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Conservation laws, radiative 
decay rates, and excited state 
localization in organometallic 
complexes with strong spin-orbit 
coupling
B. J. Powell

There is longstanding fundamental interest in 6-fold coordinated d6 (t g2
6 ) transition metal complexes 

such as [Ru(bpy)3]2+ and Ir(ppy)3, particularly their phosphorescence. This interest has increased with 
the growing realisation that many of these complexes have potential uses in applications including 
photovoltaics, imaging, sensing, and light-emitting diodes. In order to design new complexes with 
properties tailored for specific applications a detailed understanding of the low-energy excited states, 
particularly the lowest energy triplet state, T1, is required. Here we describe a model of pseudo-
octahedral complexes based on a pseudo-angular momentum representation and show that the 
predictions of this model are in excellent agreement with experiment - even when the deviations 
from octahedral symmetry are large. This model gives a natural explanation of zero-field splitting of 
T1 and of the relative radiative rates of the three sublevels in terms of the conservation of time-
reversal parity and total angular momentum modulo two. We show that the broad parameter regime 
consistent with the experimental data implies significant localization of the excited state.

Six-fold coordinated d6 (t g2
6 ) transition metal complexes, such as those shown in Fig. 1a,b, share many 

common properties. These include their marked similarities in their low-energy spectra1, cf. Table 1, and 
the competition between localization and delocalizsation in their excited states2. Beyond their intrinsic 
scientific interest, understanding and controlling this phenomenology is further motivated by the poten-
tial for the use of such complexes in diverse applications including dye-sensitized solar cells, non-linear 
optics, photocatalysis, biological imaging, chemical and biological sensing, photodynamic therapy, 
light-emitting electro-chemical cells and organic light emitting diodes1,3–6. As many of these applications 
make use of the excited state properties of these complexes a deep understanding of the low-energy 
excited states, particularly the lowest energy triplet state, T1, is required to enable the rational design of 
new complexes.

Coordination complexes where there is strong spin-orbit coupling (SOC) present a particular chal-
lenge to theory because of the need to describe both the ligand field and the relativistic effects correctly7. 
There has been significant progress in applying relativistic time-dependent density functional theory 
(TDDFT) to such complexes; but significant challenges remain, for example correctly describing the 
zero-field splitting7–11. There has been less recent focus on the use of semi-empirical approaches, such 
as ligand field theory7,8,12–14. However, semi-empirical approaches have an important role to play7,15. 
Firstly, they provide a general framework to understand experimental and computational results across 
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whole classes of complexes. Secondly, when properly parameterised they can provide accuracy that is 
competitive with first principles methods. Thirdly, they can provide general design rules that allow one 
to effectively target new complexes for specific applications.

A long standing question in these complexes is whether the excited state is localized to a single 
ligand or delocalized2,7. The main semi-empricial approach to understanding organometallic complexes 
is ligand field theory. Once all of the spatial symmetries are broken there is ligand field theory is limited 
to a perturbative regime near approximate symmetries, this makes an accurate description of localised 
excited states challenging.

In this paper we describe a semi-empirical approach, based on the pseudo-angular momentum 
approach that has found widespread use in, e.g., interpreting electron paramagnetic resonance experi-
ments. We derive conservation laws based on the total angular momentum (pseudo plus spin) that apply 
even when the pseudo-octahedral and trigonal symmetries are strongly broken. These conservation laws 
imply selection rules for radiative emission. We show that this model reproduces the experimentally 
measured trends in the radiative decay rates and excitation energies for all of the complexes for which 
we have data to compare with in the literature. These trends are insensitive to the parameters of the 
model studied. Finally, we show that for the wide parameter range compatible with experiment the 
pseudo-angular momentum model predicts significant localization of the excited state.

The pseudo-angular momentum model
It has long been understood16 that the three-fold degenerate states can be represented by an l =  1 
pseudo-angular momentum. Perhaps the best known example of this are the t2g states of a transition metal 
in an octahedral ligand field. In the d6 complexes considered here the t2g orbitals are filled, whereas the 
eg-orbitals are high lying virtual states. Therefore we only include the t2g orbitals in the model described 
below.

