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ABSTRACT

Transpositions transfer DNA segments between dif-
ferent loci within a genome; in particular, when
a transposition is found in a sample but not in
a reference genome, it is called a non-reference
transposition. They are important structural varia-
tions that have clinical impact. Transpositions can
be called by analyzing second generation high-
throughput sequencing datasets. Current methods
follow either a database-based or a database-free ap-
proach. Database-based methods require a database
of transposable elements. Some of them have good
specificity; however this approach cannot detect
novel transpositions, and it requires a good database
of transposable elements, which is not yet available
for many species. Database-free methods perform de
novo calling of transpositions, but their accuracy is
low. We observe that this is due to the misalign-
ment of the reads; since reads are short and the
human genome has many repeats, false alignments
create false positive predictions while missing align-
ments reduce the true positive rate. This paper pro-
poses new techniques to improve database-free non-
reference transposition calling: first, we propose a
realignment strategy called one-end remapping that
corrects the alignments of reads in interspersed re-
peats; second, we propose a SNV-aware filter that re-
moves some incorrectly aligned reads. By combining
these two techniques and other techniques like clus-
tering and positive-to-negative ratio filter, our pro-
posed transposition caller TranSurVeyor shows at
least 3.1-fold improvement in terms of F1-score over
existing database-free methods. More importantly,
even though TranSurVeyor does not use databases
of prior information, its performance is at least as

good as existing database-based methods such as
MELT, Mobster and Retroseq. We also illustrate that
TranSurVeyor can discover transpositions that are
not known in the current database.

INTRODUCTION

A transposition is a type of structural variation (SV), which
transfers a DNA fragment from one locus into another. Al-
though not as frequent as other variations such as single-
nucleotide variant (SNVs) and small indels (each individ-
ual is expected to have one million of SNVs and hundreds
of thousands of small indels (1)), they account for a number
of genetic diseases. For example, they have been observed to
occur in diseases related to the central nervous system (2), in
hemophilia (3) and cancers such as colon (4), colorectal (5),
gastrointestinal (6) and many others (7). For more informa-
tion on genomic elements that commonly cause transposi-
tions and their classification, see (8–10).

Transposition events can be classified into ancient and
immobile (i.e. reference insertions) or active and polymor-
phic (i.e. non-reference insertions). Reference transposi-
tions appear in the reference genome but not in the ana-
lyzed sample, while non-reference appear in the sample but
not in the reference. SV callers normally predict the former
as deletions, and the latter as insertions or transpositions. In
this work, we focused on non-reference transpositions and
we will simply refer to them as transpositions.

Transpositions can be predicted from high-throughput
sequencing. There are two strategies: third generation and
second generation sequencing. Third generation sequenc-
ing, such as single-molecule real-time sequencing by Pacific
BioSciences that enables us to sequence reads of length up
to tens of thousands of base pairs, and transpositions can be
discovered by aligning such reads on the reference genome
(11). However, their usage is limited by problems such as
a higher amount of DNA required, a more difficult library
preparation step, a higher error rate and a higher cost (12).
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Another strategy is to discover transpositions by align-
ing short paired-end reads generated from second genera-
tion sequencing (i.e. Illumina sequencing). Second genera-
tion sequencing is cheap, high-throughput and robust. It is
routinely used to discover SNVs and small indels; unfortu-
nately, since the reads are short and more than half of the
human genome is made of repeats (10,13), many false posi-
tive transpositions are predicted while many true transposi-
tions are missed. This motivates us to study the possibility
of improving transposition calling using short paired-end
reads.

The problem of calling transpositions using second gen-
eration sequencing has been well-studied in the last decade.
Current methods follow either a database-based (DB-
based) or a database-free (DB-free) approach.

DB-based methods predict transpositions with the help
of prior knowledge. Most existing methods require a known
list of transposable elements or the target site duplication se-
quences. These methods include: PoPoolation TE (14), TE-
locate (15), RetroSeq (16), TEMP (17), Mobster (18), TIF
(19), ITIS (20) and MELT (21). Ewing (22) gave a survey of
20 such methods.

Although DB-based methods can call known transposi-
tions accurately, they have severe drawbacks since (i) the
database of transposable elements is unknown for some
species and (ii) even when a database is available, they may
miss novel transpositions.

