

CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 26 September 2017 Accepted 20 November 2017

Edited by E. V. Boldyreva, Russian Academy of Sciences, Russia

Keywords: crystal structure; tetrahydroindazole; tetrahydroindazolone; hydrochloride; hydrate.

CCDC references: 1586488; 1586487

Supporting information: this article has supporting information at journals.iucr.org/e

3.250

OPEN 🗟 ACCESS

Crystal structure of 3,6,6-trimethyl-4-oxo-1-(pyridin-2-yl)-4,5,6,7-tetrahydro-1*H*-indazol-7aminium chloride and its monohydrate

Anatoly Mishnev,^a* Alvis Mengots^b and Māris Turks^b

^aLatvian Institute of Organic Synthesis, Aizkraukles Str. 21, Riga LV-1006, Latvia, and ^bInstitute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, Riga LV-1048, Latvia. *Correspondence e-mail: mishnevs@osi.lv

The title compounds, $C_{15}H_{19}N_4O^+ \cdot Cl^-$ and $C_{15}H_{19}N_4O^+ \cdot Cl^- \cdot H_2O$, obtained in attempts to synthesize metal complexes using tetrahydroindazole as a ligand, were characterized by NMR, IR and X-ray diffraction techniques. The partially saturated ring in the tetrahydroindazole core adopts a sofa conformation. An intramolecular $N-H \cdots N$ hydrogen bond formed by the protonated amino group and the N atom of the pyridyl substituent is found in the first structure. In the hydrochloride, the organic moieties are linked by two $N-H \cdots Cl^-$ hydrogen bonds, forming a C(4) graph-set. In the hydrate crystal, a Cl^- anion and a water molecule assemble the moieties into infinite bands showing hydrogen-bond patterns with graph sets C(6), $R_6^4(12)$ and $R_4^2(8)$. Organic moieties form $\pi-\pi$ stacked supramolecular structures running along the *b* axis in both structures.

1. Chemical context

Tetrahydroindazoles can be regarded as annulated pyrazole analogs (Ansari et al., 2017) or as partially saturated indazoles (Gaikwad et al., 2015). In either of these categories they play an important role in medicinal chemistry. Tetrahydroindazoles are reported to be peripherally selective cannabinoid-1 receptor inverse agonists (Matthews et al., 2016), sigma-2 receptor ligands(Wu et al., 2015), and interleukin-2 inducible T-cell kinase inhibitors (Burch et al., 2015; Heifetz et al., 2016). Heterocyclic compounds containing a tetrahydroindazole core have been researched as antiviral agents (Bassyouni et al., 2016) and compounds with antioxidant properties (Polo et al., 2016). With appropriate side-chain decorations, they also possess COX-2 inhibitory activity (Abdel-Rahman et al., 2012) and can inhibit bacterial type II topoisomerases (Wiener et al., 2007). The latter has led to the development of compounds with both antitumor and antimicrobial activity (Faidallah et al., 2013), including novel antituberculosis agents (Guo et al., 2010).

research communications

The broad application spectrum of tetrahydroindazoles has led to the development of synthetic methodologies. Thus, traditional approaches using a combination of either α,β unsaturated ketones (Nakhai & Bergman, 2009) or dicarbonyl compounds (Murugavel et al., 2010), or tricarbonyl compounds (Kim et al., 2010; Scala et al., 2015) with hydrazines have been significantly updated and improved. In addition, the microwave-assisted synthesis of tetrahydroindazoles has been reported (Silva et al., 2006; Polo et al., 2016). It is interesting to note that compounds possessing free NH-functionality in the pyrazole ring have been studied thoroughly for their tautomeric equilibria (Claramunt et al., 2006). Additionally, tetrahydroindazolones substituted with 2-aminobenzamides have been studied as fluorescent probes (Jia et al., 2012). Other studies on side-chain modifications include the synthesis of polyfluoroalkyl-substituted analogs (Khlebnikova et al., 2012), triazole-functionalized tetrahydroindazolones (Strakova et al., 2009) and their conjugation with biologically active natural products such as lupane triterpenoids (Khlebnicova et al., 2017). Among other synthetic approaches, the Ritter reaction provides a fast entry into structural modifications and is applicable to obtain a combinatorial library of compounds (Turks et al., 2012). Combinatorial chemistry methodology has been reported for the construction of tetrahydroindazolones in enantiomerically pure pairs (Song et al., 2012). Also, enantiomerically pure 7-amino-tetrahydroindazolones (Strakova et al., 2011) have been obtained. For these reasons, we were interested in the synthesis of 7-amino-3,6,6-trimethyl-1-(pyridin-2-yl)-1,5,6,7-tetrahydro-4*H*-indazol-4-one for use as a starting material for further structural modifications. Herein,

the structures of the corresponding hydrochloride 1 and its hydrate 2 are reported.

2. Structural commentary

Figs. 1 and 2 show the asymmetric units of the hydrochloride (1) and its hydrate (2) with the symmetry-independent hydrogen bonds. The geometry and conformation of the organic cation in compounds 1 and 2 are substantially similar. The pyrazole ring is planar within an r.m.s. deviation of the fitted atoms of 0.0059 Å in 1 and 0.0092 Å in 2. In both structures, the partially saturated ring adopts a sofa conformation. The distance of atom C6 from the mean plane formed by atoms C3-C5/C7/C8 (r.m.s. deviation of fitted atoms = 0.0495 Å in 1 and 0.0558 Å in 2) is 0.639 (2) Å in 1 and 0.642(2) Å in 2. The dihedral angle between the latter plane and pyrazole ring is 5.79 (6) $^{\circ}$ in **1** and 6.48 (4) $^{\circ}$ in **2**. On the other hand, the dihedral angle between the pyrazole ring and its pyridyl substituent is $11.91 (6)^{\circ}$ [torsion angle N4–N3– $C11-C12 = 10.7 (2)^{\circ}$ in **1** and 7.22 (5)° [torsion angle N4- $N3-C11-C12 = 4.6 (2)^{\circ}$ in 2. An intramolecular $N-H \cdots N$ hydrogen bond formed by the protonated amino group and nitrogen atom of pyridyl substituent is found in 1 (Table 1).

3. Supramolecular features

In the crystal of compound **1**, the organic moieties are linked by two types of $N-H\cdots Cl^-$ hydrogen bonds into infinite chains along the *b*-axis direction (Table 1). According to Etter (1990), the hydrogen-bond pattern in **1** can be described by a

Figure 1

ORTEP view of the asymmetric unit of **1** showing the atom-numbering scheme and 50% probability displacement ellipsoids. The intramolecular hydrogen bond is shown with dashed lines.

Figure 2

ORTEP view of the asymmetric unit of **2** showing the atom-numbering scheme and 50% probability displacement ellipsoids. The intramolecular hydrogen bonds are shown with dashed lines.

Table 1Hydrogen-bond geometry (Å, $^{\circ}$) for (1).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$\begin{array}{c} N1 - H1N1 \cdots N2 \\ N1 - H2N1 \cdots Cl1^{i} \\ N1 - H3N1 \cdots Cl1^{ii} \end{array}$	0.97 (2)	2.42 (2)	2.928 (2)	112 (2)
	0.97 (2)	2.08 (2)	3.034 (2)	168 (2)
	0.93 (2)	2.27 (2)	3.188 (2)	167 (2)

Symmetry codes: (i) -x + 1, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) x, y - 1, z.

