.17, and the variance of B ranges from 0.06
to 0.39. Using active contour only yields a greater difference from the results of manual
tracking, and the results of the proposed method were more accurate.
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Table 1. Comparison of the proposed work and without background correction.

Cell Number

Parameter
A = |Manual − Proposed Method| B = |Manual − Active Contour Only|

Average
(Pixel)

Max Diff.
(Pixel)

Variance
(Pixel)

Average
(Pixel)

Max Diff.
(Pixel)

Variance
(Pixel)

1 0.435 2.185 0.164 0.831 2.974 0.331

2 0.332 1.607 0.088 0.560 1.847 0.150

3 0.372 1.893 0.128 0.634 2.090 0.120

4 0.257 1.139 0.043 0.322 1.159 0.067

5 0.428 2.682 0.169 0.771 4.495 0.398

Average 0.364 1.901 0.118 0.623 2.513 0.213

4. Conclusions

In this paper, we present an effective cell segmentation and tracking method for
phase-contrast microscopic images. Segmentation and tracking are designed to alleviate
noise and halo effects, which are problematic for segmentation using active contours in
phase-contrast microscopic images. In the phase-contrast microscopic image, noise was
modeled as a Poisson and Gaussian distributions. Therefore, to reduce these noises, noise
estimation, Anscombe transform, and BM3D were performed. Additionally, we performed
the background correction by solving the hallo effect problem through k-means clustering,
a machine learning technique that has strong performance, can be easily implemented
and requires less computation. By comparing EGT and PHANTAST, state-of-the-art un-
supervised learning methods with the proposed method, we confirmed that our method
segments cells effectively considering the pseudopodium. Furthermore, we confirmed that
the comparison with manual tracking allows the detection of more accurate boundaries;
moreover, we verified the reliability of the algorithm developed in this study. The proposed
method outperforms the manual method of directly obtaining cell shapes in terms of
time cost of segmentation, and is also highly applicable because it performs with simple
algorithms although it is excellent and is performed automatically. It is expected that the
cell shape can be accurately detected and utilized for analysis of the motility of the cell
considering the shape, rather than analysis via simple location tracking. In addition, the
halo effect removal algorithm presented in this study can be employed for cell counting or
morphology in phase-contrast microscopic images.

However, in this study, there is a limitation that it is applied only to a single cell, and if
there is a circular object, it is difficult to segment it well since the initial point is located by
the circular detection algorithm. In a future study, we will apply the algorithm developed
in this study to cell images of various types and shapes to optimize them so that they can
be used more diversely and generally.
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