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Abstract
Many landscape genetic studies aim to determine the effect of landscape on gene flow 
between populations. These studies frequently employ link- based methods that relate 
pairwise measures of historical gene flow to measures of the landscape and the geo-
graphical distance between populations. However, apart from landscape and distance, 
there is a third important factor that can influence historical gene flow, that is, popula-
tion topology (i.e., the arrangement of populations throughout a landscape). As the 
population topology is determined in part by the landscape configuration, I argue that 
it should play a more prominent role in landscape genetics. Making use of existing lit-
erature and theoretical examples, I discuss how population topology can influence 
results in landscape genetic studies and how it can be taken into account to improve 
the accuracy of these results. In support of my arguments, I have performed a litera-
ture review of landscape genetic studies published during the first half of 2015 as well 
as several computer simulations of gene flow between populations. First, I argue why 
one should carefully consider which population pairs should be included in link- based 
analyses. Second, I discuss several ways in which the population topology can be in-
corporated in response and explanatory variables. Third, I outline why it is important 
to sample populations in such a way that a good representation of the population to-
pology is obtained. Fourth, I discuss how statistical testing for link- based approaches 
could be influenced by the population topology. I conclude the article with six recom-
mendations geared toward better incorporating population topology in link- based 
landscape genetic studies.
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1  | INTRODUCTION

Landscape genetic studies aim to determine the influence of landscape 
patterns on spatial genetic variation (Balkenhol et al., 2009; Manel & 
Holderegger, 2013; Manel, Schwartz, Luikart, & Taberlet, 2003). One 
of the most studied evolutionary processes leading to genetic vari-
ation is gene flow (Hall & Beissinger, 2014; Manel & Holderegger, 

2013). Knowledge on patterns of gene flow in a certain species can, 
for instance, be used to gain a better understanding of demographic 
or metapopulation processes or to inform conservation practitioners 
about habitat connectivity or dispersal barriers (Hall & Beissinger, 
2014; Wagner & Fortin, 2013). Gene flow “is a collective term that 
includes all mechanisms resulting in the movement of genes from one 
population to another” (Slatkin, 1985, p. 393), and is, thus, the result 
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of active or passive dispersal of individuals (or pollen and spores) from 
one population to another. The influence of landscape on gene flow is 
commonly assessed with “link- based methods,” which have been ap-
plied in many landscape genetic studies (e.g., Coster, Babbitt, Cooper, 
& Kovach, 2015; Cushman, McKelvey, Hayden, & Schwartz, 2006; 
Emel & Storfer, 2015; Keyghobadi, Roland, & Strobeck, 1999; Row 
et al., 2015; Spear, Peterson, Matocq, & Storfer, 2005). These meth-
ods “relate pairwise genetic distance between individuals and demes 
to their landscape distance (e.g., geographic distance, cost distance, 
the presence, or number of barriers) hypothesized to be related to 
the probability of dispersal and migration” (Wagner & Fortin, 2013, 
p. 257). Conceptually, this can be written as follows:

where G is a response variable expressing gene flow and L and D com-
prise one or several explanatory variables that reflect the landscape 
and geographic distance between populations, respectively. Usually G 
is quantified by calculating pairwise genetic distances (e.g., FST, GST, 
G′ST, Dc; Jenkins et al., 2010; Storfer, Murphy, Spear, Holderegger, & 
Waits, 2010), which mainly reflect historical gene flow and are the re-
sult of dispersal events averaged across time (across several genera-
tions; Whitlock & McCauley, 1999; Manel & Holderegger, 2013). D 
and L are often calculated from a raster map depicting the resistance 
to movement of the landscape (i.e., a resistance surface), from which 
one can calculate, for instance, cost distances or resistance distances 
(Spear, Cushman, & McRae, 2015). D calculated from a resistance sur-
face is usually used as the only explanatory variable, as the landscape 
effects on movement are captured in the resistance surface itself (e.g., 
Coulon et al., 2004). In other studies, D and L are calculated from 
transects drawn between populations, in which case L usually con-
sists of multiple landscape variables measured from the transects (e.g., 
Emaresi, Pellet, Dubey, Hirzel, & Fumagalli, 2011; Van Strien, Keller, & 
Holderegger, 2012).

