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ABSTRACT
The last decades showed a worrying increase in the evolution of  cardiovascular dis-
eases towards different stages of  heart failure (HF), as a stigma of  the western lifestyle. 
MicroRNAs (miRNAs), non-coding RNAs, which are approximately 22-nucleotide long, 
were shown to regulate gene expression at the post-transcriptional level and play a role 
in the pathogenesis and progression of  HF. miRNAs research is of  high interest nowa-
days, as these molecules display mechanisms of  action that can influence the course of  
evolution of  common chronic diseases, including HF. The potential of  post-transcrip-
tional regulation by miRNAs concerning the diagnosis, management, and therapy for 
HF represents a new promising approach in the accurate assessment of  cardiovascular 
diseases. This review aims to assess the current knowledge of  miRNAs in cardiovascular 
diseases, especially right-sided heart failure and hepatomegaly. Moreover, attention is 
focused on their role as potential molecular biomarkers and more promising aspects 
involving miRNAs as future therapeutic targets in the pathophysiology of  HF.

KEYWORDS: miRNAs, microRNAs, heart failure, cardiac insufficiency, heart remodeling, 
hepatomegaly, congestive hepatopathy.

Author Affiliations: 
1. Department of  Cardiology I,  

Central Military Emergency University Hospital Dr. Carol Davila, Bucharest, Romania
2. Department of  Morphological Sciences, Cell and Molecular Biology and Histology,  

Carol Davila University of  Medicine and Pharmacy, Bucharest, Romania 

INTRODUCTION

Cardiovascular diseases, heart failure (HF) included, result from numerous interactions from diverse genomic, genetic, environmental 
factors and lifestyle. MicroRNAs (miRNAs) display significant roles in cardiovascular pathophysiology and may even serve as diagnostic 
and prognostic markers for some conditions. The roles of  miRNAs in signaling pathways are rapidly extending. A highly desired chal-
lenge for the function of  miRNAs in HF is the possibility of  using miRNAs as response assessment to therapy and even as a screening 
method. It is daring to hope that in the future, miRNA-mediated clinical interventions for the prevention, diagnosis, and even treatment 
of  HF will be possible [1].

Heart failure, one of  the leading causes of  mortality and morbidity worldwide, is defined by the American Heart Association and 
American College of  Cardiology as a complex clinical syndrome that can result from any structural or functional cardiac disorder that 
impairs the ability of  the ventricle to fill with or eject blood”. Regarding signs and symptoms, the most important ones are orthopnea, 
paroxysmal nocturnal dyspnea, lower extremity edema, and fatigue. Based on the ejection fraction (EF) of  the left ventricle, there can 
be patients with HF with preserved EF and patients with HF with reduced EF [1]. HF most often occurs as the last stage of  decompen-
sation of  many pre-existing disorders, such as chronic high blood pressure, coronary artery disease, myocardial infarction, myocarditis, 
mitral regurgitation by overload, drug abuse, or as a result of  chemotherapy. Some other factors such as congenital heart defects, ab-
normal heart valves, diabetes, sleep apnea, and alcohol abuse can also contribute [2].
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Left-sided heart failure appears when the heart’s left ventricle can no longer pump enough blood; therefore, pressure and volume in 
the pulmonary veins increase, resulting in pulmonary congestion, shortness of  breath, paroxysmal nocturnal dyspnea, orthopnea, fa-
tigue, weakness, and reduced ability to exercise. Right-sided heart failure happens when the the right ventricle is not strong enough to 
pump blood into the pulmonary circulation. As a result, the high venous pressure leads to ascites, hepatosplenomegaly, dilated jugular 
veins, weight gain, and gastrointestinal distress [3]. miRNAs represent a new set of  endogenous gene regulators, which usually include 
about 22 nucleotides [4], organized as single-stranded RNAs (ribonucleic acid), which shape the expression of  most messenger RNAs 
(mRNAs) [5]. They represent a category of  non-protein-coding small RNA molecules with significant roles in regulating gene expres-
sion [6] at a post-transcriptional level [4]. miRNAs are essential for a proper foundation and adequate performance of  all biological pro-
cesses in humans. Therefore, any disruption of  miRNAs functions results in a potential pathophysiological effect [7]. miRNAs are most-
ly transcribed from DNA sequences into primary miRNAs, transformed into precursor miRNAs, and consequently mature miRNAs. 
Usually, miRNAs cooperate with the 3’ untranslated region of  the target messenger RNA (mRNA), leading to mRNA degeneration and 
translational repression. miRNAs are also capable of  triggering translation or modulating transcription [6]. miRNAs display a variety 
of  actions, which depend on their location, their amount, target mRNAs, and compatibility of  miRNA-mRNA cooperation [6].