Figure 1.  The structures of two important pseudo-octahedral transition metal complexes: a) 
[Ru(bpy)3]2+ and b) Ir(ppy)3, where bpy is bipyridine and ppy is 2-phenylpyridyl. Sketches of the π (c) and 
π* (d) orbitals of a bpy ligand with the reflection plane marked by the dashed line. It is clear that these 
correspond to the bonding and antibonding combinations of singly occupied molecular orbitals of a pyridine 
radical.
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The complexes listed in Table 1 have 6-fold coordinated metal atoms, but the ligands break the octa-
hedral symmetry. In complexes with D3 symmetry, e.g., [Ru(bpy)3]2+, the ligands have a reflection sym-
metry, cf. Fig.  1c,d. For a single bpy ligand the highest energy ligand π-orbitals are even under this 
reflection whereas the lowest energy π*-orbitals are odd under the same reflection, as one would expect 
from simple symmetry arguments13. Therefore, linear combinations the π-orbitals transform correspond-
ing to the t2g representation of Oh, whereas the π*-orbitals form a representation of t1u. Therefore, 
π-orbitals mix effectively with the occupied metal d (t2g) orbitals but π*-orbitals do not. Thus the highest 
occupied molecular orbitals (HOMOs), ht

m
g2
, of the complex will have a significant contribution from 

both the ligand π-orbitals, t
m

g2
π , and the metal-t2g orbitals, dt

m
g2
. Neglecting smaller contributions from 

other ligand or metal orbitals, we have

h d cos sin 1t
m

t
m

t
m

g g g2 2 2
θ π θ+ , ( )

EI,II 
[cm−1]

EII,III 
[cm−1]

τI ( k1 R
I/ ) 

[μs]
τII ( k1 R

II/ ) 
[μs]

τIII ( k1 R
III/ ) 

[µs]

 Ir(biqa)3 14 64 107 (114) 5.6 (5.7) 0.36 (0.38)

Ir(ppy)3 (in PMMA) 12.2 113 154 (175) 15 (17) 0.33 (0.34)

Ir(ppy)3 (in CH2Cl2) 19 151 116 6.4 0.2

Ir(dm-2-piq)2(acac) 9.5–10 140–150 80–124 6.5–8.6 0.33–0.44

[Os(phen)]2(dppm)]2 + 16 106 95 13 0.6

[Os(phen)2(dpae)]2 + 21 92 100 10 0.7

Ir(piq)(ppy)2 16 91 64 10.5 0.3

Ir(4,6-dFppy)2(acac) 16 93 44 9 0.4

Ir(pbt)2(acac) 6 97 82 25 0.4

Ir(piq)2(acac) 9 87 47 8 0.3

[Os(dpphen)2(dpae)]2 + 19 75 92 9 0.7

[Os(phen)2(DPEphos)]2 + 16 68 104 14 0.9

[Os(phen)2(dppe)]2 + 19 55 107 12 0.9

Ir(piq)2(ppy) 9 56 60 6.4 0.44

[Os(phen)2(dppene)]2 + 18 46 108 15 1.1

[Ru(bpy)3]2 + 8.7 52 230 8 0.9

Ir(piq)3 11 53 57 5.3 0.42

Ir(4,6-dFppy)2(pic) 9 67 47 21 0.3

Ir(thpy)2(acac) 3.5 31 113 35 1.5

Ir(ppy)2(ppy-NPH2) 6 21 188 19 1.8

Ir(ppy-NPH2)3 6 20 177 15 1.4

Ir(ppy)(ppy-NPH2)2 6 17 163 20 2

Ir(btp)2(acac) 2.9 22 150 58 2

Ir(btp)2(acac) 2.9 11.9 62 19 3

Ir(s1-thpy)2(acac) 3 13 128 62 3

Ir(ppy)2(CO)(Cl) < 1 < 1 300 85 9

[Rh(bpy)3]3 + – – 4.5 ×  103 1.35 ×  103 650

Table 1.   Key spectroscopic data for pseudo-octahedral d6-complexes. EI,II is the energy gap between the two 
lowest energy substates of T1, EII,III is the energy gap between the two highest energy substates of T1 and the 
total lifetime of substate m k km R

m
NR
m 1τ = ( + )− , where kR

m and kNR
m  and the radiative and non-radiative 

lifetimes of substate m. For Ir(ppy)3 and Ir(biqa)3 we also list k1 R
m/  (in bold) which, unsurprisingly given the 

high photoluminescent quantum yields in these complexes, shows the same trend as τm. We are not aware of 
measurements of kR

m in other relevant complexes. Note that in all complexes EI,II <  EII,III and τI >  τII >  τIII, 
which suggests that k k kR