To solve the problem, we use a DB-free approach.
DB-free methods call transpositions by solely analyzing
the sequencing dataset; such methods include general SV
callers. Classical SV callers include PEM (23), break-
dancer (24) and CREST (25). Currently, Lumpy (26) and
Delly (27) are popular methods; recent surveys on the
topic can be found in (28,29). To the best of our knowl-
edge, DD DETECTION (30) is the only DB-free spe-
cialized transposition caller. Unlike general SV callers,
DD DETECTION only predicts the insertion sites, but
does not identify the source of the transposition nor the in-
serted sequence.

The performance of existing DB-free methods (i.e.
DD DETECTION and the existing SV callers) is not good
in practice, as we show in the ‘Results’ section using the
benchmark datasets from HX1 (31) and the Genome in a
bottle (GIAB) project (32). The major problem is on the
alignment of reads: as transposable elements have multiple
copies in our genome, reads do not align properly, which
causes low accuracy.

In this paper, we develop an improved DB-free transpo-
sition caller. We propose two new techniques. First, we pro-
pose a realignment strategy that corrects the alignments of
reads in interspersed repeats. Second, we propose a SNV-
aware filter that removes some incorrectly aligned reads in
repeat regions. By combining these two techniques with
other techniques like clustering and positive-to-negative ra-
tio, we propose an accurate transposition caller, TranSur-
Veyor. Among all DB-free transposition callers tested,
TranSurVeyor shows at least 3.1-fold improvement over the
second best method in terms of F1-score. Even when com-
pared to DB-based methods such as MELT, Mobster and
Retroseq, TranSurVeyor’s F1-score is better in all tested
datasets.

MATERIALS AND METHODS

A major challenge in transposition calling

Although many DB-free callers that predict transpositions
using paired-end short reads exist, they show poor perfor-
mance when they are applied to real datasets. One reason for
this is the fact that for most transpositions the inserted se-
quence is present in multiple copies throughout the genome.

It is known that the inserted sequences of many trans-
positions are repetitive. For instance, mobile elements (13),
which are frequently transposed, have many similar copies
in the reference genome. Another example is interspersed
duplications of low-complexity regions, which may also be
present in many copies in the reference.

In the following, we discuss why DB-free callers have dif-
ficulty calling transpositions whose inserted sequences have
multiple copies: the reason is due to misalignment. DB-free
callers normally expect a number of ‘discordant’ read pairs
supporting the event, i.e. pairs having one read mapped near
the insertion site of the transposition and the other mapped
to the source of the inserted sequence (see ‘Overview of
the method’ and ‘Discordant read pairs and clipped reads
identification’ sections for a technical definition of discor-
dant pair). However, when a repetitive sequence is trans-
posed into a unique region of the genome, we will have
some discordant read pairs where one end is confidently
mapped to the unique region (we call this the stable end
of the pair), while the other end is randomly mapped to
one of many possible loci (we call this the unstable end)
where the repetitive inserted sequence appears in the ref-
erence genome. This situation is illustrated as an example
in Figure 1, where a transposition transfers a segment from
chr2 to chr1 (see Figure 1A). Three discordant pairs should
link chr1 and chr2. However, while chr1 has three reads (sta-
ble ends) aligned on it, chr2 only has one. The other two
unstable ends can map equally well on different loci, so one
of them was randomly chosen by the aligner.

Specialized DB-based tools are normally designed to deal
with this. However, DB-free callers are not, and these incor-
rectly aligned discordant read pairs will support false trans-
position events (e.g. chr7 in Figure 1B). At the same time,
the mis-alignment also reduces the number of discordant
read pairs that support the true transposition events.

This may cause DB-free callers to fail detecting the trans-
positions. In ‘DB-free callers miss transpositions whose in-
serted sequences appear in multiple copies in the reference’
section we experimentally verify that most transpositions
missed by the tested DB-free SV callers are indeed present
in multiple copies in the reference.

Overview of the method

We propose a DB-free method, TranSurVeyor, that finds
transpositions given the alignments of second generation
reads to a reference genome. Figure 2 illustrates the flow of
TranSurVeyor. Given a BAM file, TranSurVeyor performs
five steps: (i) Discordant read pairs and clipped reads iden-
tification, (ii) Mismatch filter, (iii) One-end remapping, (iv)
Predicting candidate transpositions by clustering and (v)
Positive-to-negative ratio filter.
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Figure 1. A simple example of one-end remapping. (A) A sequence is inserted from chromosome 2 into chromosome 1. The same sequence appears, with
some differences, in chr11; furthermore, the first (blue) half of the sequence appears also in chr7. (B) Although all the reverse mapping reads come from
chr2, the gray read maps equally well to chr7, so it is randomly placed there; similarly the green read is mapped to chr11. (C) Assume for the sake of
simplicity all reads are 100 bp long, and we award 2 points for a match and −2 for a mismatch. All reads align perfectly to chr2, so they get 200 points; on
the other end, the green read cannot align to chr7 (near-zero score) while the black read only partially aligns to chr7 (140 points); all reads align to chr11,
but the gray and the black reads do so with mismatches (188 and 192 points respectively). (D) Since it yields the best overall alignment, chr2 is chosen.

