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Thorough assessment of cerebral dysfunction after acute lesions is paramount to optimize predicting clinical outcomes. We here

built random forest classifier-based prediction models of acute motor impairment and recovery post-stroke. Predictions relied on

structural and resting-state fMRI data from 54 stroke patients scanned within the first days of symptom onset. Functional connect-

ivity was estimated via static and dynamic approaches. Motor performance was phenotyped in the acute phase and 6 months later.

A model based on the time spent in specific dynamic connectivity configurations achieved the best discrimination between patients

with and without motor impairments (out-of-sample area under the curve, 95% confidence interval: 0.67 6 0.01). In contrast,

patients with moderate-to-severe impairments could be differentiated from patients with mild deficits using a model based on the

variability of dynamic connectivity (0.83 6 0.01). Here, the variability of the connectivity between ipsilesional sensorimotor cortex

and putamen discriminated the most between patients. Finally, motor recovery was best predicted by the time spent in specific con-

nectivity configurations (0.89 6 0.01) in combination with the initial impairment. Here, better recovery was linked to a shorter

time spent in a functionally integrated configuration. Dynamic connectivity-derived parameters constitute potent predictors of acute

impairment and recovery, which, in the future, might inform personalized therapy regimens to promote stroke recovery.
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Introduction
Stroke is the leading cause of long-term disability in

adults1 and entails the highest number of disability-

adjusted life years among more than 300 different dis-

eases.2 To optimize stroke care, it is of great importance

to establish prediction models of stroke-related disabilities

at the single patient level. These predictions may not only

inform patients and their proxies about individual trajec-

tories after stroke, but may also facilitate the allocation

and planning of targeted rehabilitative regimens.

The amount of initial motor impairment has been fre-

quently demonstrated to constitute a strong predictor of

chronic impairment,3 yet may not guarantee sufficiently

accurate predictions at the level of single patients.4 This

limitation motivates the consideration of further

biomarkers of stroke recovery.5 While structural and

functional neuroimaging-derived information have proven

viable candidates, only a few studies have been published

aiming at predicting motor recovery as a long-term out-

come.6–8 Novel techniques permit the increase in the tem-

poral resolution of MRI resting-state functional

connectivity maps from minutes to seconds, thereby offer-

ing a new vista on the neural mechanisms driving func-

tional recovery9–11 We have recently shown that dynamic

functional network connectivity (dFNC) analyses provide

new information on cerebral alterations post-stroke, thus

far hidden in conventional resting-state analyses that as-

sume static connectivity between brain regions.12 Several

studies suggest that dFNC may not only enhance infer-

ences in imaging correlates of brain disease, but also lead

to substantial increases in predictive capacities for several
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of these diseases, potentially as the dynamic approach may

to be closer to the neurobiology underlying brain func-

tion.13–15

Therefore, we here sought to explore the potential of

dFNC parameters for predicting acute motor impairment

and recovery after stroke, as well as for granting further

insights into pathophysiological cerebral mechanisms

post-stroke. We hypothesized that dFNC parameters

obtained in the acute post-stroke phase are superior to

static connectivity for predicting motor outcome, as neur-

al reorganization enabling recovery of function might es-

pecially depend on the dynamic flexibility of neural

network.12 Furthermore, we expected enhanced prediction

performances for dFNC-informed models compared to

those that solely employed clinical predictors, such as an

initial impairment score, or structural lesion information.

Methods

Participants

Fifty-four patients admitted to the University Hospital of

Cologne, Department of Neurology, due to acute first-

ever ischaemic stroke participated in this study (c.f.,

Supplementary materials for inclusion criteria, first assess-

ment on average three days after stroke onset). For

n¼ 30 patients, follow-up visits could be scheduled on

average 30 weeks after the ischaemic event. Patients

received rehabilitation measures, e.g. physiotherapy and

occupational therapy, according to general standards in

Germany. All patients received some form of physical

and/or occupational therapy for at least three weeks.

Patients with persistent deficits usuallycontinue to receive

one to two 30-minutes sessions of out-patient rehabilita-

tion therapy per week. The study was approved by the

local ethics committee, and all patients provided informed

written consent following the Declaration of Helsinki.

Motor performance and recovery

Upper limb motor performance was tested twice: at the

time of scanning (n¼ 54), i.e. in the acute post-stroke

phase and at follow-up six months later. Individual

motor performance was captured via the Motricity Index

of the affected upper limb (MI-UL,16 c.f., Supplementary

Table 1). Patients were categorized in three subgroups de-

pending on the level of motor impairment: (i) patients

with no upper limb impairment (MI-UL¼ 33, n¼ 26); (ii)

patients with mild impairments (25 � MI-UL� 32,

n¼ 16); and (iii) patients with moderate-to-severe upper

limb motor impairment (MI-UL� 22, n¼ 12). The cut-off

between mildly and moderate-to-severely affected patients

was chosen based on the sample distribution of MI-UL

scores of patients with impairments and a median score

of MI-UL¼ 25.3. As a consequence, patients in the mod-

erate-to-severe group featured an MI-UL of maximal 22.

Given that three movements were tested, i.e. shoulder ab-

duction, elbow flexion and pinch grip, MI-UL scores

below or equal to 22 could arise from varying combina-

tions of motor impairments, e.g. the inability for all three

movements of performing them against gravity or more

severe limitations of one movement, e.g. no hand move-

ment, but visible movements for shoulder abduction and

elbow flexion. In any case, at least one of the tested

movements could necessarily not be performed against re-

sistance, which may be seen equivalent to a clinically

relevant motor deficit.