I
R
II

R
III< < . To avoid selection bias we have included all and only those pseudo-

octahedral d6-complexes included in Table 2 of the recent review by Yersin et al.1. The two rows for 
Ir(btp)2(acac) correspond to different sites.
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where θ parameterises the degree of mixing, and m ∈  {0,1,2} labels the ligands and symmetry equivalent 
linear combinations of d-orbitals. In contrast, the lowest unoccupied molecular orbitals (LUMOs) of the 
complex will be almost pure ligand π*-orbitals.

Low energy excited states can be well approximated by a single hole in the HOMO manifold and a 
single electron in the LUMO manifold17. As both the HOMOs and LUMOs of the complex are three-fold 
degenerate one can label such states by two l =  1 pseudo-angular momenta, which we denote LH and LL 
respectively. We will only discuss this assignment for three real space HOMO spin orbitals, ht

m
g2
—it is 

trivial to extend the following analysis to the LUMOs. By referring to these states as ‘HOMOs’ and 
‘LUMOs’ we are adopting the language of molecular orbital theory. However, we note that so-long as the 
ht

m
g2
 are three local states related by rotations of 2π/3 the discussion below goes through regardless of the 

degree of correlations in the states. It is therefore convenient to work in second quantised notation, so 
we define a hr 0m t

m
g2

=† , where |0〉  is the ground state, |r〉  is the state with a hole at position r. That is, 
am
( )†  annihilates (creates) a hole in orbital m; spin labels are suppressed.

We introduce three ‘Bloch’ operators defined by

∑= (− ) ,
( )

π /† †b k a esgn 1
3 2k

k

m
m

i km2 3

where k ∈  {− 1,0,1}. Finally we identify the states created by the Bloch operators with the eigenstates of 
LH

z , i.e., b L b k0 0k H
z

k =† . The phase pre-factors [sgnk(− k)] in the definition of the Bloch operators are 
required to allow this assignment and maintain the required behaviour under time reversal symmetry.

As the LUMOs are pure ligand orbitals the exchange interaction will be dominated by the exchange 
interaction between the ligand π and π*-orbitals, which we denote Jπ when the electron and hole are on 
the same ligand and assume vanishes otherwise. In contrast the SOC on the metal, λd, is much stronger 
than the SOC on the ligands. Therefore states with one hole in the HOMO and one electron in the 
LUMO are described by the Hamiltonian

S S L SH J 3o H L H Hλ= ⋅ + ⋅ , ( )

where SH is the (net) spin of the electrons in the HOMO, SL, is the spin of the electron in the LUMO, 
J J sin2 θπ

 and cosd
2λ λ θ

. Thus we expect positive J and λ.
If the excited state is sufficiently long lived for the geometry to relax it will be unstable to a Jahn-Teller 

distortion, which lifts the degeneracy. In terms of the pseudo-angular momenta this can be represented 
via the terms

δ γ= ( ) − ( ) + ( ) − ( ) + , ( )H Q L L Q L L kQ[ ] [ ] 4JT H
x

H
y

L
x

L
y2 2 2 2 2

where Q is the coordinate of the rhombic distortion perpendicular to the C3-axis of the complex, δ (γ) 
is the coupling constant to the HOMOs (LUMOs) and k is the spring constant of the Jahn-Teller mode.

It is helpful to briefly discuss the Jahn-Teller effect in the pseudo-angular momentum language, as 
this is not entirely intuitive. Consider the term

L L L L[ ] 1
2

[ ] 5H
x

H
y

H H
2 2 2 2( ) − ( ) = ( ) + ( ) ( )

+ −

In terms of the Bloch operators = ( + )+
−

† †L b b b b2H 1 0 0 1  and L b b b b2H 1 0 0 1= ( + )−
−
† † . Hence,

L L b b b bH
x

H
y2 2

1 1 1 1( ) − ( ) = +− − −
† † a a a a a a a a a a a a a a a a a a1

3
[2 2 ] 61 1 2 2 3 3 2 3 3 2 1 2 2 1 1 3 3 1= − − − + ( + ) − − − − . ( )