 Table 2

 Hydrogen-bond geometry (Å, $^{\circ}$) for (2).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdots A$
$O1W-H1W\cdots Cl1^{i}$	0.80 (3)	2.39 (3)	3.185 (2)	176 (3)
$O1W-H2W\cdots Cl1$	0.94 (3)	2.31 (3)	3.247 (2)	179 (2)
$N1 - H1N1 \cdot \cdot \cdot Cl1^{ii}$	0.85 (2)	2.40 (2)	3.228 (2)	165 (2)
$N1 - H3N1 \cdots O1W$	0.95 (2)	1.85 (3)	2.775 (2)	162 (2)

Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) x, y - 1, z.

C(4) graph set. The packing of **1** is shown in Fig. 3. In the structure of **2**, in addition to participating in an intramolecular hydrogen bond, the protonated amino group also forms two intermolecular hydrogen bonds with the Cl⁻ anion and a water molecule (Table 2). Each Cl⁻ anion and water molecule takes part in three intermolecular hydrogen bonds. The organic cations are bridged by a pair of Cl⁻ anions and a water molecule, thus assembling the moieties into infinite bands running along the *b*-axis direction. The hydrogen-bond pattern can be described by graph sets C(6), $R_6^4(12)$ and $R_4^2(8)$. The packing of **2** is shown in Fig. 4.

In the crystal of **1**, the organic moieties form stacks running along the *b* axis which are stabilized by π - π interactions (Fig. 5). The distance between the centroids of the pyridine and pyrazole rings of adjacent molecules is 3.585 (2) Å. The shortest contact is 3.239 (2) Å between atoms N2 and N4 of two inversion-related molecules (Fig. 5). In the crystal of **2**, the organic moieties also form π - π -stacked supramolecular

Figure 3

The crystal packing of compound 1, viewed along the *a* axis. The hydrogen bonds are shown as dashed lines (see Table 1).

The crystal packing of compound 2, viewed along the *c* axis. The hydrogen bonds are shown as dashed lines (see Table 2).

structures running along the *b*-axis direction (Fig. 6). The distance between the centroids of the pyridine rings of adjacent molecules is 3.748 (2) Å. The shortest contact is 3.170 (2) Å between the N3 atoms of two inversion-related molecules (Fig. 6).

4. Database survey

A search of the Cambridge Structural Database (Version 5.38; Groom *et al.*, 2016) for the 3,6,6-trimethyl-4-oxo-4,5,6,7tetrahydro-1*H*-indazole core revealed five structurally close compounds: UXAQUG, UXARAN, UXARER, UXARIV, UXAROB (Strakova *et al.*, 2011). These compounds differ from compounds **1** and **2** by the substituents at the positions of atoms N3 and C5. In all examples, the partially saturated ring in the indazole fragment adopts a sofa conformation.

Figure 5

View of stacks of organic moieties in the crystal structure of **1**. H atoms and chloride anions are not shown for clarity.

research communications

Figure 6

View of stacks of organic moieties in the crystal structure of **2**. H atoms, chloride anions and water molecules are not shown for clarity.

However, the phenyl ring at the position N3 forms much larger dihedral angles with the pyrazole ring than with the pyridyl substituent in the structures reported here.

5. Synthesis and crystallization

The synthesis of the title compounds is depicted in the reaction scheme below. The 7-aminotetrahydroindazolone derivative **4** was prepared by an analogy of the procedure published by Strakova *et al.* (2011) from the known precursor **3** (Strakova *et al.*, 2009). In our attempts to synthesize metal complexes with ligand **4**, we obtained the hydrochloride salt **1** in its anhydrous form. It can be explained by the acidity of cobalt chloride hexahydrate, which was used in the selected experiment. This prompted us to develop a preparative synthesis of the hydrochloride salt. This was achieved by the formation and precipitation of crude hydrochloride in ethyl acetate solution. Its crystallization from water provided the hydrochloride hydrate **2**.

7-Amino-3,6,6-trimethyl-1-(pyridin-2-yl)-1,5,6,7-tetrahydro-4*H***-indazol-4-one (4): Gaseous H_2 was bubbled for 10 min. through a solution/suspension of compound 3 (0.80 g,** 2.7 mmol) and 10% Pd/C (80 mg) in a mixture of EtOH (10 mL) and THF (2 mL). The resulting reaction mixture was stirred under an H₂ atmosphere at standard temperature and pressure for 3 h (TLC control). The catalyst was filtered through a celite pad and the filtrate was evaporated to dryness. The resulting amorphous solid was dried under reduced pressure to yield amine 4 (0.71 g, 97%) as a colorless powder. M.p. 390–392 K; $R_f = 0.14$ (Hex:EtOAc:Et₃N = 8:1:0.5). IR (KBr), v (cm⁻¹): 3360, 3295, 3055, 2985, 2955, 2945, 2930, 2890, 2865, 1670, 1590, 1575, 1540, 1465, 1455, 1285, 1250, 1145, 1085, 1075, 1035, 995. ¹H NMR (CDCl₃, 300 MHz) δ (ppm): 8.48 [m, 1H, H-C(Py)], 7.99 [d, J = 8.3 Hz, 1H, H-C(Py)], 7.87 [m, 1H, H-C(Py)], 7.26 [m, 1H, H-C(Py)], 4.27 (s, 1H, H-C7), 2.82 (d, J = 16.8 Hz, 1H, H_a-C5), 2.54 (s, 3H, H₃C-C3), 2.18 (d, J = 16.8 Hz, 1H, H_b-C5), 2.08 (bs, 2H, H₂N-C7) 1.26, 1.02 (2s, 6H, H₃C-C6).¹³C NMR (75.5 MHz, CDCl₃), δ (ppm): 194.1, 153.9, 152.4, 150.4, 148.0, 139.1, 122.1, 116.5, 115.9, 53.8, 47.8, 38.4, 27.3, 26.6, 13.7. Analysis calculated: (C₁₅H₁₈N₄O) C, 66.64; H, 6.71; N, 20.73. Found: C, 66.56; H, 6.68; N, 20.74.

3,6,6-Trimethyl-4-oxo-1-(pyridin-2-yl)-4,5,6,7-tetrahydro-1H-indazol-7-aminium chloride (1): A solution of $CoCl_2 \cdot 6H_2O$ (24 mg, 0.1 mmol) in ethanol (2 mL) was added to a solution of amine **4** (27 mg, 0.1 mmol) in ethanol (2 mL). The resulting reaction mixture was maturated at ambient temperature for 24 h. Then a part of it (1.2 mL) was transferred into an NMR tube and Et₂O (0.8 mL) was added carefully on the top of the ethanol solution. After two days, colorless crystals of **1** were collected form the wall of the NMR tube. The product was characterized spectroscopically in its hydrate form (see below).