Figure 2. The steps of TranSurVeyor.

(i) Discordant read pairs and clipped reads identification:
this step identifies read pairs and reads that aligned ab-
normally. These reads potentially support the transpo-
sitions.

(ii) Mismatch filter: some of the discordant read pairs
identified from step (i) may be noise. This step filters
the read pairs based on whether the reads display the
same SNVs at the same positions.

(iii) One-end remapping: as shown in previous section, for
some discordant read pairs, one of their ends may
be aligned incorrectly. By a technique named one-end
remapping, we realign these read pairs.

(iv) Predicting candidate transpositions by clustering: this
step groups discordant read pairs if they support the
same transposition. We group the discordant read
pairs by a simple clustering algorithm; then, candidate
transpositions are produced.

(v) Positive-to-negative ratio filter: this filtering step scores
every candidate transposition and determine if we re-
port it. Precisely, for each candidate transposition, we

determine if we accept it by computing a positive-to-
negative ratio.

Below, we detail these five steps.

Discordant read pairs and clipped reads identification. Dis-
cordant read pairs are pairs of reads that map inconsistently
to the library preparation parameters, i.e. they map signifi-
cantly outside the expected range of insert size distribution
or on two different chromosomes. They potentially support
the presence of transpositions. Given the BAM file, we find
these discordant read pairs in two phases.

In the first phase, we extract discordant read pairs directly
from the BAM file. For the purpose of detecting transpo-
sitions, we identify a subset of discordant read pairs such
that (i) the two mates map on different chromosomes or (ii)
the distance between the mapping loci of the two mates is
greater than � (by default δ = 100 kbp).

In the second phase, we examine clipped reads, i.e. reads
that are only partially aligned onto the reference genome.
First, clipped reads are clustered by their clip positions; pre-
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Figure 3. Suppose we set a maximum sequencing error rate (platform de-
pendant) of 4%, and the reads are 100 bp long. Read 3 has 1 base (T),
which is different from the consensus (A), hence, Read 3 has 1 mistake out
of 100 bases (i.e. error rate = 1%) and we keep Read 3. On the other hand,
Read 1 has 5 mistakes out of 100 bases (i.e. error rate = 5%); this is higher
than our maximum accepted error rate, and we remove Read 1.

cisely, the clipped reads are partitioned into left-clipped (i.e.
their left part is clipped) and right-clipped (their right part
is clipped). Then, left-clipped (respectively, right-clipped)
reads are clustered so that their left (respectively, right)-end
coordinates are within 10 bp from each other. We call such
cluster the anchor of the clip. The consensus clip is then
computed by simply piling up all the clipped portions of
the reads in each cluster and taking the consensus sequence.
Second, for each cluster, the consensus clip is realigned on
the reference genome using BWA-MEM (33). If the realign-
ment is successful, an artificial discordant read pair is cre-
ated such that (i) one mate is the realigned consensus clip
and (ii) one mate is the anchor of the clip.

Mismatch filter. From the previous step, a set of discor-
dant read pairs is identified. Some discordant read pairs
may be noise, which can create false positives. This step aims
to determine if a discordant read pair is noise by checking
if its SNVs are compatible with the SNVs of other reads in
the same region.

Our basic assumption is that most reads are mapped cor-
rectly. In order to decide if a read r is misaligned or not,
we compare it to the reads mapped in the same area. More
specifically, for each base b in r we compare it to the bases
mapped to the same genomic position on the reference; if b
agrees with less than p% of them, we call it an error. If a read
r has more than � · length(r) errors then we filter it. p must
be set to account for the ploidy of the input; by default, it is
set to 40 to handle diploid inputs. � is the maximum error
rate of the sequencing platform; the default is set to 0.04 for
Illumina platform. Figure 3 gives an example to illustrate
this idea.