In addition to the distance and landscape between populations, 
there is a third important determinant of gene flow that is not gen-
erally considered in link- based landscape genetic studies, namely the 
population topology; that is, the arrangement of populations through-
out the landscape. As historical gene flow is the result of multiple dis-
persal events over several generations, genes are not only dispersed 
directly between two populations, but also indirectly via intervening 
populations in a stepwise way. Therefore, “all else being equal, equilib-
rium levels of gene flow between two demes connected by migration 
(e.g., demes a and b) will increase if additional parallel movements of 
genes are allowed, either through increased direct movements of gam-
etes or through indirect gene flow via intervening demes (deme c).” 
(McRae, 2006, p. 1553). Thus, in this example, if the location of deme 
c changes, it would affect the historic gene flow measured between 
demes a and b. This effect can also be shown with simple simulations 
of gene flow between three populations (Figure 1). The population 
topology is, at least partly, resulting from the composition and config-
uration of a landscape and therefore should play a central role in land-
scape genetic analyses (Van Strien, Holderegger, & Van Heck, 2015). 
In many early population genetic simulation studies, populations or 

individuals were arranged in regular lattices (Epperson et al., 2010), 
making it difficult to translate their results to more “unstructured” 
populations topologies found in real landscapes. Nevertheless, making 
use of stepping- stone models, such early studies already showed that 
genetic patterns emerging from two- dimensional population topolo-
gies were different to those emerging from one- dimensional topolo-
gies (e.g., Kimura & Maruyama, 1971). The realization that population 
topology is important in landscape genetics is thus not new to this 
discipline, but methods to account for population topology are not 
being applied generally in landscape genetic studies applying link- 
based methods.

With this article, I aim to increase the awareness of the important 
role that population topology plays in landscape genetics. Population 
topology is closely related to the population network topology, which 
is an important aspect in link- based landscape genetic studies, given 
that the links, along which G, D, and L are measured, can be considered 
edges in a population network. I discuss how the population topol-
ogy as well as that the population network topology can affect results 
in landscape genetic studies and how improvements could be made 
in the setup of landscape genetic studies to accommodate these ef-
fects, with the ultimate goal to achieve more accurate results. Building 
on simple examples and results from simulation and empirical stud-
ies, I will argue why it is important to carefully consider which links 
to use in a link- based analysis, why response and explanatory vari-
ables in link- based analyses should consider population topology and 
why it is important that the sampled populations are representative 
of the spatial distribution of a species. Finally, I will shortly describe 

(1)G = f(D, L)

F IGURE  1 Boxplots showing how genetic differentiation (FST) 
between two populations (a and b) is influenced by the location of a 
third population (c). Gene flow was simulated between populations 
a, b, and c over 300 generations. While populations a and b had a 
fixed location, the location of population c ranged from close to (left) 
to far from (right) the other two populations. More details on these 
simulations can be found in Appendix 1. It can clearly be seen that 
gene flow decreases (i.e., genetic differentiation increases) when 
population c is located further away from populations a and b
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the consequences of my recommendations for statistical analyses. In 
support of my arguments, I have performed several simple computer 
simulations of gene flow among populations (Appendix 1) as well as a 
literature review (Appendix 2). The simulations have been performed 
with an existing population genetic agent- based model (Van Strien 
et al., 2015) and focused on how measures of historic gene flow are 
affected by population topology and by movement barriers. Details of 
the simulation model can be found in Appendix 1, and results are pre-
sented in Figures 1 and 2. The literature review focused on landscape 
genetic studies published during the first half of 2015, and results will 
be presented throughout the article. As the majority of landscape ge-
netic studies make use of genetic distance measures that are calcu-
lated between populations (opposed to between individuals; Jenkins 
et al., 2010; Storfer et al., 2010; Manel & Holderegger, 2013), I will 
focus mainly on gene flow between discrete populations. I emphasize 

that the frequently used link- based approach (Appendix 2; Wagner & 
Fortin, 2013) is central to this study, but, where applicable, other land-
scape genetic approaches will be briefly discussed (e.g., node- based, 
or boundary- based approaches; Wagner & Fortin, 2013).

2  | SELECTION OF LINKS IN LINK- 
BASED ANALYSES

In link- based landscape genetic analyses, the variables G, D, and L 
are measured for links in a population network. Both the population 
topology and the selection of links will thus determine the configu-
ration of a population network. Links in a population network must 
represent a process connecting nodes, and therefore, the appropri-
ate set of links depends on the research question (Murphy, Dyer, & 