3,6,6-Trimethyl-4-oxo-1-(pyridin-2-yl)-4,5,6,7-tetrahydro-1H-indazol-7-aminium chloride hydrate (2): A solution of HCl in EtOAc (0.5 M, 1.48 mL, 0.74 mmol, 1.0 equiv.) was added to a solution of amine 4 (0.20 g, 0.74 mmol, 1.0 equiv.) in EtOAc (2 mL) at ambient temperature. The resulting precipitate was filtered and washed on the filter with DCM. The the crude product was crystallized from water to obtain colorless crystals of 2 (195 mg, 81%) suitable for X-ray analysis. M.p. 543 K (decomp.); IR (KBr), v (cm⁻¹): 3430 (*br.s*), 3145, 3100, 3035, 2965, 2880, 2750, 2575, 1955 (br.s), 1685, 1600, 1545, 1520, 1490, 1465, 1450, 1400, 1375, 1360, 1295, 1245, 1140, 1045, 1000, 955. ¹H NMR (300MHz, D₂O), δ (ppm): δ 8.55 [m, 1H, H-C(Py)], 8.12 [m,1H,H-C (Py)], 7.90 [d, J = 8.3 Hz, 1H, H-C(Py)], 7.53 [m, 1H, H-C(Py)], 4.84 (s, 1H, H-C7), 3.00 (d, J =17.8 Hz, 1H, H_a-C5), 2.54 (s, 3H, H₃C-C3), 2.45 (d, J =17.8Hz,1H,H_b-C5), 1.36, 1.10 (2s, 6H, H₃C-C6). ¹³C NMR (75.5 MHz, DMSO-*d*₆), δ (ppm):192.3, 151.4, 149.0, 148.0, 144.4, 140.1, 122.8, 118.0, 114.6, 51.4, 47.1, 37.2, 26.8, 25.4, 13.2. Analysis calculated: (C₁₅H₁₈N₄O·HCl·H₂O) C, 55.47; H, 6.52; N, 17.25. Found: C, 55.78; H,6.40; N, 17.29.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. Hydrogen atoms bonded to heteroatoms were refined isotropically. Other H atoms were included in the refinement at geometrically calculated posi-

Table 3Experimental details.

	(1)	(2)
Crystal data		
Chemical formula	$C_{45}H_{10}N_{4}O^{+}Cl^{-}$	$C_{12}H_{10}N_{1}O^{+}\cdot Cl^{-}\cdot H_{2}O$
M	306.79	324.81
Crystal system space group	Monoclinic $P2_1/c$	Monoclinic $P_{2_1/c}$
Temperature (K)	190	190
a b c (Å)	13.5411(4) 7.7421(2) 19.2457(5)	10.1855(2) 7 4951(2) 20 7961(4)
$\beta(\circ)$	130,493 (2)	100 545 (1)
$V(\dot{A}^3)$	1534.39 (8)	1560.79 (6)
Z	4	4
Radiation type	Μο Κα	Μο Κα
$\mu (\text{mm}^{-1})$	0.25	0.26
Crystal size (mm)	$0.38 \times 0.32 \times 0.15$	$0.42 \times 0.25 \times 0.14$
Data collection		
Diffractometer	Nonius KappaCCD	Nonius KappaCCD
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	5860, 3486, 2715	5549, 3552, 2874
R _{int}	0.027	0.023
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.649	0.654
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.043, 0.101, 1.03	0.039, 0.102, 1.06
No. of reflections	3486	3552
No. of parameters	205	222
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \ \Delta \rho_{\rm min} \ (e \ A^{-5})$	0.29, -0.25	0.29, -0.28

Computer programs: COLLECT (Bruker, 2004), SCALEPACK (Otwinowski & Minor, 1997), DENZO (Otwinowski & Minor, 1997), SIR2004 (Burla et al., 2005), SHELXL2017 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012) and publCIF (Westrip, 2010).

tions with C-H = 0.95–0.99Å and treated as riding with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(C-methyl)$.

Funding information

Funding for this research was provided by: Latvian Council of Science (grant No. 14.0593).

References

- Abdel-Rahman, H. M. & Ozadali, K. (2012). Arch. Pharm. Pharm. Med. Chem. 345, 878–883.
- Ansari, A., Ali, A., Asif, M. & Shamsuzzaman (2017). New J. Chem. **41**, 16–41.
- Bassyouni, F., El Din Gaffer, A., Roaiah, H., El-Senousy, W. M., El Nakkady, S. S. & &Rehim, M. A. (2016). *Res. J. Pharm. Biol. Chem. Sci*, **7**, 24–37.
- Bruker (20014). COLLECT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Burch, J. D., Barrett, K., Chen, Y., DeVoss, J., Eigenbrot, C., Goldsmith, R., Ismaili, M. H. A., Lau, K., Lin, Z., Ortwine, D. F., Zarrin, A. A., McEwan, P. A., Barker, J. J., Ellebrandt, C., Kordt, D., Stein, D. B., Wang, X., Chen, Y., Hu, B., Xu, X., Yuen, P.-W., Zhang, Y. & Pei, Z. (2015). J. Med. Chem. 58, 3806–3816.
- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
- Claramunt, R. M., López, C., Pérez-Medina, C., Pinilla, E., Torres, M. R. & Elguero, J. (2006). *Tetrahedron*, **62**, 11704–11713.
- Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
- Faidallah, H. M., Khan, K. A., Rostom, S. A. F. & Asiri, A. M. (2013). J. Enzyme Inhib. Med. Chem. 28, 495–508.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.

- Gaikwad, D. D., Chapolikar, A. D., Devkate, C. G., Warad, K. D., Tayade, A. P., Pawar, R. P. & Domb, A. J. (2015). *Eur. J. Med. Chem.* **90**, 707–731.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Guo, S., Song, Y., Huang, Q., Yuan, H., Wan, B., Wang, Y., He, R., Beconi, M. G., Franzblau, S. G. & Kozikowski, A. P. (2010). *J. Med. Chem.* 53, 649–659.
- Heifetz, A., Trani, G., Aldeghi, M., MacKinnon, C. H., McEwan, P. A., Brookfield, F. A., Chudyk, E. I., Bodkin, M., Pei, Z., Burch, J. D. & Ortwine, D. F. (2016). *J. Med. Chem.* **59**, 4352–4363.
- Jia, J., Xu, Q.-C., Li, R.-C., Tang, X., He, Y.-F., Zhang, M.-Y., Zhang, Y. & Xing, G.-W. (2012). Org. Biomol. Chem. 10, 6279–6286.
- Khlebnicova, T. S., Piven, Y. A., Baranovsky, A. V., Lakhvich, F. A., Shishkina, S. V., Zicāne, D., Tetere, Z., Rāviņa, I., Kumpiņš, V., Rijkure, I., Mieriņa, I., Peipiņš, U. & Turks, M. (2017). *Steroids*, **117**, 77–89.
- Khlebnikova, T. S., Piven', Y. A., Baranovskii, A. V. & Lakhvich, F. A. (2012). Russ. J. Org. Chem. 48, 411–418.
- Kim, J., Song, H. & Park, S. B. (2010). Eur. J. Org. Chem. pp. 3815– 3822.
- Matthews, J. M., McNally, J. J., Connolly, P. J., Xia, M., Zhu, B., Black, S., Chen, C., Hou, C., Liang, Y., Tang, Y. & Macielag, M. J. (2016). *Bioorg. Med. Chem. Lett.* 26, 5346–5349.
- Murugavel, K., Amirthaganesan, S. & R. T. S. (2010). Chem. Heterocycl. C. 46, 302–306.
- Nakhai, A. & Bergman, J. (2009). Tetrahedron, 65, 2298–2306.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Polo, E., Trilleras, J., Ramos, J., Galdámez, A., Quiroga, J. & Gutierrez, M. (2016). *Molecules*, **21**, article number 903.
- Scala, A., Piperno, A., Risitano, F., Cirmi, S., Navarra, M. & Grassi, G. (2015). *Mol. Divers.* **19**, 473–480.