One-end remapping. From the ‘A major challenge in trans-
position calling’ section, we know that discordant read pairs
supporting a transposition event often share one of their
ends (stable ends), i.e. one of their ends map close to each
other, while the other ends map to distant loci (unstable
ends). During the clustering step, because of the unstable
ends, these pairs are not clustered together and create two
possible problems: either many events are called, creating
false positives, or the support is so spread-out that no event
has enough support to be called. The aim of the one-end
remapping is to find a common locus where the majority of
the unstable ends can be remapped.

Let � and � be the mean and the standard deviation of
the insert (also called fragment) size distribution of the li-
brary, and let maxIS be � + 3� (maxIS stands for max-
imum insert size). Assuming the insert size distribution is
normal, we expect that the vast majority of the read pairs

will have insert size less than or equal to maxIS and it is
unlikely that two reads distant more than maxIS can sup-
port a same breakpoint. This is why maxIS will normally be
used as the maximum distance for two reads to be clustered
together.

The input to this step is a set of discordant read pairs. The
algorithm proceeds as follows. First, we label as stable the
read in a pair having the highest mapping quality; this sim-
ple strategy classifies correctly over 90% of the pairs in HX1
and HG001, and was the most effective among the strate-
gies we tried (see Supplementary S4). Second, we cluster the
pairs by their stable ends; this produces a set of clusters S,
such that for each cluster S in S, all stable reads of the read
pairs in S must be on the same chromosome, strand and
within maxIS bp from each other. Third, for each cluster S
in S, let R = {r1, . . . , rn} be the set of unstable reads in S.
(For example, in Figure 1B), the three unstable reads are in
chr 2, 7 and 11.) We remap the unstable reads as follows.
For each ri, we extract the genomic region Ri surrounding
it, and we call it a candidate region for remapping for S (see
Figure 1C).

We define score(Ri, r) as the score of a Smith–Waterman
local alignment between Ri and a read r. The score of the
region Ri is score(Ri ) = ∑

r j ∈R
score(Ri , r j ). We choose the re-

gion with the maximum score and call it Rbest. (For example,
in Figure 1C), the chr2’s region is Rbest.)

At last, we consider a special candidate region, the base
region Rbase, which is the region around the stable end of S.
If score(Rbase) ≥ � · score(Rbest), 0 ≤ � ≤ 1, it means that it is
possible to realign the unstable reads near their stable mate
with a tolerable score loss; in such case, we assume that there
is no transposition, i.e. we remove all the reads in S from the
discordant set. α = 0.9 by default. Otherwise, we realign all
unstable reads to Rbest: all pairs in S now support a single
transposition event.

When R is too large, the above solution may be slow. In
the actual implementation, we randomly sample a subset of
reads R′ ⊂ R (by default |R

′
| = 15), and we compute an ap-

proximate score
∑

r j ∈R′
score(Ri , r j ) for each candidate region

Ri. We choose the three regions with the highest approxi-
mate score, and at last, we align all reads to these three re-
gions and identify Rbest.

Clustering. After we correct the alignments of the unsta-
ble reads, we cluster the discordant read pairs to identify
candidate transpositions. Clustering of discordant paired
reads has been well-studied and many solutions have been
proposed (see (34) for a review); we adapted the Delly (27)
approach since it offers a good balance between simplicity
and performance. Below we give a brief description of the
method.

The clustering step repeatedly merges the two closest clus-
ters, according to a distance measure, which will be ex-
plained shortly. The process is repeated until no clusters can
be further merged.

In our approach, an anchor a is defined as a genomic
region, which is characterized by a chromosome a.chr, a
strand a.strand, a start a.start and an end a.end. Consider
two anchors a1 and a2. We define the distance between these
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tio of 0.75. This profile is compatible with a heterozygous transposition,
for which we expect the ratio to be close to 1; in practice, as discordant
pairs may be more difficult to align, or one haplotype may be more repre-
sented than the other, they may sometimes have lower values. We suggest
a cut-off value of 1

3 .

two anchors as max(a1.end, a2.end) − min(a1.start, a2.start).
Two anchors a1 and a2 are compatible if (i) they are on
the same chromosome and strand and (ii) their distance is
less than maxIS. We also define a merging operation over
two compatible anchors a1 and a2, which creates a third
anchor am having the same chromosome and strand as a1
(and a2), and am.start = min(a1.start, a2.start) and am.end =
max(a1.end, a2.end).

Every cluster c is composed of two anchors, c.a1 and c.a2.
Two clusters c1 and c2 are compatible if the anchors are pair-
wise compatible (i.e. c1.a1 and c2.a1 are compatible and c1.a2
and c2.a2 are compatible).

