

Correction: Duburg et al. Composite Polybenzimidazole Membrane with High Capacity Retention for Vanadium Redox Flow Batteries. *Molecules* 2021, 26, 1679

Jacobus C. Duburg ¹, Kobra Azizi ², Søren Primdahl ², Hans Aage Hjuler ^{2,3}, Elena Zanzola ^{1,*}, Thomas J. Schmidt ^{1,4} and Lorenz Gubler ¹

- ¹ Electrochemistry Laboratory, Paul Scherrer Institut, CH-5232 Villigen, Switzerland; jacobus.duburg@psi.ch (J.C.D.); thomasjustus.schmidt@psi.ch (T.J.S.); lorenz.gubler@psi.ch (L.G.)
- Blue World Technologies, Egeskovvej 6C, DK-3490 Kvistgård, Denmark; kaz@blue.world (K.A.);
 Transland (C.D.): hel@blue.world (U.A.L);
- spr@blue.world (S.P.); hah@blue.world (H.A.H.) ³ Danich Contor for Energy Storage Frederiksholms Kapal 30 DK 1
- ³ Danish Center for Energy Storage, Frederiksholms Kanal 30, DK-1220 Copenhagen K, Denmark
- ⁴ Laboratory for Physical Chemistry, ETH Zurich, CH-8093 Zurich, Switzerland
- * Correspondence: elena.zanzola@psi.ch; Tel.: +41-56-310-4738

The authors wish to make the following changes to their paper [1].

2. Results

Original:

Table 1. V(IV) diffusion through NR212, FAP-450, and PP-PBI.

	Name	Slope [V(IV)] vs. t (M·L ⁻¹ ·h ⁻¹)	V(IV) Diffusion (cm ² ·min ^{−1})	
a,	NR212	$(650 \pm 8) imes 10^{-6}$	$(744 \pm 9) imes 10^{-8}$	
	FAP-450	$(259 \pm 1) imes 10^{-6}$	$(351\pm1) imes10^{-8}$	
site	PP-PBI	$(18\pm2) imes10^{-6}$	$(14\pm1) imes10^{-8}$	

To be replaced with:

Table 1. V(IV) diffusion through NR212, FAP-450, and PP-PBI.

Name	Slope [V(IV)] vs. t (M·L ⁻¹ ·h ⁻¹)	V(IV) Diffusion (cm ² ·min ⁻¹)
NR212	$(650 \pm 8) imes 10^{-6}$	$(744 \pm 9) imes 10^{-9}$
FAP-450	$(259 \pm 1) imes 10^{-6}$	$(351 \pm 1) \times 10^{-9}$
PP-PBI	$(18\pm2) imes10^{-6}$	$(14\pm1) imes10^{-9}$

Explanation for the correction:

We observed an error in the calculations of the vanadium (IV) diffusion values; as a result of this, the order of magnitude of these values has been corrected to 10^{-9} cm²·min⁻¹ from 10^{-8} cm²·min⁻¹.

3. Discussion

Original:

V(IV) diffusion through the composite PP-PBI membrane was found to be the lowest ((14 ± 1) × 10⁻⁸ cm²·min⁻¹), while commercial Nafion[®] NR212 suffered the highest V(IV) diffusion ((744 ± 9) × 10⁻⁸ cm²·min⁻¹),

Citation: Duburg, J.C.; Azizi, K.; Primdahl, S.; Hjuler, H.A.; Zanzola, E.; Schmidt, T.J.; Gubler, L. Correction: Duburg et al. Composite Polybenzimidazole Membrane with High Capacity Retention for Vanadium Redox Flow Batteries. *Molecules* 2021, *26*, 1679. *Molecules* **2022**, *27*, 4234. https://doi.org/ 10.3390/molecules27134234

Received: 12 August 2021 Accepted: 6 June 2022 Published: 30 June 2022

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

To be replaced with:

V(IV) diffusion through the composite PP-PBI membrane was found to be the lowest ($(14 \pm 1) \times 10^{-9} \text{ cm}^2 \cdot \text{min}^{-1}$), while commercial Nafion[®] NR212 suffered the highest V(IV) diffusion ((744 ± 9) × 10^{-9} \text{ cm}^2 \cdot \text{min}^{-1}).

Explanation for the correction:

We observed an error in the calculations of the vanadium (IV) diffusion values; as a result of this, the order of magnitude of these values has been corrected to 10^{-9} cm²·min⁻¹ from 10^{-8} cm²·min⁻¹.

4. Materials and Methods

Original:

The dry weight of the membrane (w_{dry}) was obtained after drying it under vacuum at 55 °C for 22 h. The weight measurement was carried out in a closed vial to limit the uptake of moisture from the air. Then, the weight of the membrane in the wet state (w_{wet}) was determined after immersion for 2 days in deionized water or in 1.6 M vanadium in 2 M H₂SO₄ and 0.05 M H₃PO₄ electrolyte (SOC -50%, 3.5 oxidation state, Oxkem, Reading, United Kingdom), followed by the removal of droplets on the surface with a tissue. In this case, the wet weight was measured in a vial to reduce the evaporation of water from the membrane. Lastly, water and electrolyte uptake of pristine *m*-PBI and of commercial membranes NR212 and FAP-450 was calculated according to Equation (1).

$$Uptake = \frac{w_{wet} - w_{dry}}{w_{dry}} \cdot 100\%$$
(1)

To be replaced with:

The dry weight of the membrane (m_{dry}) was obtained after drying it under vacuum at 55 °C for 22 h. The weight measurement was carried out in a closed vial to limit the uptake of moisture from the air. Then, the weight of the membrane in the wet state (m_{wet}) was determined after immersion for 2 days in deionized water or in 1.6 M vanadium in 2 M H₂SO₄ and 0.05 M H₃PO₄ electrolyte (SOC -50%, 3.5 oxidation state, Oxkem, Reading, United Kingdom), followed by the removal of droplets on the surface with a tissue. In this case, the wet weight was measured in a vial to reduce the evaporation of water from the membrane. Lastly, water and electrolyte uptake of pristine *m*-PBI and of commercial membranes NR212 and FAP-450 was calculated according to Equation (1).

$$Uptake = \frac{m_{wet} - m_{dry}}{m_{dry}} \cdot 100\%$$
(1)

Explanation for the correction:

The change described above has been made to be in line with the commonly used scientific unit of mass (*m*).