† † † † † † † † †

a a a a a a a a a a a a a a a a a a1
3

[2 2 ] 61 1 2 2 3 3 2 3 3 2 1 2 2 1 1 3 3 1= − − − + ( + ) − − − − . ( )
† † † † † † † † †

It is therefore clear that this physics of HJT is that of the T ×  t Jahn-Teller problem [or, once trigonal 
terms are included, below, the (A +  E) ×  e pseudo-Jahn-Teller problem] and that this distortion corre-
sponds to the so-called Eθ distortion in the notation of, e.g., section 5 of Ref. [18]. The Eε distortion 
corresponds to terms proportional to L L i L L1 2 [ ] { }H H H

x
H
y2 2( / ) ( ) − ( ) = ,+ − , where curly brackets indicate 

anticommutation.
In general the Jahn-Teller distortion could also induce a trigonal component of the distortion [which 

would couple to L z 2( )ν , where ν =  H or L], however this does not produce any qualitatively new features 
and so, for simplicity, we neglect it below. Thence, the form of HJT is constrained to the form given above 
by symmetry as: (1) terms that are proportional to odd powers of Lν

β, where β = x,y or z break time 
reversal symmetry and so may not appear in the Hamiltonian for scalar Q and (2) for l =  1 any even 
power of Lν

β is proportional to L 2( )ν
β .

However, the complexes in Table 1 are not octahedral, but trigonal. In terms of the pseudo-angular 
momenta, this introduces the additional terms

(6)
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H L L 7t H
z

L
z2 2= ∆( ) + Γ( ) , ( )

where Δ  (Γ ) is the energy differences between the HOMO and HOMO-1 (LUMO and LUMO + 1) in 
the trigonal ground state, S0, geometry. Indeed, it immediately follows from time reversal symmetry that 
the trigonal terms in the Hamiltonian are constrained to take this form. t2g → a1 +  e and t1u → a2 +  e on 
lowering the symmetry from Oh to D3. Therefore, the two pairs of e states are allowed to weakly mix, 
stabilising the = ±L 1H

z  states and destabilising the = ±L 1L
z  states. Thus one expects that both Δ  and 

Γ  will be positive13. The approximate D3 symmetry of the complexes with lower symmetry, e.g. C3, com-
plexes considered here means that we expect both parameters to remain positive for all of the complexes 
considered here. (Note that, in contrast, Kober and Meyer14 take Γ  <  0, which means that their results, 
from conventional ligand field theory, are very different from ours.) Thus the effective pseudo-angular 
momentum Hamiltonian for the low-energy excitations is

H H H H 8o t JT= + + . ( )

By definition Q =  0 in the S0 geometry and, by suitably rescaling the parameters, one may define 
Q =  1 in the T1 geometry. Similarly any trigonal component to the Jahn-Teller distortion can be taken 
simply to shift the value of Δ  (Γ ). Therefore, up to constants, in the T1 geometry the effective electronic 
Hamiltonian is

λ δ γ= ⋅ + ⋅ + ∆( ) + Γ( ) + ( ) − ( ) + ( ) − ( ) . ( )S S L SH J L L L L L L[ ] [ ] 9H L H H H
z

L
z

H
x

H
y

L
x

L
y2 2 2 2 2 2

As well as describing systems displaying a Jahn-Teller distortion, this model is also appropriate for 
heteroleptic complexes. Indeed for appropriate choices of Δ , δ, Γ  and γ one can parameterise arbitrary 
energy differences of the frontier orbitals. We discuss the values of these parameters in the Appendix. 
On the basis of this discussion, for Ir(ppy)3, we take λ/J =  0.2 and Δ /J =  0.5, with J ~ 1 eV; δ ∆  and γ Γ  
below. Clearly, for example, λ is strongly dependent on the transition metal in question. However, our 
main qualitative results are insensitive to the values of these parameters—to emphasize this we explore 
a wide range of other parameters in the sup. info.

Results
Octahedral model.  Before considering the full pseudo-angular momentum model, H, it is important 
to understand the symmetries of Ho. (i) LL does not couple to any of the other variables. Therefore, LL

2 
and LL

z are good quantum numbers. (ii) We can define a ‘total’ angular momentum, I =  LH +  S, where 
S =  SH +  SL. I2 and Iz commute with Ho therefore I and Iz are also good quantum numbers.