Recovery was quantified as change between follow-up

and acute motor impairment (MI-ULFollow-up—MI-ULacute).

In particular, we defined three subgroups which differed

in the amount of experienced motor recovery: (i) no

change in motor function (n¼ 16, no change could be

due to no initial impairment or no change between initial

and follow-up impairment); (ii) more (n¼ 9); and (iii) less

pronounced recovery (n¼ 5). The cut-off between more

and less pronounced recovery was based on the median

amount of recovery in the sample of all patients with an

initial impairment (recovery¼ 7.7 MI points). The differ-

ence between the two adjacent MI categories, i.e. ‘palp-

able contraction, but no movement’ versus ‘visible

movement, but full range and not against gravity’ or

‘Full movement against gravity, but weaker than on the

other side’ and ‘Normal power’, is on average 6.6 points.

Our cut-off value of 7.7 hence represents a noticeable

and relevant amount of recovery.

MRI acquisition

Resting-state fMRI data were acquired in the framework

of a clinical imaging protocol in a clinical routine on a

1.5 T scanner (Philips, Guildford, UK). Patients were asked

to lie motionless in the scanner and stay awake. Gradient

echo-planar imaging (EPI) parameters were as follows:

repetition time (TR)¼2100 ms, echo time (TE)¼50 ms, field

of view (FOV)¼250 mm, 24 axial slices, voxel size:

3.9� 3.9� 3.9 mm3, 183 volumes, acquisition time: �six

minutes. We, furthermore, obtained the following struc-

tural scans: diffusion-weighted imaging (DWI) images

(TR¼ 3900 ms, TE¼ 95 ms, FOV¼ 230 mm, 22 axial sli-

ces, voxel size¼ 1.8� 3� 6 mm3) and T2-weighted MR-

images (TR¼ 5600 ms, TE¼ 110 ms, FOV¼ 230 mm, 22

axial slices, voxel size¼ 0.9� 1.1� 6.0 mm3) for more

detailed analyses of lesion topography. Images of patients

with right-hemispheric lesions (n¼ 19) were flipped at the

midsagittal plane.8,17 As a consequence, no conclusions on

hemispheric-specific effects can be drawn with respect to

motor recovery.

Structural MRI analysis

Stroke lesion maps were constructed by manually seg-

menting lesioned tissue on DWI images using MRIcron.18

Subsequently, DWI images, as well as corresponding
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lesion masks, were normalized to standard MNI-space by

first co-registering images to an MNI-template and then

employing the unified segmentation algorithm after mask-

ing infarcted tissue.19 Lesion maps of 53 patients passed

quality control (in one subject top slices were missing

due to an alignment error during DWI volume acquisi-

tion). In a subsequent step, we applied principal compo-

nent analysis (PCA) to reduce the high-dimensional

lesioned voxel-space (9900 voxels lesioned in at least one

subject). We performed this PCA-step twice and retained

(i) all components that individually explained more than

5% of the variance in the first case (5-component struc-

tural lesion data, 5 components, 64% explained variance

in total), and (ii) all components that explained more

than 95% of the variance in total in the second case (28-

component structural lesion data, 28 components).7

Resting-state fMRI analysis: pre-
processing

Resting-state fMRI data were pre-processed employing

Statistical Parametric Mapping (SPM8; http://www.fil.ion.

ucl.ac.uk/spm/) in a Matlab framework (The Mathworks

2012a, Natick, MA, USA). As for one subject, only 182

images were acquired, we shortened all further time

courses by one volume to harmonize the scan length

across subjects. The first three volumes of each time-ser-

ies were discarded to allow for blood-oxygenation level

dependent (BOLD)-signal saturation.

The 179 remaining images were spatially realigned to

the time-series’ mean image and co-registered with the

structural image and corresponding lesion mask.

Subsequently, all images were spatially normalized to

standard MNI-space using the unified segmentation op-

tion after masking lesioned brain tissue. In a final step,

data were smoothed by a Gaussian kernel with a full-

width at half maximum of 8 mm. For each patient’s time

series, maximum framewise translation and framewise ro-

tation did not exceed 3 mm and 0.05 rad, respectively,

similar to previous work.12 Moreover, individual motion

parameters were integrated as covariates in later analyses.

Intrinsic connectivity networks

To define spatially separated intrinsic connectivity net-

works, components were extracted employing independent

component analysis (ICA)20,21 on the resting-state function-

al magnetic resonance imaging (rsfMRI) data of 405

healthy controls (components available for download:

http://trendscenter.org/software/).9,10 Details on the applied

group information guided ICA (‘back-reconstruction’) algo-

rithm can be found in Salman et al.22

Because of our focus on motor impairments, we cen-

tred the analysis on 14 motor network components that

can be grouped into three functional domains: Eight

cortical sensorimotor components, three subcortical

components and three cerebellar components. Ancillary

pre-processing steps comprised time-course de-trending

(i.e. accounting for linear, quadratic, and cubic trends in

the data), de-spiking using 3Ddespike and application of

a fifth-order Butterworth low-pass filter with a high-fre-

quency cut-off of 0.15 Hz. Finally, time-courses were

variance normalized.23

Static functional network
connectivity

For each subject, we computed ‘classic’ static functional

connectivity maps as Fisher’s Z-transformed Pearson’s

pairwise correlation of time-courses between all 14 motor

networks, resulting in 91 connectivity pairs. Age, sex,

mean framewise translation and rotation were used as in-

dependent regressors to correct for demographics and

within scanner movement.