F IGURE  2 Results from simulations of gene flow between three populations (a, b, and c) of two species with different dispersal abilities. 
These dispersal abilities are different between the top (A, B, and C) and bottom (D, E, and F) scenarios. The left graphics (A, B, D, and E) show 
the population topology and dispersal probabilities of the four scenarios that were input to the simulation model, while the right graphics (C 
and F) show the distributions of genetic differentiation (FST) simulated between population a and b. The probability of dispersal, p, between 
populations a, b, and c (i.e., pab, pac, pbc) are derived from exponential probability density functions and are indicated in the left graphics. Inter- 
population dispersal was considered highly unlikely for p < .0001. More details on these simulations can be found in Appendix 1. In the left 
scenarios (A and D), the populations are located in a homogeneous landscape. In the right scenarios (B and E), the populations are located 
in a heterogeneous landscape containing a barrier to movement (i.e., irregularly shaped gray patch), which reduces pab to 0. (A) Direct gene 
flow is between all population pairs and historical gene flow between populations a and b is a result of direct as well as indirect gene flow (via 
population c). (B) Due to a barrier to movement, direct gene flow between a and b is absent. (C) Simulation results show that the historical gene 
flow between a and b is lower (i.e., higher FST) in scenario B than in A. (D) Due to dispersal limitations, the vast majority of gene flow between a 
and b takes place indirectly via population c. (E) Gene flow routes thus hardly change when there is a barrier to movement between populations 
a and b and therefore, (F) simulations show that gene flow between a and b is comparable for scenarios D and E
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Cushman, 2015). Here, I specifically focus on the use of population 
networks to determine those links along which explanatory and re-
sponse variables are calculated. This is an important consideration, as 
the choice of links can have a large effect on the results of link- based 
landscape genetic analyses (Keller, Holderegger, & Van Strien, 2013; 
Naujokaitis- Lewis, Rico, Lovell, Fortin, & Murphy, 2013). Although 
there are many different ways to select sets of links (Murphy et al., 
2015), most link- based landscape genetic studies simply calculate 
response and explanatory variables for links between all possible 
pairs of populations (Appendix 2; but see Murphy, Dezzani, Pilliod, & 
Storfer, 2010; Angelone, Kienast, & Holderegger, 2011; Van Strien 
et al., 2014; Coster et al., 2015; Watts et al., 2015), which leads to a 
“saturated” population network (Figure 3a). However, the power of 
link- based analyses in landscape genetics could be improved by using 
“pruned” networks (i.e., saturated networks from which links have 
been removed) opposed to saturated networks (Wagner & Fortin, 
2013). Below I discuss which types of pruned population networks 
are probably a better alternative to saturated network in link- based 
analyses.

One approach to prune population networks is to remove links 
between populations that are beyond the maximum dispersal distance 
of one another (i.e., dispersal distance networks; Figure 3b,c; e.g., 
Murphy et al., 2010; Van Strien et al., 2014). Landscape geneticists use 
measures of gene flow under the assumption that they provide a good 
estimate of migration, movement, or dispersal between populations 
(henceforth referred to as dispersal; Holderegger & Wagner, 2008; 
Spear, Balkenhol, Fortin, McRae, & Scribner, 2010). The behavior of 
dispersing animals determines if certain landscape elements facilitate 
or inhibit their movement (e.g., Andreassen, Halle, & Ims, 1996; Gillies, 
Beyer, & St. Clair, 2011). The distance over which dispersal between 
populations can take place (i.e., maximum dispersal distance) is limited 
by a range of characteristics of the focal species (Jenkins et al., 2007; 
Matthysen, 2012; Tamme et al., 2014). Thus, the absence of disper-
sal between populations can either indicate (1) that there are barriers 
or inhibitors to dispersal between the respective populations or (2) 
that the geographic distance between populations is larger than the 
maximum dispersal distance of the focal species. It is of importance in 
link- based landscape genetic studies to differentiate between these 

F IGURE  3 Examples of saturated and dispersal distance networks. The links in the networks (gray continuous lines) represent those pairs of 
populations (black dots) that are to be incorporated in linked- based landscape genetic analysis. In each landscape, the irregularly shaped patch 
depicts a linear landscape element that may or may not be an inhibitor to dispersal. (a) In the saturated network, all populations are connected 
to all other populations. This is the type of network commonly used in landscape genetic studies. (b and c) The dispersal distance networks are 
pruned versions of the saturated network and connect only those populations between which the geographic distance is lower than or equal 
to the maximum dispersal distance (indicated with the dashed black line at the bottom of b and c). (b) Due to dispersal limitations, the dispersal 
distance network is broken into two components (left and right). In this situation, it cannot be determined with a link- based analysis whether 
the linear landscape element is actually an inhibitor of dispersal, that is, removal of this landscape element would not change dispersal rates 
between the components. (c) The dispersal distance network is one component. If relatively little gene flow is measured on the links intersecting 
the linear landscape element, then this landscape element is likely to be an inhibitor of dispersal
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two causes of absent or decreased dispersal (Spear et al., 2010), as 
 neglecting their difference can lead to wrong conclusions and inef-
fective conservation measures. For instance, if two populations of a 
certain species are within dispersal distance of one another and are 
separated by a certain landscape element (e.g., road, river, forest patch, 
or patch of intensive agriculture), absent or reduced dispersal between 
these populations could be caused by the respective landscape ele-
ment and conservation practitioners could implement measures trying 
to overcome this movement barrier (Figure 2A–C). However, if the 
two populations are further apart than the maximum dispersal dis-
tance, then absent or reduced dispersal is caused by the focal species’ 
physical limitations and one cannot safely conclude that the respective 
landscape element is a barrier or inhibitor to movement (Figure 2D–F). 
In the latter case, conservation measures aimed at reducing the barrier 
effect of the respective landscape element would likely be ineffective. 
In other words, it is impossible to detect inhibitors or facilitators of 
dispersal between populations that are so far apart that, in the best 
of circumstances, dispersal directly between these populations would 
never take place (Figure 2).