Increasingly thought-provoking results have been done since the discovery of  miRNAs in 1993 by Lee et al. [8]. As a consequence, 
one reveals for miRNAs increasing importance as diagnostic, prognostic and follow-up indicators for a multitude of  conditions [9–11] 
and are seen as future markers for noninvasive screening [12, 13]. From the hugeness of  information related to miRNAs, this review 
aims to point out the most important discoveries related to their usefulness in heart failure, with greater emphasis on right heart failure 
accompanied by hepatomegaly.

THE BIOLOGY OF MIRNAS

microRNAs have long been shown to control numerous biological processes, even tumorigenesis [14]. Interestingly, miRNAs are wide-
spread in the human body, either in circulating fluids or extracellular sites [9], and play significant roles in both the normal function of  
systems, but also in the pathogenesis of  diseases [15]. miRNAs are protected from the ribonucleic acid degradation enzyme by being 
included in lipoprotein complexes [9] (argonaute 2 – AGO2 [5, 16, 17], high-density lipoprotein – HDL [18–20], and nucleophosmin 1 
[6, 21–23] or in extracellular vesicles [24–26] or miRNA 3’ end methylation or 3’ end nucleotide addition [9, 27]. Intracellular miRNAs 
are known to regulate gene differentiation, proliferation, and apoptosis [4]. Circulating miRNAs have been detected in plasma, serum 
[22, 28], cerebrospinal fluid [29], saliva [16], breast milk [30], urine, tears, colostrum, peritoneal fluid, bronchial lavage, seminal fluid 
[31], ovarian follicular fluid [32]. Circulating miRNAs are studied as potential circulating biomarkers and therapeutic targets [33] for 
specific diseases due to their high extracellular stability [1]. Extracellular miRNAs can also be identified in vesicles (exosomes [11, 25, 
34] microvesicles and apoptotic bodies) [16, 35, 36]. Extracellular miRNAs can act as autocrine, paracrine, or endocrine controllers of  
cellular activities [35]. Thus, miRNAs can be considered as having hormone-like actions [6].

Furthermore, studies point to the direction of  miRNAs’ roles in stem cell functions [37]. miR-1 was proved to influence skeletal and 
cardiac muscle development [37], miR-155 functionally inhibits the hematopoietic differentiation [38], miR-221, and miR-222 block 
erythropoiesis [39], miR-223 promotes granulopoiesis [40] and induces T cell lineage [37, 41]. miR-9/9, miR-22, miR-124a and 
miR-125b were linked to astrocyte genes suppression [42], miR-206 promotes myoblast fusion [43], miR-133 blocks mesenchymal stem 
cell differentiation [44], while miR-181 induces B cell differentiation [41].