research communications

Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

- Silva, V. L. M., Silva, A. M. S., Pinto, D. C. G. A. & Cavaleiro, J. (2006). *Synlett*, pp. 1369–1373.
- Song, H., Lee, H., Kim, J. & Park, S. B. (2012). ACS Comb. Sci. 14, 66–74.
- Strakova, I., Kumpiņa, I., Rjabovs, V., Lugiņina, J., Belyakov, S. & Turks, M. (2011). *Tetrahedron Asymmetry*, **22**, 728–739.
- Strakova, I., Turks, M. & Strakovs, A. (2009). *Tetrahedron Lett.* 50, 3046–3049.
- Turks, M., Strakova, I., Gorovojs, K., Belyakov, S., Piven, Y. A., Khlebnicova, T. S. & Lakhvich, F. A. (2012). *Tetrahedron*, 68, 6131– 6140.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Wiener, J. J. M., Gomez, L., Venkatesan, H., Santillán, A. Jr, Allison, B. D., Schwarz, K. L., Shinde, S., Tang, L., Hack, M. D., Morrow, B. J., Motley, S. T., Goldschmidt, R. M., Shaw, K. J., Jones, T. K. & Grice, C. A. (2007). *Bioorg. Med. Chem. Lett.* **17**, 2718–2722.
- Wu, Z.-W., Song, S.-Y., Li, L., Lu, H.-L., Lieberman, B., Huang, Y.-S. & Mach, R. H. (2015). *Bioorg. Med. Chem.* 23, 1463–1471.

Acta Cryst. (2017). E73, 1931-1936 [https://doi.org/10.1107/S205698901701667X]

Crystal structure of 3,6,6-trimethyl-4-oxo-1-(pyridin-2-yl)-4,5,6,7-tetrahydro-1H-indazol-7-aminium chloride and its monohydrate

Anatoly Mishnev, Alvis Mengots and Māris Turks

Computing details

For both structures, data collection: COLLECT (Bruker, 2004); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: *publCIF* (Westrip, 2010).

3,6,6-Trimethyl-4-oxo-1-(pyridin-2-yl)-4,5,6,7-tetrahydro-1H-indazol-7-aminium chloride (1)

Crystal data	
$C_{15}H_{19}N_4O^+ \cdot Cl^-$ $M_r = 306.79$ Monoclinic, $P2_1/c$ a = 13.5411 (4) Å b = 7.7421 (2) Å c = 19.2457 (5) Å $\beta = 130.493$ (2)° V = 1534.39 (8) Å ³ Z = 4	$F(000) = 648$ $D_x = 1.328 \text{ Mg}$ Mo Ka radiation Cell parameter $\theta = 1.0-27.5^{\circ}$ $\mu = 0.25 \text{ mm}^{-1}$ T = 190 K Block, colourl $0.38 \times 0.32 \times 0$
Data collection	
Nonius KappaCCD diffractometer Radiation source: fine-focus sealed tube CCD scans 5860 measured reflections 3486 independent reflections	2715 reflection $R_{int} = 0.027$ $\theta_{max} = 27.5^{\circ}, \theta$ $h = -17 \rightarrow 17$ $k = -10 \rightarrow 9$ $l = -24 \rightarrow 24$

Refinement

Refinement on F^2 Hydrogen site location: mixed Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.043$ and constrained refinement $wR(F^2) = 0.101$ S = 1.03where $P = (F_0^2 + 2F_c^2)/3$ 3486 reflections $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.29 \ {\rm e} \ {\rm \AA}^{-3}$ 205 parameters $\Delta \rho_{\rm min} = -0.25 \ {\rm e} \ {\rm \AA}^{-3}$ 0 restraints

g m⁻³ on, $\lambda = 0.71073$ Å rs from 6801 reflections less 0.15 mm

ns with $I > 2\sigma(I)$ $\theta_{\rm min} = 3.0^{\circ}$

H atoms treated by a mixture of independent $w = 1/[\sigma^2(F_o^2) + (0.0363P)^2 + 0.7495P]$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cl1	0.63264 (4)	0.65297 (6)	0.33536(3)	0.03342 (14)
01	0.98736 (12)	-0.08281 (19)	0.66919 (8)	0.0361 (3)
N3	0.59725 (12)	0.17416 (17)	0.53425 (8)	0.0187 (3)
N4	0.65309 (13)	0.13670 (18)	0.62325 (9)	0.0219 (3)
C4	0.67526 (15)	0.1258 (2)	0.51633 (10)	0.0193 (3)
N2	0.41873 (13)	0.26763 (19)	0.38981 (9)	0.0230 (3)
C12	0.42625 (16)	0.3337 (2)	0.51532 (11)	0.0232 (4)
H12	0.471148	0.327724	0.577688	0.028*
C11	0.47588 (15)	0.2621 (2)	0.47773 (10)	0.0190 (3)
N1	0.55052 (14)	0.0192 (2)	0.35950 (9)	0.0220 (3)
C13	0.30686 (17)	0.4145 (2)	0.45593 (12)	0.0282 (4)
H13	0.267881	0.460408	0.477604	0.034*
C3	0.78494 (15)	0.0540(2)	0.59559 (10)	0.0211 (3)
C6	0.78026 (16)	0.1295 (2)	0.44709 (11)	0.0246 (4)
C15	0.30553 (16)	0.3529 (2)	0.33478 (12)	0.0276 (4)
H15	0.265092	0.362741	0.273282	0.033*
C8	0.88681 (16)	-0.0231 (2)	0.59948 (11)	0.0244 (4)
C5	0.65109 (15)	0.1485 (2)	0.42887 (10)	0.0207 (3)
Н5	0.616867	0.265008	0.405413	0.025*
C2	0.76718 (16)	0.0664 (2)	0.66070 (11)	0.0224 (4)
C10	0.75046 (18)	0.1108 (3)	0.35558 (12)	0.0325 (4)
H10A	0.830139	0.113448	0.366104	0.049*
H10B	0.695686	0.204248	0.315864	0.049*
H10C	0.706960	0.002985	0.327613	0.049*
C14	0.24569 (17)	0.4268 (2)	0.36430 (13)	0.0297 (4)
H14	0.166419	0.483251	0.323640	0.036*
C7	0.85647 (16)	-0.0288 (2)	0.50865 (11)	0.0253 (4)
H7A	0.806434	-0.132217	0.476113	0.030*
H7B	0.937384	-0.037310	0.520035	0.030*
C1	0.85803 (17)	0.0141 (3)	0.75907 (11)	0.0312 (4)
H1A	0.809647	-0.005846	0.778844	0.047*
H1B	0.920174	0.104542	0.795200	0.047*
H1C	0.902572	-0.089806	0.766326	0.047*
C9	0.86206 (17)	0.2931 (2)	0.49510 (13)	0.0301 (4)
H9A	0.815252	0.391477	0.456570	0.045*
H9B	0.942494	0.281965	0.507027	0.045*
H9C	0.879617	0.308100	0.551734	0.045*
H1N1	0.487 (2)	0.000 (3)	0.3670 (14)	0.046 (6)*
H2N1	0.503 (2)	0.062 (3)	0.2980 (16)	0.054 (7)*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