Dynamic functional network
connectivity

Subsequently, we estimated dFNC within the framework

of the sliding window approach.9,10,24,25 As prior studies

suggest that sliding window lengths between 30 and 60 s

allow for a successful dFNC estimation with an optimal

signal-to-noise ratio,26 we opted for a window length of

42 s (20 TRs). This step resulted in 159 individual win-

dows that were additionally convolved with a Gaussian

of 6.3 s (r¼ 3 TRs). The actual dFNC pairs were

obtained from the l1-regularized precision matrix.27 The

covariates age, sex, mean framewise translation and rota-

tion served as regressors-of-no-interest. Finally, dFNC val-

ues were normalized by Fisher’s Z-transformation. In the

next step, we estimated connectivity states, i.e. re-occur-

ring patterns of functional connectivity across time and

subject space via k-means clustering of all patients’ 159

dFNC matrices.9,10,28 We relied on the l1-distance func-

tion given its suitability for high-dimensional data.29 In

line with previous work,9,30 we conducted these clustering

processes twice: In the first run, we decided upon the op-

timal number of clusters k (referred to as states). This

optimal number k was determined based on the elbow

criterion, which considers the cluster validity index, com-

puted as the ratio between the within-cluster distance to

the between-cluster distance.9 In a second clustering run,

each of the 159 windows of all 54 patients was assigned

to one of k connectivity states. By these means, we

obtained the following dFNC parameters: fraction times

(the percentage of total time a subject spent in a given

connectivity state), dwell times (the time a subject spent

in a state at any one time without switching to another

one) and number of transitions (how often a subject

changed between states). Furthermore, we computed the

variability of actual dFNC pairs by estimating the stand-

ard deviation of pairwise functional connectivity over the

159 windows for each patient.15 The larger this value,
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the more the dynamic connectivity varies over the entire

duration of the scan.

Statistical analyses I: Group
differences in dynamic connectivity
variability

To further elucidate the nature of the variability in dFNC

strength concerning motor impairments, we evaluated dif-

ferences in the variability of each dynamic connectivity

pair between stroke patients with (i) no motor impair-

ment; (ii) mild motor impairment; and (iii) and moderate-

to-severe motor impairment using a three-level one-way

ANOVA (level of significance: P< 0.05). In case of sig-

nificant group differences, post hoc t-tests were conducted

[level of significance: P< 0.05, false discovery rate (FDR)-

corrected for multiple comparisons]. Furthermore, we

repeated these analyses steps of three-level one-way

ANOVA and post hoc t-tests for the patient sample with

follow-up scores. In addition, we performed correlation

analyses between the overall variability in dFNC strength

(i.e. the average of variability for all dynamic connectivity

pairs) and lesion volume, as well as change in motor per-

formance (Spearman correlations, level of significance:

P< 0.05).

Statistical analyses II: Prediction of
acute motor impairment and
motor recovery

The main aim of the present study was to build robust

prediction models of acute individual motor impairment

and recovery within the first months post-stroke based

on neuroimaging data acquired in the acute post-stroke

phase.

We created two classification scenarios: We aimed at (i)

predicting the acute motor deficits from fMRI data acquired

in the acute post-stroke phase and (ii) predicting motor

recovery. With respect to the first scenario, we initially

sought to determine whether it is possible to predict

whether a stroke patient has or doesn’t have a motor deficit

using the MI-UL score. In addition, we tested whether it is

also possible to predict the severity of motor impairment,

i.e. whether an individual patient had a mild versus a mod-

erate-to-severe impairment of the upper limb. Given that

acute impairment itself can, in principle, be determined via

clinical assessment in a few minutes without the necessity to

employ any prediction algorithm, the main focus of these

initial analyses was to extract predictive features with poten-

tial pathophysiological meaning, facilitating a greater neuro-

scientific insight. With respect to the second prediction

scenario, we aimed to predict motor recovery, i.e., the

change between the follow-up six months post-stroke and

the acute MI-UL-score. As we considered three categories of

motor recovery (no motor recovery, minor recovery, sub-

stantial recovery), we extended previous two-class prediction

scenarios to a multi-class prediction one. In an exploratory

analysis, we also computed a prediction model to differenti-

ate between patients with minor to no recovery (n¼ 8) and

patients with substantial recovery (n¼ 9).

A random forest classifier was used as prediction

model.31 This meta-estimator machine learning algorithm

fits several decision tree classifiers on bootstrapped sub-

samples of the dataset and successively averages individual

predictions. In this way, it aims to increase prediction ac-

curacy by reducing variance and overfitting. Moreover, ran-

dom forest classifiers can automatically include non-linear

and interaction effects of input variables and handle corre-

lated input variables favourably.32 Given our moderate

sample size, we accepted the possibility of slightly lower

prediction performances, yet avoided an additional nested

cross-validation step by adopting hyperparameter settings

that were suggested by Olson et al.33 (n_estimators¼ 500;

criterion¼ ‘entropy’, max_features¼ 0.25). Olson et al. had

extracted these settings as the most advantageous ones after

running hyperparameter optimizations in 165 biomedical

Table 1 Demographics, clinical and MRI characteristics of all 54 stroke patients (mean and standard deviation, if not

indicated otherwise)

Acute phase (n 5 54) Follow-up phase

(n 5 30)

Age 71.9 6 11.8 years 73.3 6 10.4 years

Sex (females) 46 % 47 %

Mean Framewise Translation 0.22 6 0.13 mm 0.24 6 0.12 mm

Mean Framewise Rotation 0.002 6 0.001 rad 0.002 6 0.001 rad

Time since stroke 2.5 6 1.5 days 210 6 57 days

Acute: modified Rankin Scale (median, interquar-

tile range, only patients with an initial deficit)