PERSONALIZED MEDICINE IN HEART FAILURE

microRNAs as diagnostic markers in HF

miRNAs can be released into extracellular fluids; therefore, they can be identified as biomarkers for a multitude of  disorders [6, 45–47]. 
Histologically, the occurrence of  HF is a consequence of  tissue remodeling that occurs as the cardiovascular disease progresses. Ven-
tricular remodeling in HF is based on numerous processes, the most important of  which are cardiomyocyte hypertrophy, excessive 
fibrosis of  interstitial tissue, decreased angiogenesis and, last but not least, apoptosis [48]. Navickas et al. reviewed 19 studies and aimed 
to determine possible miRNAs that could be used as plasma or serum biomarkers for diagnosis or prognosis for patients suffering from 
atherosclerosis, coronary artery disease, and acute coronary syndrome [49], concluding that miR-133a/b (5 studies), miR-208a/b (6 
studies), and miR-499 (7 studies) were important markers for diagnosis and/or prognosis of  cardiovascular diseases. Another conclusion 
was that miR-1 and miR-145b could be biomarkers for the acute coronary syndrome, while miR-1 has greater sensitivity for all types of  
acute myocardial infarction. miR-145 was found to be relevant for ST-segment elevation myocardial infarction and also indicates poor 
repercussions of  acute myocardial infarction [49]. Myocardial hypertrophy represents the major adaptive process leading to HF. Stud-
ies are generally performed on animal models and have shown that there are several miRNAs, either up-regulated or down-regulated, 
which are involved in cardiomyocyte hypertrophy. Cardiac hypertrophic pathways were shown to be promoted by the miR-208 family, 
miR-212/132, miR-23, and miR-199, while miR-1, miR-133, miR-378, miR-185, and miR-155 had anti-hypertrophic effects [50–58]. 
What is more, miR-1, miR-133, miR-208, and miR-499 were identified to command the identity of  cardiomyocytes [59]. miR-133 
in inflammatory microvesicles was associated with metabolic and cardiovascular diseases [49], alongside the let-7 family, miR-17/92 
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family, miR-21, miR-29, miR-126, miR-133, miR-146, and miR-155 [60]. miR-126 anticipated the appearance of  cardiovascular 
events in patients who have stable coronary artery disease [61]. Non-diabetic patients with stable coronary artery disease displayed a 
considerable decline of  miR-126 in circulating microvesicles [62].

Cardiac fibrosis, as a consequence of  the healing process, especially after myocardial infarction, leads to a hampered myocardial con-
tractile function and represents the major cause for cardiac arrhythmias. Therefore, monitoring fibrosis is a key element, and different 
miRNAs involved in collagen metabolism were studied. Several pro-fibrotic ones include miR-21, miR-15, and miR-1. However, the 
results of  many studies are controversial, at least for miR-21, which was seen as a promising drug target [63–65]. On the other hand, 
miR-29, miR-133, miR-26a, miR-24, miR-19a-3p/19b-3p, and miR-101a were described as antifibrotic miRNAs, being associated 
with the regulation of  genes encoding for extracellular matrix connective tissue fibers and elements [66, 67].

The angiogenesis process is critical for myocardial repair; therefore, the maintenance of  an appropriate local vascularization is the key 
element in preventing the hypertrophy of  the working cardiomyocytes. Moreover, fibrosis accompanies reduced capillaries in tissue, 
and therefore, new miR-based therapies promoting angiogenesis appear nowadays as promising possibilities in the prevention of  HF 
[68]. The primary miRNAs with anti-angiogenic function are depicted in several studies, and some can be named as more important: 
miR-17–92, miR-126, miR-24, miR-214, and miR-34. Others seem to induce angiogenesis, i.e., miR-210, by releasing angiogenic 
factors [69–71]. miR-1, along with miR-133, were identified to have roles in endothelial function and angiogenesis. miR-133 was also 
linked to restraining cardiac hypertrophy. miR-133, together with miR-145, can influence vascular smooth muscle cell differentiation, 
while miR-145 alone contributes to plaque stabilization through facilitating vascular smooth muscle and endothelial communication 
[49]. Furthermore, miR-17, miR-18, miR-19, and miR-20 proved to possess anti-angiogenic functions [72], while miR-92a was mostly 
up-regulated in ischemic conditions and inhibited angiogenesis by acting on the pro-angiogenic factor integrin α5 (ITGA5) [73].

Cardiac cell death, also known as apoptosis, also represents a key event in the progression of  any cardiovascular condition towards 
chronic HF. The mechanism underlying this programmed cell death is still poorly understood [74]. However, several miRNAs were 
discovered as main contributors in the pro-apoptotic process: miR-133, miR-21, miR-30 family, miR-138, miR-499 and miR-181c 
[75–78]. Many of  the factors listed above as being involved in the pathogenesis of  HF are also involved in other processes that will 
ultimately contribute to the development of  HF. In the review conducted by Navickas et al., miR-1, miR-133, miR-499 display roles 
in apoptosis, while miR-1, miR-133, miR-145, miR-208, miR-499 in the differentiation of  cardiac myocytes. Their part in these 
mechanisms could be enlightened by monitoring the shared RNA targets such as cyclin-dependent kinase inhibitor 1A (or p21), ETS 
proto-oncogene 1, fascin actin-bundling protein 1, hyperpolarization-activated cyclic nucleotide-gated potassium channel 4, insulin-like 
growth factor 1 receptor LIM and SH3 protein 1, purine nucleoside phosphorylase and transgelin 2 [49].