We plot the energies of the exact solutions of Ho in Fig. 2 (Table 2 gives the basis used for all calcu-
lations in the paper). For simplicity Fig. 2 shows only the solutions with L 0L

z = —because LL is decoupled 
from the other angular momenta it can be immediately seen that the other solutions simply triple the 
degeneracies of all states. Note that, firstly, the spectrum of Ho is not very similar to those of the 
pseudo-octahedral complexes we are seeking to model. However, this model is an important stepping 
stone to understanding the full Hamiltonian. Secondly, the eigenstates can be classified by their total 
angular momentum quantum number, I, and, as Ho is SU(2) symmetric, have the expected 2I +  1 degen-
eracy. Thirdly, all of the singlets have I =  1; as LH =  1 and, by definition, singlets have S =  0. This means 
that, regardless of how strong the SOC is, the singlets can only mix with the I =  1 triplets. Therefore 
radiative decay from the I =  0 and I =  2 triplets is forbidden by the conservation of I.

Trigonal model.  In Fig. 3 we plot the spectrum of the trigonal model with no Jahn-Teller distortion, 
Ho +  Ht. Again, for simplicity, we only show the solutions with L 0L

z = . In this case each state has part-
ners with = ±L 1L

z  that have energies that are higher by Γ  and display twice the degeneracy of the 
L 0L

z =  state. The trigonal terms break the SU(2) symmetry of the octahedral model and therefore lift 
the three- and five-fold degeneracies. The calculated spectra are now like those calculated from 
first-principles for relevant complexes. For example, if trigonal symmetry is enforced for, e.g., [Os(bpy)3]2+, 
Ir(ppy)3, Ir(ptz)3 relativistic TDDFT calculations predict that SOC splits T1 into a non-degenerate state 
(I) and, at slightly higher energies, a pair of degenerate states (II and III)8,9,11.

We saw above that in the octahedral model radiative decay from the lowest energy excited state (I→0) 
is forbidden by the conservation of I. Because Ht breaks the SU(2) symmetry of the octahedral model I2 
no longer commutes with H, nevertheless Iz and LL

z remains a good quantum numbers for the trigonal 
model. Furthermore, the Hamiltonian is time reversal symmetric, therefore the parity of an eigenstate 
under time reversal, = ± 1, is also a good quantum number. Note however, that Iz does not commute 
with time reversal so it is not, in general, possible to form states that are simultaneously eigenstates of 
both. However, one may define states that are simultaneous eigenstates of the   and = (− ) 1z I z

. 
Therefore, we take these as our quantum numbers, cf. Table 2.
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For all parameters studied substate I is composed of the basis state |T1〉  admixed with T z 2  and has 
quantum numbers = =+I T 1z , L 0L

z =  whereas states II and III are a degenerate pair with = − 1z , 
= ± 1, L 0L

z = , cf. Fig. 3, whose largest contributions come from |Tx〉  and |Ty〉 . The singlet states with 
the same quantum numbers contribute to substates II and III, but all of the singlets are forbidden from 
mixing with substate I by the combination of time reversal symmetry and the conservation of Iz. Hence, 
the I→0 transition remains forbidden in the trigonal model. Both experiments1,19 and relativistic TDDFT 
calculations8–11 find that the radiative rates for the transitions II→0 and III→0 are more than an order of 
magnitude faster than that for I→0, cf. Table 2. A small non-zero decay rate for I→0 may arise from either 
Herzberg-Teller coupling1,19 or mixing of state I with higher energy singlet states, which are not included 
in the pseudo-angular momentum model8–11.

Figure 2.  Energy eigenvalues of Ho for states with LZ=0. At λ =  0 the singlets have E =  3J/4 and the 
triplets have E =  − J/4. For λ >  0 the labels “singlet” and “triplet” are no longer strictly defined (in their 
usual sense) nevertheless the relatively small energy shifts suggest that these labels retain some meaning, 
this claim is supported by directly examining the character of the eigenstates. It is interesting to note that, 
already in the octahedral problem, the lowest energy (non-degenerate) state has no singlet contribution to its 
wavefunction for any value of λ, thus radiative transitions from this state are forbidden.