2.0 (2.0) (n¼ 24) 1.0 (1.5) (n¼ 15)

Acute: MI UL affected arm (median, interquartile

range, only patients with an initial deficit)

25.33 (6.67) (n¼ 28) 25.33 (4.33) (n¼ 17)

Follow-up: MI UL affected arm (median, inter-

quartile range, only patients with an initial

deficit)

– 33.0 (7) (n¼ 17)

Normalized lesion volume (median, interquartile

range)

2240 mm3 (4768) 4048 mm3 (10 020)
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datasets. To obtain a performance estimate for unseen pa-

tient data, i.e. the model’s generalization capacity, we con-

ducted 100 randomly initiated 5-fold cross-validations,

repeatedly training and testing models in 100� 5 training

and test sets. In the multi-class recovery prediction analyses,

we employed 3-fold cross-validation given the small sub-

group sample size.

The reported main performance measure denotes the

out-of-sample area under the curve (AUC) and the re-

spective 95% confidence interval, as estimated in 100

randomly initiated 5-fold cross-validations. AUC values

range between 0 and 1, and values greater than an

AUC¼ 0.5 are considered to be above chance level. Non-

overlapping 95% confidence intervals between models

determined significant differences between AUC out-

comes. Sensitivity and specificity are given in the

Supplementary materials. We also examined the feature

importance estimated by the random forest classifier to

increase the interpretability of the prediction approach

and extract the potential neurophysiological meaning of

input features.

Concerning input features, we examined the predictive

capacity of neuroimaging features derived from (i) struc-

tural data; (ii) static; and (iii) dynamic functional connect-

ivity data. Structural lesion information was considered

either in the 5- or 28-component PCA-reduced form.

Static functional connectivity was entered as 91 network-

pair-wise connectivity values. Finally, we constructed two

models relying on dFNC. The first dFNC model was

based on the dynamic parameters fraction and dwell

times, as well as the number of transitions. The second

dFNC model leveraged the variability in the dynamic

connectivity of all 91 network pairs. Models were built

with and without the addition of the acute motricity

index when predicting the recovery after stroke.

Data and code availability

DFNC was computed based on Matlab2019a scripts

available in the GIFT toolbox. Further statistical analyses

were conducted in a jupyter notebook environment

(Python 3.7).

Results
Fifty-four patients participated in this study [mean age:

71.9 (11.8) years, 46% female, days post-stroke: 2.5 (1.5),

Table 1]. The majority of their lesions were located sub-

cortically in middle cerebral artery territory (Fig. 1). Five

patients experienced pontine brainstem infarcts. One pa-

tient with right-hand weakness due to left-hemispheric

stroke also featured punctuate embolic lesions in both

cerebellar hemispheres. However, it is very unlikely that

these cerebellar lesions had a relevant impact on hand

motor weakness or cortico-cortical connectivity.

Static and dynamic functional
network connectivity

After computing time courses and spatial maps of 14

motor components (Fig. 2), we first estimated static con-

nectivity (Fig. 3A). Subsequently, we obtained dFNC via

the sliding window approach. Hereupon, we identified

three discrete, re-occurring connectivity states via k-means

clustering, since the cluster validity index suggested three

as an optimal cluster number solution (Fig. 3B).

Group differences in dynamic
connectivity variability

The variability in dynamic connectivity of eight network

pairs differed significantly between the three patient sub-

groups with different amounts of initial motor impairment

(one-way ANOVA: P< 0.05, Fig. 4A, left plot). These dif-

ferences particularly pertained to connections between the

cortical sensorimotor networks and the putamen. Mildly

affected patients presented with generally lower variability

values than both moderately-to-severely and non-affected

patients (post hoc t-tests: P< 0.05, FDR-corrected, Fig. 4B,

Figure 1 Lesion overlap of all patients. Most lesions were located in the middle cerebral artery territory. The highest lesion

load was found subcortically, affecting white matter pathways and the grey matter of basal ganglia. Of note, our sample

included five patients with pontine brainstem infarcts and one patient with small bilateral cerebellar lesions in addition to a

primary left-hemispheric subcortical stroke. Right-hemispheric lesions of 19 patients were flipped to the left hemisphere to

decrease the spatial heterogeneity of lesions.
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Figure 2 Spatial maps of 14 included intrinsic connectivity networks. Networks were organized in three motor-related

functional domains: Sensorimotor (SMN, 8 components, dark blue), subcortical (SC, 3 components, light blue) and cerebellar

(CB, 3 components, yellow). Back-reconstruction of networks was based on components extracted in Allen et al.9 L, left; R,

right; SMA, supplementary motor area.

Figure 3 (A) Static and (B) Dynamic functional network connectivity. (A) Darker red colour implies stronger positive, darker blue

stronger negative connectivity. Static functional connectivity was, therefore, characterized by strong positive intra-domain connectivity, neutral

connectivity between cortical and subcortical motor networks as well as neutral to negative connectivity between either cortical and subcortical

motor networks and cerebellar networks. (B) Stated percentages above each state correspond to state-specific fraction times across all

subjects. State 1, the most seldom state (median dwell time: 10 windows), featured highly positive intra-domain connectivity and highly negative

connectivity between the sensorimotor and subcortical as well as cerebellar domains. In contrast, State 2, which emerged most often (median

dwell time: 22 windows), was characterized by particularly weak intra-domain connectivity and mostly neutral inter-domain connectivity. Lastly,