The overall conclusion is that plasma and/or serum levels of  miR-1, miR-133a/b, miR-145, miR-208a/b, and miR-499(a) point into 
the direction of  the most promising diagnostic features for cardiovascular diseases [49]. The important review by Navickas et al. re-
vealed that miRNAs display key roles in the pathogenesis of  cardiovascular diseases, supporting their applicability as diagnostic features 
[49]. The outcome of  the study conducted by Li et al. was that some cardiac fibroblast-derived miRNAs (miR-660-3p, miR-665, and 
miR-1285-3p) were up-regulated in both heart and plasma in chronic HF, correlated with left ventricle EF and HF severity [79]. Fur-
thermore, concentrations of  circulating miR-30c and miR-181c were found to be lower in patients with chronic HF. Li and colleagues 
concluded that miR-660-3p, miR-665, and miR-1285-3p possess high accuracy for diagnostic purposes [79]. Concerning the relation-
ship between miRNAs and atherosclerosis, it was suggested that while some miRNAs may play a role in atherosclerosis in certain terri-
tories, others are engaged in general mechanisms of  atherosclerosis throughout the human body [47]. For example, a recurrent pattern 
was found in patients with carotid atherosclerosis: upregulation of  miR-21 (favors angiogenesis, controls vascular smooth cell apoptosis 
and proliferation) and downregulation of  miR-30, miR-126, and miR-221-3p. miR-21 has also been noted to be in high quantities in 
patients with coronary artery disease [47, 80].

Liver disease caused by HF is also known as „cardiac hepatopathy”. One of  its main forms is congestive hepatopathy (CH), consisting 
of  venous congestion associated with right-sided HF. The chain of  events determined by chronic passive congestion is represented by 
sinusoidal hypertension, centrilobular fibrosis, cirrhosis, and even carcinogenesis (hepatocellular carcinoma) [81]. In another study, 
miR-122, the predominant miRNA in the liver [82], was indicated to be essential for liver homeostasis, while its loss resulted in pro-
moting liver steatosis, inflammation, fibrosis, and even carcinogenesis [82–84]. Abu-Halima and colleagues conducted a study on liver 
fibrosis/cirrhosis in univentricular heart patients, with or without Fontan palliation. Univentricular heart disease (UHD) is a rare con-
genital heart disorder consisting of  one ventricle, implying volume overload of  the unique ventricular cavity and systemic venous con-
gestion. Fontan procedure is the palliative intervention that can connect both caval veins to the pulmonary artery, conducting systemic 
venous blood directly into the pulmonary circulation.

Systemic venous congestion associated with this condition results in liver congestion, liver fibrosis and, later on, cirrhosis [85]. There 
were no specific miRNAs linked to the beginning or progression of  liver fibrosis for patients with UHD. However, the study aimed to 
determine miRNAs that could point into the direction of  important liver fibrosis in UHD patients [85]. miR-29b-3p and miR-29c-3p 
proved to be best related to the Model for End-stage Liver Disease (MELD)-Albumin and Albumin-Bilirubin (ALBI) scores, being in 
higher concentrations in patients with MELD-Albumin scores over 11 and ALBI scores over -2.6, indicating fibrosis or cirrhosis of  
the liver [85]. These miRNAs were also elevated in patients with UHD, especially with liver congestion and incomplete or no Fontan 
palliation, compared to healthy individuals. miR-29c-3p was significantly correlated with liver congestion (collapsibility index of  the 
inferior vena cava less than 0.15), severe liver dysfunction (total bilirubin level and platelet count), and also had prognostic value [85].
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Between acute HF patients and healthy individuals, low levels of  miR-103, miR-142-3p, miR-30b, and miR-342-3p [86] were noted, 
alongside high levels of  miR-499 for acute HF [87], [88]. Tijsen et al. found out that miR-423-5p could distinguish between healthy 
individuals and HF patients and also between HF and other causes of  dyspnea [88, 89]]. Three studies also showed different levels of  
circulating miRNAs in HF with reduced ejection fraction compared to HF with preserved ejection fraction [86, 88, 90, 91]. Regarding 
the prognostic value of  miRNAs, low levels of  miR-126 were correlated with cardiovascular death in ischemic HF patients, while ele-
vated levels of  miR-508a-5p were associated with cardiovascular death in non-ischemic HF patients [92]. miR-18a-5p and miR-652-3p 
were decreased in HF hospitalized patients, being predictive for 180-day mortality [93]. In order for miRNAs to be used as biomarkers 
for the diagnosis of  HF, they have to outperform natriuretic peptides or have additive value [88].