Name

Relationship to 
eigenstate of Ho when 
λ = 0, |I,Iz,S〉   z S S LL

z
H
z

H
z

Singlets 
mixed 

with in full 
model

|Sz〉  |1,0,0〉  − 1 1 1
2 ( ↑ ↓ ⇒ − ↓ ↑ ⇒ ) –

|Sx〉  1 1 0 1 1 01
2 ( , , − , − , ) 1 − 1 1

2 ( ↑ ↓ − ↓ ↑ − ↑ ↓ + ↓ ↑ ) –

|Sy〉  1 1 0 1 1 01
2 ( , , + , − , ) − 1 − 1 1

2 ( ↑ ↓ − ↓ ↑ + ↑ ↓ − ↓ ↑ ) –

|T1 〉 |0,0,1〉  1 1 1
3

1
6( ↑ ↑ + ↓ ↓ ) − ( ↑ ↓ ⇒ + ↓ ↑ ⇒ ) None

|Tz〉  |1,0,1〉  − 1 1 1
2 ( ↑ ↑ − ↓ ↓ ) |Sz〉 

|Tx〉  1 1 1 1 1 11
2 ( , , − , − , ) − 1 − 1 


↑ ↑ ⇒ − ↓↓ ⇒ − ( ↑ ↓ + ↓ ↑ − ↑ ↓ − ↓ ↑ )


1
2

1
2

|Sy〉 

|Ty〉  1 1 1 1 1 11
2 ( , , + , − , ) 1 − 1 


↑ ↑ ⇒ + ↓↓ ⇒ − ( ↑↓ + ↓ ↑ + ↑↓ + ↓ ↑ )


1
2

1
2

|Sx〉 

T z2  |2,0,1〉  1 1 1
6

1
3( ↑ ↑ + ↓ ↓ ) + ( ↑ ↓ ⇒ + ↓ ↑ ⇒ ) None

|Txz〉  2 1 1 2 1 11
2 ( , , − , − , ) − 1 − 1 


↑ ↑ ⇒ − ↓↓ ⇒ + ( ↑↓ + ↓ ↑ − ↑↓ − ↓ ↑ )


1
2

1
2

|Sy〉 

|Tyz〉  2 1 1 2 1 11
2 ( , , + , − , ) 1 − 1 


↑ ↑ ⇒ + ↓↓ ⇒ + ( ↑↓ + ↓ ↑ + ↑↓ + ↓ ↑ )


1
2

1
2

|Sx〉 

|Txy〉  2 2 1 2 2 11
2 ( , , − , − , ) − 1 1 1

2 ( ↑ ↑ − ↓ ↓ ) |Sz〉 

T x y2 2−  2 2 1 2 2 11
2 ( , , + , − , ) 1 1 1

2 ( ↑ ↑ + ↓ ↓ ) None

Table 2.   The basis set used in this paper. The wavefunctions are given in the form S S LL
z

H
z

H
z  with ↑ ( ↓ ) 

indicating S 1 2z = + /ν  (− 1/2) and ⇑, ⇒ and ⇓ indicating L 1 0H
z = ,  and − 1 respectively. = (− )I 1z I z

. In 
this table we list only the L 0L

z =  [z  =  (− ) =1 1LL
z

] states. Each state has two partners with L 1L
z =  and 

hence Lz =  − 1. The latter two, but not the former, mix under the action of the full Hamiltonian.
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Full model.  Finally, we turn to the full pseudo-angular momentum model, H [Eq. (9)]. Iz does not 
commute with HJT. However, L L L L[ ]H

x
H
y

H H
2 2 1

2
2 2( ) − ( ) = ( ) + ( )+ − , where the ladder operators are given 

by L L iLH H
x

H
y= ±± , therefore Iz is conserved modulo two. Thus,  z is conserved even for a trigonal 

system that has undergone a Jahn-Teller distortion, cf. Table 2. Similarly LL
z is conserved modulo two, 

which gives rise to the quantum number = (− ) 1z LL
z
.

We plot the spectrum of Lz =  1 states in Fig.  4a. In Fig  4b, we plot the same results, but only show 
the three lowest energy substates, I-III, which are of primary technological interest. One sees that the 
although states II and III are degenerate at δ =  0, a Jahn-Teller distortion rapidly lifts this degeneracy 
and for reasonable values of δ one finds that there is a much smaller energy gap between substates I and 
II than between II and III. This is what is observed experimentally1,19,20 in a huge range of complexes 
(Table 1). We will see below that this splitting is the signature of the localization of the excitation to a 
single ligand.