It would therefore make sense to include in a link- based analysis 
those population pairs that are within dispersal distance of one an-
other; an idea posed in several recent studies (Angelone et al., 2011; 
Fortin, James, MacKenzie, Melles, & Rayfield, 2012; Keller et al., 2013; 
Murphy et al., 2010; Van Strien et al., 2014, 2015). This is also sup-
ported by the results from comparative studies. Compared to satu-
rated networks, Keller et al. (2013) found that it was much easier to 
differentiate between likely and unlikely dispersal routes with pruned 
dispersal distance networks. However, Murphy et al. (2010) found 
no differences between results from saturated and pruned disper-
sal distance networks. Jaquiéry, Broquet, Hirzel, Yearsley, and Perrin 
(2011) simulated gene flow between populations in a regular lattice 
by allowing dispersal between a population and its four neighbors and 
found that the accuracy of detecting the correct landscape resistance 
hypothesis was higher if the analysis was performed on only these 
neighboring populations opposed to on all population pairs. Opposed 
to using a saturated population network by default, it may thus be 
advantageous to use a dispersal distance network as a starting point 
in a link- based analysis.

In reality, it will be difficult to determine an absolute maximum 
dispersal distance for a species, as natural variation in physical and 
phenotypical factors will cause certain individuals to move further 
than others. Even occasional long- distance dispersal can already pre-
vent distant populations from genetically diverging (Mills & Allendorf, 
1996). Therefore, the maximum dispersal distance should not be 
underestimated and should reflect a distance across which dispersal 
becomes highly unlikely (Appendix 1). An estimation of the disper-
sal distance can usually be made by looking at similar, better stud-
ied species, or using review studies describing relationships between 
maximum dispersal distance and, for instance, species traits (Tamme 
et al., 2014; Whitmee & Orme, 2013), body mass or diet type (Jenkins 
et al., 2007; Sutherland, Harestad, Price, & Lertzman, 2000). The sen-
sitivity of the result to different estimates of the maximum dispersal 
distances can be tested by running analyses on a range of maximum 

distances and assessing the variability in the results (e.g., Coster et al., 
2015).

In addition to dispersal distance networks, researchers can also 
experiment with other approaches to pruning. For instance, pruning 
can also be performed with rule- based network algorithms, such as 
Delaunay (Goldberg & Waits, 2010), Gabriel (Keller et al., 2013) or 
minimum spanning tree (Naujokaitis- Lewis et al., 2013). Keller et al. 
(2013, p. 2478) argue that the advantage of using Gabriel graphs is 
that they are anticipated to “represent the direct landscape effects 
on gene flow between population pairs, that is, without the effect 
of other populations enhancing or reducing gene flow.” Pruning can 
also be performed based on genetic data, as is performed in, for in-
stance, the “Population Graph” method (Dyer & Nason, 2004; Dyer, 
Nason, & Garrick, 2010; Garroway, Bowman, Carr, & Wilson, 2008). In 
this method, the pairwise conditional genetic covariance structure is 
used to prune a saturated population network: Insignificant links are 
removed as direct dispersal is considered unlikely between those pop-
ulation, and significant links are maintained as direct dispersal is prob-
able for those pairs (Dyer et al., 2010). Population Graphs have a range 
of useful applications in landscape genetics (Dyer, 2015). However, 
they may not be ideally suited to select links in a link- based analysis, 
because, as discussed above, the absence of dispersal between popu-
lations that can theoretically exchange dispersers (i.e., are within dis-
persal distance of one another) might be indicative of an intermediate 
barrier to dispersal and it may thus be interesting to include these links 
in a linked- based analysis.