Original:

The measurements were carried out by filling two quartz cuvettes (Hellma Analytics, Zumikon, Switzerland) with 2.5 mL of solution from the MgSO₄ flask. Each time, the measured solution was transferred back to the VOSO₄ flask to avoid significant volume changes.

To be replaced with:

The measurements were carried out by filling two quartz cuvettes (Hellma Analytics, Zumikon, Switzerland) with 2.5 mL of solution from the MgSO₄ flask. Each time, the measured solution was transferred back to the MgSO₄ flask to avoid significant volume changes.

Explanation for the correction:

The correction described above has been made as the measured solutions were transferred back into the MgSO₄ flask and not the VOSO₄ flask. Original:

Lastly, the change in weight (Δw) was calculated according to Equation (4). In Equation (4), w_i and w_f are the initial and final weight, respectively.

$$\Delta w = \frac{wf - wi}{wi} \cdot 100\% \tag{4}$$

To be replaced with:

Lastly, the change in weight (Δm) was calculated according to Equation (4). In Equation (4), m_i and m_f are the initial and final weight, respectively.

$$\Delta m = \frac{mf - mi}{mi} \cdot 100\% \tag{4}$$

Explanation for the correction:

The change described above has been made to be in line with the commonly used scientific unit of mass (m).

Original:

Efficiencies and discharge capacity are calculated according to Equations (5)–(8). In Equations (5)–(7), Q_{ch} and Q_{dis} are the charges for the discharge and the charge process, while V_{dis} and V_{ch} are the discharge and charge volumes. In Equation (8), $Q_{theoretical}$ is the theoretical charge, n is the number of moles, F is the Faraday constant (96,485 C·mol⁻¹), and z is the charge.

$$\eta C = \frac{Q_{dis}}{Q_{ch}} \cdot 100\%$$
(5)

$$\eta V = \frac{V_{dis}}{V_{ch}} \cdot 100\%$$
(6)

$$\eta E = (\eta C \cdot \eta V) \cdot 100\% \tag{7}$$

$$Q_{theoretical} = I \cdot t = n \cdot (F \cdot z) \tag{8}$$

To be replaced with:

Efficiencies and discharge capacity are calculated according to Equations (5)–(8). In Equations (5)–(7), Q_{ch} and Q_{dis} are the charges for the discharge and the charge process, while \overline{U}_{ch} and \overline{U}_{dis} are the average voltages during charge and discharge, respectively. In Equation (8), $Q_{theoretical}$ is the theoretical charge, n is the number of moles, F is the Faraday constant (96,485 C·mol⁻¹), and z is the number of electrons associated with the electrochemical reaction.

$$\eta C = \frac{Q_{dis}}{Q_{ch}} \cdot 100\%$$
(5)

$$\eta V = \frac{U_{dis}}{\overline{U}_{ch}} \cdot 100\% \tag{6}$$

$$\eta E = (\eta C \cdot \eta V) \cdot 100\% \tag{7}$$

$$Q_{theoretical} = I \cdot t = n \cdot (F \cdot z) \tag{8}$$

Explanation for the correction:

The changes described above were made to avoid confusion between the average voltages in the cell (\overline{U}) and the unit volt (V). Furthermore, the description of this symbol was corrected to the average voltage instead of volume, which was a typing mistake. The last change was made to provide a clearer description of the symbol z as "charge" did not provide the desired clarity.

5. Conclusions

Original:

This asymmetric composite membrane showed the lowest V(IV) diffusivity ((14 ± 1) $\times 10^{-8} \text{ cm}^2 \cdot \text{min}^{-1}$) as compared to the commercial Nafion[®] NR212 and Fumasep[®] FAP-450, (744 ± 9) $\times 10^{-8}$ and (351 ± 1) $\times 10^{-8} \text{ cm}^2 \cdot \text{min}^{-1}$, respectively.

To be replaced with:

This asymmetric composite membrane showed the lowest V(IV) diffusivity ((14 \pm 1) \times 10⁻⁹ cm²·min⁻¹) as compared to the commercial Nafion[®] NR212 and Fumasep[®] FAP-450, (744 \pm 9) \times 10⁻⁹ and (351 \pm 1) \times 10⁻⁹ cm²·min⁻¹, respectively.

Explanation for the correction:

We observed an error in the calculations of the vanadium (IV) diffusion values; as a result of this, the order of magnitude of these values has been corrected to 10^{-9} cm²·min⁻¹ from 10^{-8} cm²·min⁻¹.

The authors apologize for any inconvenience caused and state that the scientific conclusions are unaffected. This correction was approved by the Academic Editor. The original publication has also been updated.

Reference

1. Duburg, J.C.; Azizi, K.; Primdahl, S.; Hjuler, H.A.; Zanzola, E.; Schmidt, T.J.; Gubler, L. Composite Polybenzimidazole Membrane with High Capacity Retention for Vanadium Redox Flow Batteries. *Molecules* **2021**, *26*, 1679. [CrossRef] [PubMed]