State 3 presented highly positive intra-domain connectivity, neutral connectivity between the sensorimotor and subcortical, and slightly negative

connectivity between sensorimotor and cerebellar domains (median dwell time: 14 windows). We can also notice that visually static functional

connectivity resembled State 3 the most. This observation is supported by obtaining the smallest l1-distance from the static functional

connectivity state to all three connectivity states.
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Figure 4 Dynamic functional connectivity strength variability in relation to upper limb motor impairments and recovery post-

stroke. (A) Mean variability of dynamic connectivity throughout the entire scan session. The left plot visualizes the variability averaged over all

54 patients initially recruited. The right plot considers all 30 patients that were followed up after six months. Darker red colour represents

higher variability values. Asterisks indicate significant group effects between patients with no, moderate, or severe upper limb impairments or

more, less or no recovery, respectively (three-level one-way ANOVA: P< 0.05). Most of the differences in variability were found for connections

between the bilateral putamen and cortical sensorimotor networks. (B) Subtraction maps of mean variability values between each subgroup

constellation of initial impairment. Red colour implies higher variability values, blue colour lower variability values. Post hoc t-tests revealed some

overlapping (‘posterior putamen–left sensorimotor cortex’), yet mostly distinct significantly different connectivity pairs between mildly affected

patients and non-affected patients, as well as mildly and moderately-to-severely affected patient groups (P< 0.05, FDR-corrected for multiple

comparisons). Mildly affected patients differed from non-affected patients in more dynamic connectivity variability pairs than did moderately-to-

severely affected patients (four versus two pairs). (C) Subtraction maps of mean variability values between each subgroup constellation of

recoverees. The asterisk on the right indicates a significant group effect between patients with more pronounced versus those with less

pronounced motor recovery post-stroke (t-test: P< 0.05, FDR-corrected for multiple comparisons).
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outer plots). Moderately-to-severely affected patients pre-

sented with even higher dynamic connectivity variability

than non-affected patients (post hoc t-tests: P< 0.05, FDR-

corrected, Fig. 4B, middle plot).

When contrasting the three patient subgroups with differ-

ent amounts of motor recovery over time, we substantiated

nine significantly different dynamic connectivity variability

pairs, (one-way ANOVA: P< 0.05, Fig. 4A, right plot).

Patients in the substantial recovery subgroup were particu-

larly characterized by a lower variability in dynamic con-

nectivity between the supplementary motor area (SMA) and

bilateral posterior putamen (post hoc t-tests: P< 0.05, FDR-

corrected, Fig. 4C, middle and right plots). The overall vari-

ability in dFNC strength weakly correlated with lesion vol-

ume (r¼ 0.29, P¼ 0.04). There was, however, no

correlation between the overall variability and change in

motor performance (r ¼ �0.06, P¼ 0.82).

Prediction of acute upper limb
impairment

When aiming to predict acute upper limb impairment in

the entire sample of 54 stroke subjects, the highest pre-

diction performance was achieved by the dynamic frac-

tion and dwell times data [out-of-sample AUC 6 95%

confidence interval (CI): 0.67 6 0.01]. Feature importan-

ces indicated that the total time spent in state 3, i.e. the

fraction time in a functionally markedly integrated state,

was the most relevant parameter for predicting the acute

impairment status (c.f., Supplemental materials for a

quantitative evaluation of integration and segregation).

Dwell times in state 2, another functionally integrated

state, were assigned the second highest feature import-

ance. Both features, however, did not correlate with acute

motor impairments (fraction time state 3: q¼ 0.22,

P¼ 0.12; dwell time state 2: q¼ 0.03, P¼ 0.87), which

may be indicative of more complex interaction and non-

linear effects that the random forest classifier picked up

on. The models based on the structural, as well as static

functional connectivity data performed second-best (5-

component structural: AUC¼ 0.61 6 0.02, 28-component

structural: AUC¼ 0.59 6 0.01, static connectivity:

AUC¼ 0.62 6 0.02). The model considering the dynamic

variability data performed significantly worse than the

previous models and achieved an AUC at chance level

(Table 2, Supplementary Table 2).

However, when refining the prediction scenario to the

distinction between patients with moderate-to-severe and

mild motor impairments (n¼ 28), it was the model based

on dynamic connectivity variabilities that demonstrated

the highest prediction capacity (AUC¼ 0.83 6 0.02). The

amount of motor impairment was especially predicted by

the variability of dynamic connectivity between the ipsile-

sional sensorimotor network and bilateral posterior puta-

men, as well as ventral pre-central cortex and bilateral

anterior putamen (Fig. 5). Here, more severe motor

impairments correlated with higher variability in these

networks (ipsilesional sensorimotor network–posterior pu-

tamen: q ¼ �0.57, P¼ 0.001, ventral pre-central cortex–

anterior putamen: q ¼ �0.40, P¼ 0.035). None of the

other models provided a prediction fidelity above the

level of chance for the distinction between impairment

levels (Table 2).

In summary, the presence of acute motor impairments

was best predicted by the fraction and dwell times-based

dynamic connectivity model. In contrast, the variability of

individual dynamic connectivity pairs was a powerful pre-

dictor of the amount of motor impairment.