The distance between two compatible clusters is defined
as the sum of (i) the distance between c1.a1 and c2.a1 and
(ii) the distance between c1.a2 and c2.a2

Let C be the set of clusters. Initially, each discordant read
pair is a singleton cluster, and the two reads in the pair are
the two anchors of the cluster. C contains one cluster for
each discordant read pair. The clustering proceeds as fol-
lows. At each step, a pair of compatible clusters c1, c2 in
C with minimum distance is selected and we create a new
cluster c by merging the two pairs of compatible anchors,
i.e. we merge c1.ai and c2.ai into c.ai for i = 1, 2. We remove
c1 and c2 from C and we insert c into it. When no pairs of
compatible clusters are in C, the procedure terminates.

At last, each cluster in C corresponds to one candidate
transposition. Each anchor in the cluster generates a break-
point: if the anchor is on the forward strand, its rightmost
coordinate will be breakpoint; otherwise, it will be the left-
most coordinate.

Positive-to-negative ratio filter. This step computes a score
for each candidate transposition. If the score is small, we
will assume it is noise; otherwise, we report the transposi-
tion.

Each candidate transposition has two breakpoints (see
Figure 4). For each breakpoint, we count the positive and
negative evidences. The positive evidence count p is the
number of discordant read pairs in the cluster that sup-
port the transposition. The negative evidence count n is
the number of concordant (i.e. not discordant) read pairs
crossing the breakpoint; note that concordant read pairs
are evidence against the transposition event. We compute

the positive-to-negative ratio of a breakpoint as

pnr = p
n

The higher the value of pnr, the higher the confidence that
the breakpoint exists. If both breakpoints have pnr-value be-
low a threshold �, we filter the transposition. The reason
why we require that both breakpoints have low-confidence
is because in copy-and-paste transpositions one breakpoint
may have a low pnr-value, but still be real. By default β = 1

3 .

Details of software and the simulated and real datasets

Software. Many SV calling and transposition calling tools
exist, and testing them all was impractical. Three SV call-
ing tools were selected to represent the main SV calling ap-
proaches: Delly (27) (discordant pair clustering), Socrates
(35) (remapping of soft-clipped reads) and Lumpy (26)
(combination of both). We tried several other methods, but
they either provided much poorer results, or could not finish
a single sample in 1 week.

For transposition callers, we relied on a recent survey pa-
per (36), which benchmarked and compared seven tools. We
selected the best three tools according to this comparison,
namely MELT, Mobster and Retroseq. At last, we also in-
cluded DD DETECTION as a DB-free caller.

We downloaded the tested programs from their original
repositories and ran them with their default suggested pa-
rameters (Supplementary S5). We benchmarked the tools
first using simulated datasets, and then using real human
WGS datasets.

Simulated datasets. Simulated datasets were generated as
follows. We used the RepeatMasker annotation for hg38 to
classify the transpositions provided in the HX1 benchmark.
Among the 10 most represented categories, seven belong to
the SINE AluY family (85% of total transpositions), while
the remaining three are LINE L1 repeats. We selected 8770
SINE and LINE repeats from the RepeatMasker annota-
tion, maintaining as much as possible the proportions be-
tween categories found in HX1, and we inserted them into
random locations in hg38; this way we obtained a sample
genome with simulated transpositions.

We then used pIRS (37) to simulate three paired-end read
datasets from the sample genome, with sequencing depth
5×, 10× and 20×, respectively. The insert sizes of all gen-
erated paired-end reads have mean 500 bp and standard
deviation 100 bp. The read length was 100 bp. At last, all
datasets were mapped against the reference hg38 by BWA
MEM 0.7.10 (33).

Real-world datasets. We considered five samples: a Chi-
nese genome for the HX1 project (31) and the HG001–
HG004 datasets from the GIAB (32). From the literature,
benchmark lists of insertions are available for these samples.
Insertions can be classified into tandem duplications, trans-
positions and novel insertions; Supplementary S1 describes
our approach to isolate transpositions from tandem du-
plications and novel insertions. Only benchmark insertions
classified as transpositions were used to assess the sensitiv-
ity of the tools. The precision for a dataset was measured
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using its whole set of insertions. In other words, when mea-
suring the sensitivity of a tool, a true positive is defined as a
benchmark transposition correctly called by the tool. When
measuring precision, a true positive is defined as a predic-
tion from the tool, which corresponds to a benchmark inser-
tion. We also removed insertions into centromeric regions
and alternative chromosomes, as well as chromosomes X
and Y (see Supplementary S2). The details of the bench-
marks follow.