Note, in particular, that substate I remains an admixture of |T1〉  with T z 2  and T x y2 2−  and has quan-
tum numbers = = =+T I L 1z z . As none of the singlet states have these quantum numbers, cf. Table 2, 
this state is forbidden from mixing with any of the singlet states in the model by conservation of  ,  z 
and z. Therefore substate I remains a pure triplet and is forbidden from decaying radiatively, irrespec-
tive of the strength of the SOC.

The radiative rate of the mth eigenstates of the full Hamiltonian, |ψm〉 , is given by

Figure 3.  Solution of the pseudo-angular momentum model of a trigonal complex. a) spectra for λ =  J/5 
and varying Δ /J; b) spectra for Δ  =  J/2 and varying λ/J. The quantum numbers of the states are also 
indicated. In both panels the states with quantum numbers labelled as =± 1 are two-fold degenerate. The 
eigenstates with Lz =  ± 1 (not shown for clarity) have the same properties except that their energies are 
increased by Γ  and all of the degeneracies are doubled corresponding to the two values of Lz =  ± 1.
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where Em is the excitation energy of the mth state, and α is the fine structure constant. The |Sn〉  are only 
eigenstates for the octahedral model with λ =  0; therefore symmetry requires that 〈 S0|μβ|Sn〉  is independ-
ent of n. Note that, notwithstanding this observation, in the full model the states one would usual think 
of as “singlets”, i.e., the three states with the largest contribution from the |Sn〉 , all have different radiative 
rates because the octahedral symmetry is broken and the “singlets” have different contributions from 
the relevant |Sn〉 . Furthermore we assume that the zero field splitting is small compared to the S0 → T1 
excitation energy, i.e., that EI ⋍ EII ⋍ EIII It is also convenient to define
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this corresponds to the radiative decay rate for a pure singlet with an excitation energy equal to that of 
the T1 manifold.

Figure 4.  Solution of the pseudo-angular momentum model of a complex with broken trigonal 
symmetry - due either to chemical modification or excited state localization. Panel (a) shows the full 
spectrum for states with Lz =  1. Panel (b) shows only the T1 substates, which are our primary concern. Here 
we take Δ  =  J/2 and λ =  J/5.
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We plot the radiative decay rate in Fig.  5. State I is dark—as expected from the conservation laws 
derived above. Furthermore, once the Jahn-Teller distortion becomes significant one finds that the radi-
ative decay from state II is significantly slower than the radiative decay from state III. This is in precisely 
what is observed in experiments1,19,20 on pseudo-octahedral d6 complexes (cf. Table 1).

It is straightforward to understand both the changes in energy and the radiative rates of states II and 
III. For δ >  0 (δ <  0 simple reverses these effects) the trigonal perturbation lowers the energy of (stabi-
lises) states that are antibonding between the = ± 1z  orbitals, e.g., |Sx〉  and |Tx〉 , and raises the energy 
of (destabilises) those that are bonding between the = ± 1z  orbitals, e.g., |Sy〉  and |Ty〉 . It is clear from 
Table 2 that whereas |Sx〉  and |Ty〉  are even under time reversal |Tx〉  and |Sy〉  are odd. Thus, SOC mixes 
|Sx〉  with |Ty〉  and |Sy〉  with |Tx〉 . Hence the trigonal distortion increases the energy difference between 
the triplet and singlet basis states that contribute to state II (i.e., |Sx〉  and |Ty〉  for δ >  0); whereas trigonal 
symmetry reduces the energy difference between the triplet and singlet basis states that contribute to 
state III (|Sy〉  and |Tx〉  for δ >  0). Thus the symmetry of the model dictates that k k kR

I
R
II

R
III< < , as is 

observed experimentally1,19,20, see Table 1.
Finally, we turn to the question of localization in the excited state. To measure this we define

a a a a a a1
2 120 0 1 1 2 2∑ ψ ψΞ = − ( + ) ,

( )ψ
σ

σ σ σ σ σ σ
† † †

where σ
( )†am  annihilates (creates) a hole with spin σ in π orbital of the mth ligand. Thus Ξ ψ measures the 

probability of the hole being found on ligand 0 when the system is in state ψ—with Ξ ψ >  0 indicating 
localisation onto ligand 0 and Ξ ψ <  0 signifying a reduced probability of the hole being found on ligand 
0. We plot Ξ ψ for the three substates of T1 in Fig 6. The lowest energy excitation, I, is completley delo-
calized for δ =  0 but rapidly localizes for δ >  0. It is interesting to note that both Ξ II and Ξ III are non-zero 
for δ =  0. However, for δ =  0 states II and III are degenerate and Ξ II =  − Ξ III, consistent with trigonal 
symmetry. Nevertheless, for δ >  0, one observes a rapid increase in Ξ II whereas Ξ III grows only rather 
slowly.