Prediction of motor recovery

We next challenged the capacity of acutely acquired

structural and rsfMRI data to predict motor recovery

6 months after stroke (n¼ 30). The motricity index score

obtained in the acute post-stroke phase was already a

strong predictor, when differentiating between more and

less pronounced, as well as no changes in motor function

in the first six months post-stroke (AUC¼ 0.84 6 0.01,

all results: Table 3, Supplementary Table 3). The joint

model based on the dynamic fraction and dwell times

data and the acute motricity index score accomplished a

prediction performance of AUC¼ 0.89 6 0.01. The 95%

confidence intervals of this joint model did not overlap

Table 2 Prediction of acute motor impairment (out-of-sample AUC and 95% confidence interval)

No. of subjects 5-compo-

nent struc-

tural data

28-compo-

nent struc-

tural data

Static con-

nectivity

data

Dynamic transitions,

fraction and dwell

times data

Dynamic

variability

data

Acute MI-UL: No-motor impair-

ment versus motor impairment

Structural: 53 (27 versus 26, 49%

without motor symptoms)

fMRI: 54

(28 versus 26, 48% without motor

symptoms)

0.61 6 0.02 0.59 6 0.01 0.62 6 0.02 0.67 6 0.01* 0.34 6 0.01

Acute MI-UL: Mild motor impair-

ment versus moderate-severe

motor impairment

Structural: 27 (16 versus 11, 59%

with mild motor impairments)

fMRI: 28 (16 versus 12, 57% with

mild motor impairments)

0.22 6 0.02 0.33 6 0.02 0.32 6 0.01 0.34 6 0.02 0.83 6 0.02*

The highest prediction performances per scenario are stated in bold and marked with an asterisk.
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with the 95% confidence interval of the model using the

MI as the sole predictor variable, highlighting significant-

ly improved prediction performance when adding the dy-

namic connectivity parameters to the behavioural data.

The two most important features were the number of

transitions between states and fraction time in state 3, i.e.

a functionally integrated state. The acute MI-UL score

was ranked as the third most important feature only.

Both of the most important dynamic connectivity parame-

ters correlated negatively with the recovery, i.e. the more

a subject recovered, the shorter their time spent in state 3

was and the fewer they switched between different states

(Fraction time state 3: q ¼ �0.49, P¼ 0.006; Number of

state transitions: q ¼ �0.39, P¼ 0.04).

Finally, we tested the prediction performance when

only considering patients with an initial impairment. In

this scenario, the amount of recovery (no-minor versus

substantial) was best predicted by the dynamic fraction

and dwell times data (AUC¼ 0.92 6 0.02, Table 3,

Supplementary Tables 4 and 5). The most important fea-

tures were fraction and dwell times in state 3, i.e. a func-

tionally integrated state (Fraction time state 3: q ¼
�0.56, P¼ 0.02; Dwell time state 3: q ¼ �0.61,

P¼ 0.008). The model relying on the initial MI-score

achieved a significantly lower AUC of 0.82

(AUC ¼ 0.82 6 0.02). It was paralleled in performance by

the models considering the variability in dynamic con-

nectivity (with the addition of the MI-score:

AUC¼ 0.83 6 0.02 and without the MI-score:

AUC¼ 0.82 6 0.02). The two top ranked features were

the variability in dynamic connectivity between SMA and

bilateral posterior putamen, as well as lateral paracentral

cortex and bilateral posterior putamen. Correlation analy-

ses indicated that subjects showed higher recovery values

the smaller variability was in these connections (SMA–pu-

tamen: q ¼ �0.59, P¼ 0.01; lateral paracentral cortex–

lateral paracentral cortex: q ¼ �0.54, P¼ 0.03). While

the models relying on 28-component structural and static

connectivity data did not exceed a chance-level prediction

performance, the model incorporating 5-component struc-

tural data had (i) an AUC of 0.72 6 0.03 with the add-

ition of the MI-score, and (ii) 0.66 6 0.02 without the

MI-score. This finding indicates some relevance of the

stroke lesion location with respect to the potential to

recover.

In conclusion, we found dFNC parameters obtained in

the first days post-stroke such as the state-specific frac-

tion and dwell times as well as the variability of dynamic

connectivity to be potent predictors of motor recovery six

months later. In particular, fraction and dwell times sig-

nificantly enhanced prediction performance beyond the

level of traditional and well-known clinical predictors,

such as the initial motor impairment.

Discussion
We here explored novel predictors of individual acute

motor impairment and recovery after stroke. These bio-

markers were derived from dFNC analyses of rsfMRI

Figure 5 Variability of dynamic connectivity and feature importances. Brain renderings visualize the most predictive dynamic

connectivity variability pairs for the prediction of mild versus moderate-severe acute motor impairments (left) and the prediction of more or less

pronounced recovery in the patients with initial impairment in the first months after stroke (right). The variabilities in dynamic connectivity

between SMA and bilateral posterior putamen, as well as lateral paracentral cortex and bilateral posterior putamen were the most relevant for

predicting recovery. Correlation analyses revealed that patients with more pronounced recovery featured less variability in these connections.
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data from 54/30 acute ischaemic stroke patients that pre-

sented with varying degrees of motor impairment. DFNC

analyses are special because they allow for the extraction

of moment-to-moment fluctuations in brain connectivity

and the definition of re-occurring dynamic connectivity

states.9,10 Thereby, this approach increases the time reso-

lution of resting-state fMRI evaluations to seconds and

may be particularly capable of capturing stroke-induced

short-lasting connectivity alterations and higher network

flexibility.12,14,34 Fraction times in state 3, i.e. the total

time spent in a functionally integrated connectivity state,

and the variability in dynamic connectivity between puta-

men and various cortical sensorimotor areas crystallized

as particularly promising biomarkers for individualized

outcome predictions.