HX1: A total of 9125 insertions (after post-processing)
were discovered by local assembly (38), and they were re-
ported based on hg38. They were used to measure preci-
sion. We classified 2155 of them as transpositions, which
were used as the ground truth to assess sensitivity.

PBHoney: For the GIAB datasets, using the SV caller
PBHoney (39) on PacBio reads, 5120, 6737, 4944 and 4654
insertions were provided for HG001, HG002, HG003 and
HG004, respectively, on hg19 (after post-processing). They
were used to measure precision. We classified 1939, 2277,
1860 and 1754 insertions as transpositions, respectively;
these were used to measure the sensitivity of the tools. The
notes associated to the GIAB annotation files state that
‘Post-Processing was performed to generate the most spe-
cific call set, which is what’s been provided’. Thus, these
benchmarks are likely incomplete. This is ideal for testing
sensitivity, but it is likely to underestimate precision.

Pooled: For HG001, (40) obtained another list of inser-
tions (on hg19) by merging the calls of different PacBio SV
calling methods. These insertions are likely to be less specific
but more complete. The total number of insertions is 22 199.
Unfortunately, it was not possible to distinguish transposi-
tions from other types of insertions in this dataset, because
the inserted sequences were not provided. Here, we used this
dataset to estimate the precision of different callers.

Second generation sequencing datasets are also avail-
able for these five samples. We downloaded these five real
datasets from NCBI. Accession for HX1 was SRX1423751.
As for GIAB, we downloaded runs from SRR2052337 to
SRR2052356 for HG001, SRR1766442 to SRR1766486
for HG002, SRR1766542 to SRR1766648 for HG003 and
SRR1766755 to SRR1766872 for HG004. This way we ob-
tained five datasets of ∼50× coverage each. For comparison
with the benchmark lists, HX1 was mapped to the hg38 hu-
man reference using BWA MEM 0.7.10, while the GIAB
datasets were mapped to hg19.

Performance measures

We used three performance measures to compare the differ-
ent callers: sensitivity, precision and F1-score. We computed
such measures for each caller on each dataset using the fol-
lowing definitions. Let TP be the number of true positives
detected by a caller, i.e. the number of transpositions in the
benchmark correctly called. Let FP the number of false pos-
itives, i.e. the number of called transpositions, which have
no confirmation in the benchmark. Let FN be the number
of false negatives, i.e. the number of transpositions in the
benchmark, which are missed by the caller. Then we define:

Sensitivity: also called ‘recall’, it is defined as TP
TP+FN .

Precision: it is defined as TP
TP+FP .

F1-score: it is a commonly used measure that sum-
marizes both sensitivity and precision. It is defined as
the harmonic mean between sensitivity and precision, i.e.
2 sensitivity·precision

sensitivity+precision .

RESULTS

DB-free callers miss transpositions whose inserted sequences
appear in multiple copies in the reference

As stated in ‘A major challenge in transposition calling’ sec-
tion, the transpositions whose inserted sequences appear in
multiple copies in the reference genome pose a challenge to
existing DB-free callers. This section experimentally verifies
this by studying the datasets HX1 and HG001-004.

We isolated the transpositions in HX1 that no caller
among Delly (27), Lumpy (26) and Socrates (35) was able to
discover, which are 1868. We also did the same for HG001,
and we obtained 1434 missed transpositions.

Next, for each missed transposition in the HX1 bench-
mark, we mapped its inserted sequence onto the reference
genome. Nearly 75% of them are present in the reference in
multiple copies (Figure 5A), and around 40% in very large
numbers (>100). In HG001 (Figure 5B), this behavior is
even more evident, with <15% of the inserted sequences
having a single copy in the reference. We also checked the
hypothesis on HG002, HG003 and HG004 (see Supplemen-
tary Figure 1), and the same behavior was observed.

Performance comparison with DB-free callers

In this section the accuracy of DD DETECTION, Delly,
Lumpy, Socrates and TranSurVeyor are compared. Re-
markably, DD DETECTION only reports the insertion
sites of the transposition events, reporting neither the source
of the event nor the inserted sequence. Thus, in order to
perform a fair comparison of the tools, we compared the
benchmark and the predicted events only by insertion site.
Precisely, a predicted transposition was deemed to be the
same as a benchmark insertion site if their positions are
close. See Supplementary S3 for a more in-depth descrip-
tion of the comparison criteria.