It is therefore clear that the pseudo-angular momentum model predicts significant localization of 
states I and II for values of δ compatible with the observed experimental results that k k kR

I
R
II

R
III< <  and 

EI,II <  EII,III, cf. Table 1. We therefore conclude that all of the complexes in Table 1 show significant local-
ization in their excited states.

Conclusions
The pseudo-angular momentum model gives a natural explanation of the zero-field splitting observed 
in a wide range of pseudo-octahedral d6 organometallic complexes. Furthermore, the conservation laws, 
and hence selection rules, inherent in the model give a natural explanation of the relative radiative decay 
rates of the three sublevels of T1. We stress that none of the results derived here rely on perturbation the-
ory—therefore these conclusions hold even when the departures from octahedral or trigonal symmetry 
are large. This immediately explains why the properties of the T1 states are so similar in both homoleptic 
and heteroleptic complexes. Furthermore, for parameters compatible with the experimentally measured 

Figure 5.  The radiative decay rates of the three substates of T1. The conservation of  ,  z, and z leads to 
the absence of radiative decay for state I. It can be seen that once the Jahn-Teller distortion becomes 
significant the radiative decay rate from state II is significantly smaller than that from state III, in good 
agreement with experiment (cf. Table 1). Here, as above, we take Δ  =  J/2 and λ =  J/5.
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energies and radiative rates of the substates of T1, the pseudo-angular momentum model predicts that 
exciations I and II are strongly localised—although III remians well delocalised. Thus we conclude that 
all of the complexes in Table 1 show significant localization in their two lowest energy excited (sub)states.

It is interesting to note that when the radiative rates of individual sublevels, kR
m, have been measured, 

rather than excited state lifetimes, τm, it is found that the relative rates are in good accord1,19, cf. Table 1. 
This is consistent with the high photoluminscent quantum yields observed in these complexes. This 
suggests that the non-radiative decay rates of the individual sublevels are determined by similar conser-
vation laws. Therefore, it would be interesting to investigate non-radiative decay rates in a suitable exten-
sion of the pseudo-angular momentum model.

We note that the pseudo-angular momentum model described above can be naturally extended to 
understand the properties other molecules and complexes where the low-energy excited states corre-
spond to transition between degenerate or approximately degenerate states.

Appendix: Estimation of Parameters
While we will not make a detailed parameterization of this model—an idea of the relevant parameter 
ranges can be obtained from previous experiments and density functional calculations. Ir(ppy)3 has been 
particularly widely studied and so is an ideal material to compare with. θ ~ π/4 as the HOMOs are found 
to have about 50% metallic weight8,10,11,21. Nozaki8 found that for Ir λm =  550 meV and sin2θ =  0.4, yield-
ing λ =  220 meV. Smith et al.11 considered the C3 S0 geometry and found from ground state calculations 
show that the gap between the HOMO and HOMO-1 is 140 meV (LUMO and LUMO+ 1 is 90 meV), 
which may be taken as an estimate of Δ  (Γ ). However several authors8,17,22 have noted that the values 
of Δ  and Γ  are difficult to calculate from first principles—therefore these numbers should be treated 
with some caution and are likely to be underestimates as interactions significantly increase the effective 
values of Δ  and Γ . For ppy it has been estimated22 based on the absorption spectra, emission spectra, 
and emission lifetimes23 that Jπ ~ 2 eV; and for an isolated Ir ion λd ~ 0.43 eV24,25. Taking θ ~ π/4 yields 
J ~ 1.4 eV and λ ~ 300 meV. For concreteness we take λ =  J/5 and Δ  =  J/2 in the main text. However, our 
results are insensitive to the values of these parameters—to demonstrate this we explore a range of other 
parameters in the sup. info. δ and γ are not straightforward to estimate from previous work and will 
be left as free parameters, however as the C3 symmetry remains evident even in the T1 geometry of the 
excited this suggest that δ (γ) is not significantly larger than Δ  (Γ ).
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