H3N1	0.584 (2	2)	-0.088 (3)	0.3627 (14)	0.042 (6)*	*	
Atomic a	Atomic displacement parameters ($Å^2$)						
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}	
Cl1	0.0363 (3)	0.0353 (3)	0.0225 (2)	0.0052 (2)	0.01632 (19)	-0.00482 (19)	
01	0.0235 (7)	0.0442 (8)	0.0281 (6)	0.0113 (6)	0.0113 (6)	0.0038 (6)	
N3	0.0190 (7)	0.0211 (7)	0.0168 (6)	0.0005 (6)	0.0119 (5)	0.0004 (6)	
N4	0.0244 (7)	0.0234 (7)	0.0184 (6)	-0.0002 (6)	0.0141 (6)	0.0012 (6)	
C4	0.0189 (8)	0.0186 (8)	0.0210 (7)	-0.0011 (6)	0.0132 (7)	-0.0020(7)	
N2	0.0207 (7)	0.0263 (7)	0.0216 (7)	0.0011 (6)	0.0136 (6)	0.0027 (6)	
C12	0.0272 (9)	0.0200 (8)	0.0268 (8)	0.0003 (7)	0.0195 (7)	0.0005 (7)	
C11	0.0189 (8)	0.0157 (8)	0.0232 (8)	-0.0015 (6)	0.0140 (7)	-0.0004 (7)	
N1	0.0204 (7)	0.0266 (8)	0.0191 (7)	0.0023 (6)	0.0129 (6)	-0.0013 (6)	
C13	0.0299 (9)	0.0235 (9)	0.0400 (10)	0.0021 (8)	0.0267 (8)	-0.0010 (8)	
C3	0.0187 (8)	0.0209 (8)	0.0194 (7)	-0.0011 (7)	0.0105 (6)	-0.0019 (7)	
C6	0.0218 (8)	0.0297 (9)	0.0264 (8)	0.0031 (7)	0.0176 (7)	0.0007 (8)	
C15	0.0230 (8)	0.0299 (9)	0.0252 (8)	0.0022 (8)	0.0136 (7)	0.0063 (8)	
C8	0.0203 (8)	0.0213 (8)	0.0254 (8)	-0.0005 (7)	0.0122 (7)	-0.0016 (7)	
C5	0.0205 (8)	0.0220 (8)	0.0212 (7)	0.0022 (7)	0.0143 (7)	0.0010 (7)	
C2	0.0214 (8)	0.0212 (8)	0.0201 (8)	-0.0022 (7)	0.0114 (7)	-0.0010(7)	
C10	0.0285 (9)	0.0455 (12)	0.0315 (9)	0.0064 (9)	0.0230 (8)	0.0043 (9)	
C14	0.0224 (9)	0.0245 (9)	0.0379 (10)	0.0048 (7)	0.0176 (8)	0.0055 (8)	
C7	0.0198 (8)	0.0281 (9)	0.0290 (9)	0.0042 (7)	0.0163 (7)	-0.0020(8)	
C1	0.0291 (9)	0.0364 (11)	0.0205 (8)	0.0007 (8)	0.0127 (8)	0.0025 (8)	
С9	0.0251 (9)	0.0299 (10)	0.0390 (10)	0.0022 (8)	0.0224 (8)	0.0014 (8)	

Geometric parameters (Å, °)

01	1.223 (2)	C6—C10	1.537 (2)
N3—C4	1.360 (2)	C6—C7	1.544 (2)
N3—N4	1.3811 (18)	C6—C5	1.552 (2)
N3—C11	1.424 (2)	C15—C14	1.380 (3)
N4—C2	1.325 (2)	С15—Н15	0.9300
C4—C3	1.378 (2)	C8—C7	1.515 (2)
C4—C5	1.502 (2)	С5—Н5	0.9800
N2—C11	1.328 (2)	C2—C1	1.496 (2)
N2—C15	1.341 (2)	C10—H10A	0.9600
C12—C13	1.383 (2)	C10—H10B	0.9600
C12—C11	1.383 (2)	C10—H10C	0.9600
C12—H12	0.9300	C14—H14	0.9300
N1—C5	1.509 (2)	С7—Н7А	0.9700
N1—H1N1	0.97 (2)	С7—Н7В	0.9700
N1—H2N1	0.97 (2)	C1—H1A	0.9600
N1—H3N1	0.93 (2)	C1—H1B	0.9600
C13—C14	1.381 (3)	C1—H1C	0.9600
С13—Н13	0.9300	С9—Н9А	0.9600
C3—C2	1.424 (2)	С9—Н9В	0.9600

С3—С8	1.459 (2)	С9—Н9С	0.9600
С6—С9	1.535 (3)		
C4—N3—N4	111.53 (12)	C3—C8—C7	114.43 (14)
C4—N3—C11	129.76 (13)	C4—C5—N1	109.18 (13)
N4—N3—C11	118.61 (12)	C4—C5—C6	110.02 (13)
C2—N4—N3	105.47 (13)	N1—C5—C6	111.99 (13)
N3—C4—C3	106.66 (13)	C4—C5—H5	108.5
N3—C4—C5	127.76 (14)	N1—C5—H5	108.5
C3—C4—C5	125.56 (14)	С6—С5—Н5	108.5
C11—N2—C15	116.33 (14)	N4—C2—C3	110.63 (14)
C13-C12-C11	116.96 (15)	N4-C2-C1	120.64 (15)
C_{13} C_{12} H_{12}	121.5	C_{3} $-C_{2}$ $-C_{1}$	128.72 (16)
C11 - C12 - H12	121.5	C6-C10-H10A	109 5
N_{2} C_{11} C_{12}	121.5	C6-C10-H10B	109.5
N2-C11-N3	114 67 (13)	H_{10A} C_{10} H_{10B}	109.5
112 - 011 - 113	114.07(13) 120.26(14)	C6 C10 H10C	109.5
C_{12} C_{11} C_{13} C	120.20(14)		109.5
C5 NI U2NI	110.3(13) 110.0(14)	H10A - C10 - H10C	109.5
C5—NI—H2NI	110.9 (14)	HI0B—CI0—HI0C	109.5
HINI - NI - H2NI	106.3 (18)	C15 - C14 - C13	118.12 (16)
C5—NI—H3NI	114.2 (13)	C15	120.9
HINI—NI—H3NI	107.5 (19)	C13—C14—H14	120.9
H2NI—NI—H3NI	107.3 (19)	C8—C7—C6	114.06 (14)
C14—C13—C12	119.76 (16)	С8—С7—Н7А	108.7
C14—C13—H13	120.1	С6—С7—Н7А	108.7
C12—C13—H13	120.1	С8—С7—Н7В	108.7
C4—C3—C2	105.68 (14)	С6—С7—Н7В	108.7
C4—C3—C8	121.68 (14)	H7A—C7—H7B	107.6
C2—C3—C8	132.55 (15)	C2—C1—H1A	109.5
C9—C6—C10	108.51 (15)	C2—C1—H1B	109.5
C9—C6—C7	109.37 (14)	H1A—C1—H1B	109.5
C10—C6—C7	110.59 (14)	C2—C1—H1C	109.5
C9—C6—C5	108.97 (14)	H1A—C1—H1C	109.5
C10—C6—C5	109.35 (13)	H1B—C1—H1C	109.5
C7—C6—C5	110.02 (14)	С6—С9—Н9А	109.5
N2-C15-C14	123.68 (16)	С6—С9—Н9В	109.5
N2—C15—H15	118.2	Н9А—С9—Н9В	109.5
C14—C15—H15	118.2	С6—С9—Н9С	109.5
O1—C8—C3	123.57 (16)	Н9А—С9—Н9С	109.5
O1—C8—C7	121.97 (15)	H9B—C9—H9C	109.5
C4—N3—N4—C2	0.69 (18)	N3—C4—C5—N1	-74.7 (2)
$C_{11} = N_{3} = N_{4} = C_{2}$	-176.00(14)	C3-C4-C5-N1	107.05(18)
N4—N3—C4—C3	0.27 (18)	N3-C4-C5-C6	162.06 (16)
$C_{11} = N_3 = C_4 = C_3$	176 49 (15)	C_{3} C_{4} C_{5} C_{6}	-162(2)
N4—N3—C4—C5	-178 26 (15)	C9 - C6 - C5 - C4	-7459(17)
$C_{11} = N_3 = C_4 = C_5$	-20(3)	C_{10} C_{6} C_{5} C_{4}	166 95 (14)
C15 = N2 = C11 = C12	14(2)	C7-C6-C5-C4	45 31 (18)
	··· (/		10101 (10)