Figure 6 shows the sensitivity, precision and F1-
score of different transposition callers on the simu-
lated datasets. Only DD DETECTION was more sensi-
tive than TranSurVeyor (although this was not the case
at 5× coverage), but this comes at expenses of preci-
sion; while all other tools achieved near-perfect precision,
DD DETECTION performed much worse. When using
20× coverage, DD DETECTION’s precision was 0.489,
while the other methods had >0.997. TranSurVeyor was the
overall winner for all coverages when it came to F1-score.

Results on real datasets (Figure 7) confirmed the trend
seen in simulation, but the difference between TranSur-
Veyor and the other methods was much more marked.

DD DETECTION reported more than 100 000 events
for each dataset, with a peak of 210 390 for HG001, which
is the reason for the unnaturally high sensitivity, and the ex-
tremely low precision. Such method is hardly useful in prac-
tice, and comes out as the worst of the lot in terms of F1-
score. Other callers had a much more reasonable number of
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calls, and our method showed dramatically higher sensitiv-
ity and precision, with at least 3.1-fold improvement over
the second best method (Delly) in terms of F1-score. Ac-
cording to our experiments, TranSurVeyor is a substantial
improvement over all the DB-free tools we tested.

Notably, TranSurVeyor was also the most precise caller
when precision was assessed using the Pooled benchmark
(Figure 8).

Performance comparison with DB-based callers

Methods exploiting prior information have severe draw-
backs compared to DB-free methods. They require a reli-
able database of transposable elements, which is not avail-
able for many species, and even in human they are not
able to detect novel transpositions, i.e. transpositions of el-
ements not previously annotated. In this section, we show
that TranSurVeyor is able to achieve results comparable, if
not superior, to the state-of-the-art DB-based tools. Note
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that MELT, Mobster and Retroseq were also tested in (36)
on HG001, and the outcome of our benchmarks are com-
patible with theirs.

In the simulated dataset (Figure 9), TranSurVeyor was
the most sensitive tool for all coverages. Precision was near-
perfect for all tools, and was always >0.997; we note that
TranSurVeyor seems to have a slight advantage, although
very small. As a result of the better sensitivity, TranSur-
Veyor had the highest F1-score.

In the real data (Figure 10), TranSurVeyor was still the
most sensitive tool of the lot in all datasets. Three hundred
ninety-four transpositions in HG001 with support from PB-
Honey are only predicted by TranSurVeyor. We mapped
their inserted sequences to MELT and Mobster databases
using Bowtie 2 (41); for MELT, only 27 found at least 1 hit,
while for Mobster only 112. This indicates that TranSur-
Veyor can find many novel transpositions, which are miss-
ing in the existing databases.

However, it was also the least precise when using the PB-
Honey annotations; note that only MELT seems to have a
clear advantage over our method, while the precision of the
other methods is often comparable. Overall, TranSurVeyor
had the best F1-score.

As we noted in section Read-world datasets, the PB-
Honey benchmark is very conservative and it was tuned
for specificity, therefore it may underestimate the precision;
this is especially unfair for tools that call more aggres-
sively. Hence, we also computed the precision for the Pooled
benchmark (Figure 11), which gives an alternative point of
view on the precision of the methods: while MELT was still
the most precise tool (precision = 0.95), TranSurVeyor dis-
played the second highest precision (precision = 0.9). In
general, all of the DB-based methods performed well and
had precision greater than 0.8. In summary, even though
TranSurVeyor does not use any database, its performance
is comparable with DB-based methods.

A stricter comparison criteria

Previous section just compared the performance of calling
insertion sites. Here, we employed a stricter comparison cri-

Table 1. Running times and memory usage on HG001 of the tested tools

Tool Time Memory (GB)

DD DETECTION 2 days 16 h 33
min

22

Delly 1 days 2 h 24 min 1.4
Lumpy 10 h 44 min 27
MELT 10 h 30 min 35
Mobster 6 h 14 min 38
Retroseq 1 days 4 h 31 min 1.9
Socrates 1 h 9 min 38
TranSurVeyor 2 h 6 min 12

TranSurVeyor is much faster than any other tool except for Socrates;
however, as reported in ‘Results’ section, TranSurVeyor predictions are
far more accurate than Socrates. TranSurVeyor also uses considerably less
memory than the other tools except for Delly and Retroseq.

teria. A transposition was deemed to be correctly predicted
if both the insertion site and the source of the transposition
are correct (see Supplementary S3). DD DETECTION and
the DB-based methods were excluded from this comparison
since they report neither the source of the transposition nor
the inserted sequence.