Functional segregation and
integration

Stroke patients with or without acute motor impairments

were most accurately differentiated based on the time

spent in specific connectivity states. Feature importance

highlighted fraction times in state 3, a connectivity state

that was characterized by pronounced functional integra-

tion. Functional integration here describes a synchronized

information processing between various functional

domains, while functional segregation implies more iso-

lated information processing within functional domains.35

Previous studies of dynamic connectivity in two independ-

ent acute ischaemic stroke cohorts have already uncov-

ered links between functional integration and segregation

and motor performance: lower motor domain integration

in case of severe compared to moderate hand motor

impairments12 and increased whole-brain segregation (i.e.

decreased integration) in case of a high stroke severity.36

Importantly, data of these two cohorts were completely

non-overlapping with the present one, in particular, they

were obtained in scanners with different field strengths

(3 T instead of 1.5 T), at different time points or places.

Interestingly, in healthy subjects with cast-induced motor

inactivity of the upper limb, motor network topology

also turned into a more segregated state.37 We here did

not observe a clear correlation between fraction times in

integrated state 3 and acute motor impairment across all

subjects. Rather, our random forest classifier approach

may have enabled us to differentiate between groups by

also capturing non-linear, as well as interaction effects

between more than one variable.

While we did not find an association between fraction

times in state 3 and acute motor impairments, we did,

however, identify a high capacity of the fraction and

dwell times in state 3 to predict and correlate with future

recovery. Patients that did not show a preference for this

spatially integrated connectivity state in the first days

after stroke recovered more substantially in the upcoming

weeks. From a pathomechanistic perspective, the possibly

most striking characteristic of state 3 is the pattern of

highly positive intra-domain dynamic connectivity in com-

bination with a positive connectivity between cortical and

subcortical networks. Hence, the association of lower

fraction and dwell times in state 3 with motor recovery

indicates that a more segregated, isolated processing with-

in the cortical and subcortical motor domains may be

mechanistically critical for a more successful stroke recov-

ery. Interestingly, increased segregation, i.e. decreased in-

tegration, has been previously linked to expedited regain

of cognitive function in healthy ageing and diffusely dam-

aged brains after mild traumatic brain injury.38 Our cur-

rent findings are, therefore, in line with these reports.

Variability of dynamic connectivity

By considering the variability in dynamic connectivity, we

here amend the previously employed toolset to generate

insights into the role of motor areas in healthy and

pathological motor function. In inference- and prediction-

Table 3 Prediction of upper limb motor recovery based on structural MRI data, static and dynamic connectivity

(out-of-sample AUC and 95% confidence interval)

No. of subjects Acute MI-UL 5-component

structural data

& acute MI-UL

28-component

structural data

& acute MI-UL

Static connect-

ivity data and

acute MI-UL

Dynamic transi-

tions, fraction

and dwell times

data & acute

MI-UL

Dynamic vari-

ability data &

acute MI-UL

MI-UL

Recovery:

Three-group

classification

Structural and fMRI:

30 (16 versus 5 versus

9, with no, less and

more pronounced

motor recovery)

0.84 6 0.01 0.75 6 0.02 0.72 6 0.02 0.67 6 0.02 0.89 6 0.01* 0.74 6 0.01

MI-UL

Recovery:

More and less

pronounced

recovery

Structural and fMRI:

17 (9 versus 8, 53%

with more pronounced

motor recovery)

0.82 6 0.02 0.72 6 0.03 0.52 6 0.03 0.25 6 0.01 0.92 6 0.02* 0.83 6 0.02

The highest prediction performances per scenario are stated in bold and marked with an asterisk.
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focussed analyses, we were able to link mild motor im-

pairment as well as a more pronounced recovery to

lower, i.e. more stable, dynamic connectivity variability

values in select cortical–subcortical connections. The in-

vestigation of dynamic connectivity variability profiles

was previously motivated by Allen et al.,9 especially as

they represented inaccessible information content when

conducting static connectivity analyses. The authors

described distinct ‘zones of instability’, i.e. regions with

more variable dynamic connectivity in healthy volunteers:

The most variable regions were located in the lateral par-

ietal and occipital cortex. Comparable analyses of dFNC

variability in neurological patients with temporal lobe

epilepsy inferred the instability of precuneus dynamic

connectivity as a signature of the disease.39 In yet an-

other study, the dFNC variability provided powerful in-

formation for the differentiation between Alzheimer’s

patients and healthy controls.15

In this study, it was the variability of the dynamic con-

nectivity between the ipsilesional sensorimotor cortex and

bilateral posterior putamen that predicted a more versus

less initial impairment especially well. Statistical group

comparisons moreover suggested that, both moderately-

to-severely affected patients, as well as those without any

impairments had a higher ipsilesional sensorimotor-puta-

men dFNC variability than mildly affected patients. Both

of these brain regions are well known to be implicated in

the emergence of acute motor impairments and recovery

post-stroke. Lesion symptom mapping studies repeatedly

reported ischaemic lesions in the putamen underlying

upper limb impairment.40 Furthermore, the link between

lower (static) resting-state connectivity between ipsi- and

contralesional motor areas and higher motor impairment

is one of the most prominently featured findings in stroke

neuroimaging research.8,41 The connectivity between the

posterior ipsilesional sensorimotor cortex and putamen,

let alone their dFNC variability, however, requires further

exploration to determine the biological meaning.