C15—N2—C11—N3 C13—C12—C11—N2 C13—C12—C11—N3 C4—N3—C11—N2 N4—N3—C11—N2 C4—N3—C11—C12 N4—N3—C11—C12 C11—C12—C13—C14 N3—C4—C3—C2 C5—C4—C3—C2 N3—C4—C3—C8	-178.55 (14) 1.1 (3) -178.92 (15) 14.7 (2) -169.29 (14) -165.27 (16) 10.7 (2) -2.6 (3) -1.05 (18) 177.52 (15) 175.84 (15)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	163.80 (14) 45.35 (19) -76.29 (16) -1.36 (18) 177.90 (15) 1.55 (19) -174.86 (17) -177.64 (17) 6.0 (3) 1.0 (3) 1.7 (3)
N4—N3—C11—C12	10.7 (2)	C8—C3—C2—N4	-174.86 (17)
C11—C12—C13—C14	-2.6 (3)	C4—C3—C2—C1	-177.64 (17)
N3—C4—C3—C2	-1.05 (18)	C8—C3—C2—C1	6.0 (3)
C5-C4-C3-C2	177.52 (15)	N2-C15-C14-C13	1.0 (3)
N3-C4-C3-C2	175.84 (15)	C12-C13-C14-C15	1.7 (3)
C5-C4-C3-C8	-5.6 (3)	O1—C8—C7—C6	-145.62 (17)
C11-N2-C15-C14	-2.5 (3)	C3—C8—C7—C6	36.1 (2)
C4-C3-C8-O1	177.45 (17)	C9—C6—C7—C8	62.12 (18)
C2-C3-C8-O1 C4-C3-C8-C7 C2-C3-C8-C7	-6.6 (3) -4.4 (2) 171.59 (17)	C10—C6—C7—C8 C5—C6—C7—C8	-178.44 (14) -57.54 (19)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H…A
C12—H12…Cl1 ⁱ	0.93	2.80	3.4470 (17)	127
C14—H14…O1 ⁱⁱ	0.93	2.44	3.277 (2)	150
C7—H7A····Cl1 ⁱⁱⁱ	0.97	2.71	3.6401 (18)	160
C1—H1 <i>B</i> ····O1 ^{iv}	0.96	2.60	3.503 (2)	156
$N1$ — $H1N1$ ··· $N4^{v}$	0.97 (2)	2.29 (2)	3.218 (2)	161 (2)
N1—H1 <i>N</i> 1····N2	0.97 (2)	2.42 (2)	2.928 (2)	112 (2)
N1—H2N1···Cl1 ^{vi}	0.97 (2)	2.08 (2)	3.034 (2)	168 (2)
N1—H3N1···C11 ⁱⁱⁱ	0.93 (2)	2.27 (2)	3.188 (2)	167 (2)

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) *x*-1, -*y*+1/2, *z*-1/2; (iii) *x*, *y*-1, *z*; (iv) -*x*+2, *y*+1/2, -*z*+3/2; (v) -*x*+1, -*y*, -*z*+1; (vi) -*x*+1, *y*-1/2, -*z*+1/2.

3,6,6-Trimethyl-4-oxo-1-(pyridin-2-yl)-4,5,6,7-tetrahydro-1*H*-indazol-7-aminium chloride monohydrate (2)

Crystal data F(000) = 688 $C_{15}H_{19}N_4O^+{\cdot}Cl^-{\cdot}H_2O$ $M_r = 324.81$ $D_{\rm x} = 1.382 \text{ Mg m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Monoclinic, $P2_1/c$ *a* = 10.1855 (2) Å Cell parameters from 8626 reflections *b* = 7.4951 (2) Å $\theta = 1.0-27.5^{\circ}$ *c* = 20.7961 (4) Å $\mu = 0.26 \text{ mm}^{-1}$ $\beta = 100.545 (1)^{\circ}$ T = 190 KV = 1560.79 (6) Å³ Block, colourless Z = 4 $0.42\times0.25\times0.14~mm$ Data collection Nonius KappaCCD 5549 measured reflections diffractometer 3552 independent reflections Radiation source: fine-focus sealed tube 2874 reflections with $I > 2\sigma(I)$ CCD scans $R_{\rm int} = 0.023$