microRNAs: Response to therapy biomarkers or therapeutic targets?

Cardiac fibrosis is a fundamental process in the evolution of  HF. Zhou et al. pointed out that miR-503 was up-regulated in mouse heart 
subjects, supporting its role in the development of  heart fibrosis. By promoting angiotensin II-induced fibrosis, miR-503 represents a 
prospective therapeutic target for decreasing cardiac fibrosis in HF patients [94]. The research conducted by Sygitowicz et al. pointed 
out that miR-29 family members (miR-29a and miR-29b), miR-150, and miR-30a-5p regulate basic processes linked to left ventricular 
dysfunction and heart failure after acute myocardial infarction. Moreover, these molecules could represent possible therapeutic targets 
during disease progression [95].

It is known that cardiac resynchronization therapy (CRT) is associated with improved performance and survival in patients with HF and 
electromechanical dyssynchrony. The research conducted by Marfella et al. included 81 patients with severe left ventricle dysfunction, 
significant intraventricular and interventricular dyssynchrony, and severe left ventricle dilatation. The advantages of  CRT regarding 
left ventricle functional recovery and cardiac remodeling were linked to modulating circulating miRNAs patterns responsible for car-
diomyocyte hypertrophy, fibrosis, and apoptosis for patients with HF – New York Heart Association (NYHA) classes III or IV. miRNAs 
associated with HF can be regulated by CRT, thus leading to favorable outcomes of  heart function [96]. In animal studies, circulating 
levels of  miR-16, miR-20b, miR-93, miR-106b, miR-223, and miR-423-5p were elevated in the subjects with hypertension-induced 
HF. After administering antimir for miR-208a or angiotensin-converting enzyme inhibitor, miRNAs, except for miR-19b, returned to 
normal levels in about eight weeks, thus proving that circulating miRNAs have a dynamic potential response to treatment [88]. In order 
to be sure about the possible response-to-therapy prediction, other extensive cohort studies need to be conducted. The roles of  miRNAs 
are definitely of  high interest for future therapies and follow-up in HF patients.

CONCLUSION

Studies on the importance of  miRNA in heart failure are becoming more numerous. Up to date, several publications describe the in-
volvement of  miRNAs in various phases of  heart failure evolution. However, many issues, such as the origins of  many of  the circulating 
miRNAs, remain to be determined. Expression abnormalities of  many miRNAs have been associated with different forms of  heart 
failure, and several miRNAs were described as correlated with cardiac hypertrophy and fibrosis. Animal studies revealed that miRNAs 
levels and functions could be controlled both by genetic and pharmacological means, and anti-miRNA oligonucleotides can control the 
effects of  miRNAs. The role of  miRNAs as possible therapeutic targets in the treatment of  heart failure emerged from ameliorated car-
diac function after pharmacological interventions [97, 98]. Thereupon, it is likely that serum and/or myocardial miRNA profiling could 
represent biomarkers for HF severity and therapeutic response. In the future, advances in genetics and pharmacology research will hope-
fully lead to cardiac-specific miRNA-based therapies (miR-mimics, antagomiRs), consequently improving outcomes of  HF patients.
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