In case of predicting motor recovery, the variability of

the dynamic connectivity strengths between the SMAs

and the bilateral posterior parts of the putamen was the

most predictive feature. This SMA–putamen variability

was also found to be significantly lower in case of more

pronounced recovery compared to less pronounced and

no change in motor function. The SMA has been consist-

ently identified as critical region for physiological motor

function as well as for stroke recovery in previous stud-

ies.42,43 In particular, longitudinal motor-task-based func-

tional imaging studies demonstrated a recovery-related

excess in activation in these regions early after stroke42

and decreases in activation in sub-acute and chronic

stages after stroke.43 In addition, dynamic causal model-

ling analyses that extracted links between increases in

SMA-M1 coupling and motor improvements suggested a

supportive role of SMA for motor recovery post-stroke.44

Lastly, diffusion-tensor imaging in healthy adults indicates

structural connections between SMA and especially

posterior parts of the putamen, highlighting the role of

this connection for motor function.45 In line with this

conclusion, the SMA–putamen connectivity was found to

be disturbed in patients suffering from motor impair-

ments due to Parkinson’s disease.46,47

In summary, previous results on dFNC variability and

ours combined suggest that these dFNC parameters repre-

sent biologically meaningful fingerprints of neurological

diseases. In the case of ischaemic stroke, this variability

might particularly well capture the effects of brain injury

and early plasticity mechanism in the first few days post-

stroke.

Limitation and future directions

A sample of 54 stroke subjects is still extendible if

intended for the construction of outcome prediction mod-

els, especially as the sample size was decreased further in

ancillary analyses. We obtained out-of-sample estimates

of model performance via 5-fold cross-validation in all

cases, as is the current recommendation in neuroimaging-

based prediction studies.48 However, future studies, rely-

ing on external, i.e. independent datasets, are warranted

to test the generalizability of our findings in further

depths and ensure that predictions generated from the

here developed models continue to be accurate in new

patient samples. These steps may then facilitate a smooth-

er translation into the clinical routine. Of note, the pre-

sent dataset is among the largest acute stroke rsfMRI

datasets currently available and rendered particularly

unique by its comprehensive longitudinal motor assess-

ment and acquisition during the clinical routine, i.e.

when the patients received their diagnostic MR scans.

The latter circumstance enabled a very early time point

of data acquisition, on average 2.5 days after stroke. This

very early time point of data acquisition contrasts other

larger-scale stroke imaging studies, that have recruited

subjects on average two weeks after index stroke.7

Altogether, our study underlines the general feasibility of

implementing the approach presented here with respect to

clinical translation. Owing to the task-free nature of

rsfMRI, it was also feasible to recruit stroke patients that

are typically excluded from fMRI task studies, i.e.

patients with severe motor impairment. Despite the task-

free nature, it nonetheless remains essential to minimize

any artefacts due to motion in the scanner, which might

be particularly challenging in severely affected and also

older patients.

Another limitation of this study relates to the fact that

we did not systematically assess the amount of rehabilita-

tion therapy that each patient received. However, we can

assume that therapy doses varied between patients given

their differences in initial deficits and ensuing recovery,

since the amount of rehabilitation therapy in Germany is

usually decided based on the progress a patient makes.

Altogether, it is therefore very difficult, if not impossible,

to anticipate the exact amount of rehabilitation, that a
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patient will receive later. Hence, such information cannot

be reliably included into prediction algorithms at the be-

ginning of the recovery process.49 Along these lines, we

here predicted the amount of recovery based on factors,

such as symptom severity and connectivity estimates, be-

fore rehabilitation was commenced. It thus appears likely

that differences in the absolute amount of recovery were

not primarily driven by differences in rehabilitation

minutes.

Our findings suggest that the variability of several dy-

namic connectivity pairs is relevant for motor impairment

as well as for recovery. We were also able to extract a

weak positive correlation between the overall variability

of dynamic connectivity and lesion volume. It was, how-

ever, beyond the scope of the current study to determine

detailed links between this variability and individual le-

sion locations given their large spatial variability (c.f.,

Fig. 1). Such associations could, for example, be investi-

gated further in larger samples via canonical correlation

analyses50 that aim to find joint associations between sets

of variables from different modalities.

Lastly, we have focused on classification scenarios, i.e.

our prediction models discriminated patients with or with-

out motor impairments. It could thus be a valuable next

step to predict outcomes on continuous scales, i.e. predict

the precise amount of impairment per patient. Moreover,

it will be important to extend the validity of our findings

based on the Motricity Index, a very quick and well vali-

dated instrument to capture motor impairments,51,52 to

further frequently used impairment and activity limitation

scales, such as the Fugl-Meyer Assessment of the upper ex-

tremity (FU-UE)53 or the Action Research Arm Test

(ARAT).54 In particular, these more detailed tests may

offer the possibility of specifically evaluating subgroups of

patients with respect to already established minimal clinic-

ally important differences (MCID),55 that may identify

motor recovery that has a noticeable and meaningful im-

pact on patients’ lives.49,56 Lastly, future studies may fur-

ther elucidate the interplay between behavioural and

imaging-based biomarkers of stroke recovery. In the pre-

sent study, the model incorporating dynamic connectivity

information provided the significantly highest prediction

performance. However, it has to be noted that the initial

behavioural motor score itself was already an effective pre-

dictor of stroke recovery. While we may generally be inter-

ested in the highest possible prediction performance—as it

can, indeed, make a difference on the level of the individ-

ual patient—this small difference in prediction performance

may justify a focus on easy-to-obtain behavioural measures

for prediction in case of limited resources.

Conclusions
Our data show that dynamic connectivity measures con-

tain a high predictive capacity not only for acute impair-

ments but also for the potential of recovery following

stroke. Especially dynamic connectivity estimates between

the putamen and cortical motor networks emerged as re-

liable predictors of motor impairment and recovery. In

conclusion, our study highlights the value of dynamic

connectivity-derived information to gain insights into the

phenotypes of acute ischaemic brain injury and recovery

after stroke.
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Communications online.
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