$\theta_{\text{max}} = 27.7^{\circ}, \ \theta_{\text{min}} = 3.6^{\circ}$	$k = -9 \longrightarrow 9$
$h = -13 \rightarrow 13$	$l = -27 \rightarrow 26$
Refinement	
Refinement on F^2	Hydrogen site location: mixed
Least-squares matrix: full	H atoms treated by a mixture of independent
$R[F^2 > 2\sigma(F^2)] = 0.039$	and constrained refinement
$wR(F^2) = 0.102$	$w = 1/[\sigma^2(F_o^2) + (0.0426P)^2 + 0.794P]$
<i>S</i> = 1.06	where $P = (F_o^2 + 2F_c^2)/3$
3552 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
222 parameters	$\Delta \rho_{\rm max} = 0.29 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\min} = -0.28 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cl1	0.06154 (4)	0.62526 (6)	0.39636 (2)	0.02975 (13)
01	0.45919 (12)	-0.12171 (17)	0.26173 (5)	0.0286 (3)
N2	0.33632 (13)	0.28400 (18)	0.51823 (6)	0.0210 (3)
O1W	-0.00940 (13)	0.25508 (19)	0.46352 (7)	0.0328 (3)
N3	0.48296 (12)	0.17260 (17)	0.45521 (6)	0.0159 (3)
N1	0.18153 (14)	0.01688 (19)	0.43612 (7)	0.0183 (3)
N4	0.61172 (12)	0.13967 (18)	0.44629 (6)	0.0196 (3)
C5	0.24311 (14)	0.1376 (2)	0.39147 (7)	0.0155 (3)
Н5	0.223932	0.261303	0.401963	0.019*
C12	0.57141 (16)	0.3394 (2)	0.55440 (8)	0.0219 (3)
H12	0.658465	0.326736	0.547312	0.026*
C11	0.46319 (15)	0.2686 (2)	0.51150 (7)	0.0174 (3)
C4	0.39179 (14)	0.1150 (2)	0.40322 (7)	0.0153 (3)
C6	0.18454 (15)	0.1060 (2)	0.31807 (7)	0.0176 (3)
C10	0.03220 (16)	0.0870 (2)	0.30801 (8)	0.0246 (4)
H10A	0.009876	-0.020414	0.328751	0.037*
H10B	-0.003916	0.081667	0.262056	0.037*
H10C	-0.004705	0.187831	0.326935	0.037*
С9	0.21584 (16)	0.2703 (2)	0.27933 (8)	0.0227 (3)
H9A	0.180810	0.375246	0.296617	0.034*
H9B	0.175456	0.256460	0.234144	0.034*
H9C	0.310786	0.282002	0.283039	0.034*
C3	0.46350 (15)	0.0404 (2)	0.35966 (7)	0.0166 (3)
C8	0.39804 (16)	-0.0515 (2)	0.30028 (7)	0.0192 (3)
C15	0.31230 (18)	0.3783 (2)	0.56960 (8)	0.0270 (4)
H15	0.224058	0.395222	0.574240	0.032*
C7	0.24693 (16)	-0.0608 (2)	0.29224 (7)	0.0213 (3)
H7A	0.223032	-0.164981	0.315275	0.026*

H7B	0.209284	-0.075806	0.246229	0.026*	
C14	0.4120 (2)	0.4514 (2)	0.61590 (8)	0.0299 (4)	
H14	0.391561	0.513786	0.651450	0.036*	
C13	0.54279 (19)	0.4297 (2)	0.60821 (8)	0.0280 (4)	
H13	0.611825	0.475897	0.639260	0.034*	
C2	0.59994 (15)	0.0631 (2)	0.38810(7)	0.0196 (3)	
C1	0.72083 (17)	0.0203 (3)	0.36008 (9)	0.0295 (4)	
H1A	0.799516	0.046429	0.391767	0.044*	
H1B	0.720784	0.090854	0.321550	0.044*	
H1C	0.720059	-0.104005	0.348878	0.044*	
H1W	-0.026 (3)	0.288 (4)	0.4977 (14)	0.063 (9)*	
H2W	0.012 (3)	0.362 (4)	0.4440 (13)	0.066 (8)*	
H1N1	0.1557 (19)	-0.083 (3)	0.4188 (9)	0.024 (5)*	
H2N1	0.244 (2)	-0.009 (3)	0.4766 (11)	0.036 (5)*	
H3N1	0.112 (2)	0.080 (3)	0.4513 (11)	0.049 (7)*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0343 (2)	0.0261 (2)	0.0301 (2)	-0.00602 (18)	0.00909 (17)	-0.00145 (17)
01	0.0328 (7)	0.0360 (7)	0.0182 (6)	0.0076 (5)	0.0077 (5)	-0.0040 (5)
N2	0.0237 (7)	0.0214 (7)	0.0185 (6)	0.0011 (6)	0.0053 (5)	-0.0027 (6)
O1W	0.0343 (7)	0.0287 (7)	0.0385 (8)	0.0014 (6)	0.0152 (6)	-0.0051 (6)
N3	0.0144 (6)	0.0174 (6)	0.0156 (6)	-0.0002 (5)	0.0018 (5)	0.0000 (5)
N1	0.0185 (7)	0.0208 (7)	0.0162 (6)	-0.0037 (6)	0.0045 (5)	-0.0014 (6)
N4	0.0140 (6)	0.0226 (7)	0.0222 (7)	0.0005 (5)	0.0036 (5)	0.0019 (6)
C5	0.0155 (7)	0.0168 (7)	0.0143 (7)	-0.0016 (6)	0.0026 (5)	0.0007 (6)
C12	0.0250 (8)	0.0171 (7)	0.0211 (8)	-0.0021 (6)	-0.0029 (6)	0.0022 (6)
C11	0.0226 (8)	0.0141 (7)	0.0147 (7)	-0.0004 (6)	0.0018 (6)	0.0019 (6)
C4	0.0164 (7)	0.0153 (7)	0.0138 (7)	-0.0017 (6)	0.0022 (5)	0.0020 (6)
C6	0.0156 (7)	0.0224 (8)	0.0140 (7)	-0.0015 (6)	0.0003 (5)	0.0008 (6)
C10	0.0177 (8)	0.0332 (9)	0.0216 (8)	-0.0044 (7)	-0.0002 (6)	-0.0003 (7)
C9	0.0221 (8)	0.0251 (9)	0.0193 (7)	-0.0006 (7)	-0.0004 (6)	0.0054 (7)
C3	0.0185 (7)	0.0171 (7)	0.0146 (7)	0.0000 (6)	0.0039 (6)	0.0017 (6)
C8	0.0262 (8)	0.0180 (7)	0.0139 (7)	0.0015 (6)	0.0045 (6)	0.0031 (6)
C15	0.0344 (9)	0.0263 (9)	0.0222 (8)	0.0030 (7)	0.0100 (7)	-0.0024 (7)
C7	0.0244 (8)	0.0229 (8)	0.0163 (7)	-0.0042 (7)	0.0033 (6)	-0.0034 (6)
C14	0.0506 (12)	0.0225 (9)	0.0173 (7)	-0.0006 (8)	0.0079 (7)	-0.0035 (7)
C13	0.0427 (11)	0.0181 (8)	0.0189 (8)	-0.0055 (7)	-0.0061 (7)	-0.0014 (7)
C2	0.0183 (8)	0.0210 (8)	0.0201 (7)	0.0016 (6)	0.0054 (6)	0.0036 (6)
C1	0.0205 (8)	0.0392 (11)	0.0310 (9)	0.0027 (8)	0.0109 (7)	0.0000 (8)

Geometric parameters (Å, °)

01	1.2207 (19)	C6—C7	1.543 (2)
N2—C11	1.330 (2)	C10—H10A	0.9600
N2—C15	1.340 (2)	C10—H10B	0.9600
O1W—H1W	0.80 (3)	C10—H10C	0.9600