Figure 12 shows the results using this new comparison
criteria. TranSurVeyor holds a larger advantage over the
other callers in this comparison: its F1-score was at least
3.8 times Delly’s F1-score, the second best tool. Further-
more, the sensitivity and precision loss over the more re-
laxed comparison (comparing only insertion sites) was min-
imal. This means that (i) TranSurVeyor rarely predicts an
incorrect source for the transposition and (ii) TranSurVeyor
predicts the correct source of the transposition more often
than the other tools.

Running time and memory comparison

We limited multi-threading to eight threads, when available,
since this is what a modern personal computer can normally
handle. We ran all software on an Intel Xeon E5-2620 pro-
cessor, Red Hat Enterprise Linux Server release 6.3.

Table 1 reports the running time and peak memory usage
for all the tools in processing the HG001 dataset, 50×. Only
Socrates was faster than TranSurVeyor; however, as we have
amply shown in the previous sections, TranSurVeyor pro-
duces vastly superior predictions. All the other tools were
several times slower than TranSurVeyor, from a minimum
of three times for Mobster to 32 for DD DETECTION.
TranSurVeyor also used less memory than all the other tools
with the exception of Delly and Retroseq.

DISCUSSION AND CONCLUSION

In this paper, we tackled the problem of transposition call-
ing from high-throughput next-generation sequencing. We
have shown that transposition of sequences appearing in
multiple similar copies in the reference genome, such as mo-
bile elements, pose a challenge to existing DB-free callers.
This is because the reads belonging to the inserted sequence
have multiple possible alignments, and it may be impossible
to align them correctly by considering them individually. We
addressed this problem by proposing a realignment strategy
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Figure 11. Precision of MELT, Mobster, Retroseq and TranSurVeyor using
the Pooled benchmark.

which groups reads supporting a same transposition, and
uses them jointly to discover a best copy in the reference.

We implemented this strategy, along with a SNV-aware
filter, in a DB-free transposition caller, TranSurVeyor,
which vastly improves over its direct competitors, and is able
to match and even improve over state-of-the-art methods,

which rely on databases of known transposable elements.
Using a database has serious drawbacks, since the transpos-
able elements are not well characterized and annotated for
many species (30,19), therefore it is crucial to develop reli-
able DB-free methods.

While TranSurVeyor represents a step forward compared
to the other tested tools, there is still room for improvement.
Across five real datasets, it was able to call approximately
half of the transpositions discovered using PacBio reads. We
identified two classes of transpositions, which were difficult
to call using our current approach:

(i) Transpositions of short sequences tend to have less
inter-chromosomal pairs;

(ii) Transpositions where the insertion site is in a non-
unique region tend to produce inter-chromosomal pairs
where the stable end has multiple possible alignments;
choosing the correct insertion site in this case is very
challenging.

Techniques that can deal with these two difficulties could
further improve transposition calling.

The source code, along with instructions can be found at
https://github.com/Mesh89/TranSurVeyor.

https://github.com/Mesh89/TranSurVeyor
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7. Rodić,N., Sharma,R., Sharma,R., Zampella,J., Dai,L., Taylor,M.S.,
Hruban,R.H., Iacobuzio-Donahue,C.A., Maitra,A., Torbenson,M.S.
et al. (2014) Long interspersed element-1 protein expression is a
hallmark of many human cancers. Am. J. Pathol., 184, 1280–1286.

8. Beck,C.R., Garcia-Perez,J.L., Badge,R.M. and Moran,J.V. (2011)
Line-1 elements in structural variation and disease. Annu. Rev.
Genomics Hum. Genet., 12, 187–215.

9. Cordaux,R. and Batzer,M.A. (2009) The impact of retrotransposons
on human genome evolution. Nat. Rev. Genet., 10, 691–703.

10. Rishishwar,L., Wang,L., Clayton,E.A., Mariño-Ramı́rez,L.,
McDonald,J.F. and Jordan,I.K., (2017) Population and clinical

genetics of human transposable elements in the (post) genomic era.
Mob. Genet. Elements, 7, 1–20.

11. Ritz,A., Bashir,A., Sindi,S., Hsu,D., Hajirasouliha,I. and
Raphael,B.J. (2014) Characterization of structural variants with
single molecule and hybrid sequencing approaches. Bioinformatics,
30, 3458–3466.

12. Lischer,H.E.L. and Shimizu,K.K. (2017) Reference-guided de novo
assembly approach improves genome reconstruction for related
species. BMC Bioinformatics, 18, 474.
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