O1W—H2W	0.94 (3)	С9—Н9А	0.9600
N3—C4	1.3601 (18)	С9—Н9В	0.9600
N3—N4	1.3800 (17)	С9—Н9С	0.9600
N3—C11	1.4196 (19)	C3—C2	1.418 (2)
N1—C5	1.5127 (19)	C3—C8	1.464 (2)
N1—H1N1	0.85 (2)	C8—C7	1.519 (2)
N1—H2N1	0.98 (2)	C15—C14	1.378 (3)
N1—H3N1	0.95 (2)	C15—H15	0.9300
N4—C2	1.325 (2)	C7—H7A	0.9700
C5—C4	1.499 (2)	С7—Н7В	0.9700
C5—C6	1.5522 (19)	C14—C13	1.380 (3)
С5—Н5	0.9800	C14—H14	0.9300
C12-C13	1 384 (2)	C13—H13	0.9300
C12 - C11	1.301(2) 1.390(2)	$C^2 - C^1$	1 491 (2)
C12—H12	0.9300	C1—H1A	0.9600
C4-C3	1.382(2)	C1—H1B	0.9600
C6-C10	1.502(2) 1.534(2)	C1—H1C	0.9600
C6-C9	1.537(2)		0.9000
0-07	1.557 (2)		
C11—N2—C15	116.89 (14)	H10B—C10—H10C	109.5
H1W—O1W—H2W	103 (3)	С6—С9—Н9А	109.5
C4—N3—N4	111.34 (12)	С6—С9—Н9В	109.5
C4—N3—C11	129.57 (13)	H9A—C9—H9B	109.5
N4—N3—C11	118.90 (12)	С6—С9—Н9С	109.5
C5—N1—H1N1	113.5 (13)	Н9А—С9—Н9С	109.5
C5-N1-H2N1	111.4 (12)	H9B—C9—H9C	109.5
H1N1 - N1 - H2N1	106.9 (18)	C4—C3—C2	105.85 (13)
C5—N1—H3N1	108.9 (15)	C4—C3—C8	122.00 (13)
H1N1—N1—H3N1	112.7 (19)	C_{2} C_{3} C_{8}	132.00 (14)
H2N1— $N1$ — $H3N1$	102.9 (18)	01 - C8 - C3	123.26 (15)
C_2 N4 N3	105.71(12)	01 - C8 - C7	122.43 (14)
C4 - C5 - N1	100.01(12) 110.64(12)	$C_{3} - C_{8} - C_{7}$	114 23 (13)
C4 - C5 - C6	109.76(12)	N2-C15-C14	123 21 (17)
N1-C5-C6	112 59 (12)	N2-C15-H15	118.4
C4—C5—H5	107.9	C14-C15-H15	118.4
N1-C5-H5	107.9	C8 - C7 - C6	113 45 (13)
C6-C5-H5	107.9	C8 - C7 - H7A	108.9
C_{13} C_{12} C_{11}	116 49 (16)	C6 - C7 - H7A	108.9
C_{13} C_{12} H_{12}	121.8	C8 - C7 - H7B	108.9
C_{11} C_{12} H_{12}	121.8	C6-C7-H7B	108.9
N_{2} C_{11} C_{12} C_{12}	124.81 (14)	H7A - C7 - H7B	107.7
N2-C11-N3	114 70 (13)	C15-C14-C13	118 40 (16)
C12-C11-N3	120 48 (14)	C15-C14-H14	120.8
$N_{2} - C_{1} - N_{3}$	120.40(14) 10648(13)	C13 - C14 - H14	120.0
$N_{3} = C_{4} = C_{5}$	128 05 (13)	C14-C13 $C12$	120.0
13-04-03	125.03(13) 125.34(13)	C14 - C13 - C12 C14 - C13 - H13	120.12 (10)
C10_C6_C9	123.3 + (13) 107 73 (13)	C12_C13_H13	110.0
C10-C6-C7	110 38 (13)	N4-C2-C3	119.9
$\cup \cup \cup \cup \cup \cup \cup$	110.00(10)	117 02 0J	110.07(10)

C9—C6—C7	109.20 (12)	N4—C2—C1	120.48 (14)
C10—C6—C5	110.21 (12)	C3—C2—C1	128.90 (15)
C9—C6—C5	108.27 (12)	C2	109.5
C7—C6—C5	110.96 (12)	C2—C1—H1B	109.5
C6-C10-H10A	109.5	H1A—C1—H1B	109.5
C6—C10—H10B	109.5	C2—C1—H1C	109.5
H10A—C10—H10B	109.5	H1A—C1—H1C	109.5
C6—C10—H10C	109.5	H1B—C1—H1C	109.5
H10A—C10—H10C	109.5		
C4—N3—N4—C2	0.70 (17)	N3-C4-C3-C2	-1.90 (16)
C11—N3—N4—C2	-174.73 (13)	C5—C4—C3—C2	174.12 (14)
C15—N2—C11—C12	1.5 (2)	N3-C4-C3-C8	174.09 (13)
C15—N2—C11—N3	-178.02 (14)	C5—C4—C3—C8	-9.9 (2)
C13—C12—C11—N2	1.0 (2)	C4—C3—C8—O1	-178.45 (15)
C13—C12—C11—N3	-179.50 (14)	C2—C3—C8—O1	-3.6 (3)
C4—N3—C11—N2	9.7 (2)	C4—C3—C8—C7	-1.5 (2)
N4—N3—C11—N2	-175.82 (13)	C2—C3—C8—C7	173.30 (16)
C4—N3—C11—C12	-169.86 (15)	C11—N2—C15—C14	-2.8 (2)
N4—N3—C11—C12	4.6 (2)	O1—C8—C7—C6	-148.01 (15)
N4—N3—C4—C3	0.81 (17)	C3—C8—C7—C6	35.01 (18)
C11—N3—C4—C3	175.62 (14)	C10—C6—C7—C8	179.76 (13)
N4—N3—C4—C5	-175.06 (14)	C9—C6—C7—C8	61.51 (16)
C11—N3—C4—C5	-0.3 (2)	C5—C6—C7—C8	-57.76 (16)
N1—C5—C4—N3	-72.98 (19)	N2-C15-C14-C13	1.5 (3)
C6—C5—C4—N3	162.17 (14)	C15—C14—C13—C12	1.2 (3)
N1—C5—C4—C3	111.88 (16)	C11—C12—C13—C14	-2.3 (2)
C6—C5—C4—C3	-13.0 (2)	N3—N4—C2—C3	-1.93 (17)
C4—C5—C6—C10	167.33 (13)	N3—N4—C2—C1	175.62 (15)
N1-C5-C6-C10	43.61 (17)	C4—C3—C2—N4	2.45 (18)
C4—C5—C6—C9	-75.07 (15)	C8—C3—C2—N4	-172.97 (15)
N1-C5-C6-C9	161.21 (13)	C4—C3—C2—C1	-174.84 (17)
C4—C5—C6—C7	44.75 (16)	C8—C3—C2—C1	9.7 (3)
N1—C5—C6—C7	-78.96 (15)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H···A
C12—H12…Cl1 ⁱ	0.93	2.90	3.7006 (17)	145
C14—H14…O1 ⁱⁱ	0.93	2.41	3.244 (2)	149
$O1W - H1W - C11^{iii}$	0.80(3)	2.39 (3)	3.185 (2)	176 (3)
O1 <i>W</i> —H2 <i>W</i> ···Cl1	0.94 (3)	2.31 (3)	3.247 (2)	179 (2)
N1—H1N1····Cl1 ^{iv}	0.85 (2)	2.40 (2)	3.228 (2)	165 (2)
N1—H2 $N1$ ····N4 ^v	0.98 (2)	2.20 (2)	3.1475 (19)	164 (2)
N1—H3 <i>N</i> 1···O1 <i>W</i>	0.95 (2)	1.85 (3)	2.775 (2)	162 (2)

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) *x*, -*y*+1/2, *z*+1/2; (iii) -*x*, -*y*+1, -*z*+1; (iv) *x*, *y*-1, *z*; (v) -*x*+1, -*y*, -*z*+1.