There are also other useful applications of pruned population net-
works in landscape genetics. For instance, with graph theoretical met-
rics (e.g., degree, betweenness centrality, clustering coefficient) nodes, 
links, or the network as a whole can be characterized (Barthélemy, 
2011; Boccaletti, Latora, Moreno, Chavez, & Hwang, 2006). Such 
metrics can provide valuable ecological information (Murphy et al., 
2015), such as estimates of the sensitivity of population networks to 
the removal of habitats (e.g., Garroway et al., 2008). Such metrics can 
also be used as measures of habitat connectivity for node- based land-
scape genetic analysis (Koen, Bowman, & Wilson, 2016). Population 
Graphs or a dispersal distance networks can also aid in the interpre-
tation of so- called boundary- based methods (Dyer, 2015; Wagner & 
Fortin, 2013). With these methods, boundaries between clusters of 
genetically similar individuals are detected and related to landscape 
features that could potentially explain these boundaries (e.g., Keller, 
Van Strien, & Holderegger, 2012; Row, Blouin- Demers, & Lougheed, 
2010). On the one hand, if the pruned population network consists 
of a single component (i.e., all populations are indirectly connected; 
e.g., Figure 3c), but several genetic clusters are detected, then the ob-
served genetic structure could be resulting from movement- inhibiting 
landscape elements between the genetic clusters. On the other hand, 
if the population network is broken up into several components (i.e., 
groups of connected populations between which there are no links; 
e.g., Figure 3b) that correspond with the genetic clusters, then the 
genetic pattern is likely caused by an unbridgeable gap between 
components due to physical dispersal limitations of the focal species. 
Inferring the presence of such an unbridgeable gap is interesting in 
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its own right, but will not facilitate the discovery of dispersal inhib-
iting properties of landscape elements (i.e., a main goal in landscape 
genetics).

For link- based analyses on individuals (opposed to populations) 
sampled from more or less continuously distributed populations, 
I am not aware of any studies that compare results from saturated 
and pruned networks. With a dataset of individual corrals, Gorospe 
and Karl (2015, p. 11) also found that “a depth cline in genetic vari-
ation” became “more pronounced” if only individuals within a certain 
distance were included opposed to all pairs of individuals. However, 
 opposed to a link- based analysis, these authors employed a node- 
based analysis (i.e., spatial principal components analysis; Wagner & 
Fortin, 2013). Further deliberation on the effect of population topol-
ogy on individual- based analyses is beyond the scope of this article.

3  | INCORPORATING POPULATION 
TOPOLOGY IN RESPONSE AND 
EXPLANATORY VARIABLES

The fact that a pair of populations may experience more or less 
gene flow when other populations are present in their surrounding 
(Figure 1; McRae, 2006) indicates that landscape genetic studies 
should ideally take these surrounding populations into account when 
trying to explain historical gene flow with a set of explanatory vari-
ables. Yet, the majority of landscape genetic studies do not explicitly 
consider population topology when calculating response or explana-
tory variables (Appendix 2). To incorporate the population topology 
in landscape genetic analyses, I see two possible approaches, none of 
which have become common practice in landscape genetics. A first 
approach would be to add explanatory variables that quantify popu-
lation topology to models explaining gene flow. A second approach 
could be to consider the population topology when calculating re-
sponse or explanatory variables currently used in link- based methods. 
Both approaches are described in more detail below.

The addition of explanatory variables quantifying population 
 topology would expand Equation (1) to

where P comprises one or several measures of population topology. 
Few landscape genetic studies have focused on developing such 
measures of population topology. Recently, Van Strien et al. (2014) 
designed and tested two such measures in a landscape genetic study 
in which link- based methods were used. Between populations of a 
grasshopper species, these authors first constructed a dispersal dis-
tance network. For each population, they calculated the number of 
direct links to neighboring populations in the network as well as the 
mean Euclidean distance to these neighboring populations. For each 
pair of populations, these measures were subsequently averaged and 
added to the other explanatory variables that quantified the land-
scape and distance between pairs of linked populations. Van Strien 
et al. (2014) found that the fit (R2) of their best model increased from 
0.3349 to 0.4883 when the average Euclidean distance to neighboring 

populations was included as explanatory variable. This considerable 
increase in explanatory power of the model illustrates how essential 
it is to consider population topology in landscape genetic analyses. 
The authors also found a negative correlation between the average 
Euclidean distance to neighboring populations and gene flow, indi-
cating that gene flow increased between a certain population pair 
when surrounding populations were closer. This finding supports the 
theoretical model of McRae (2006) and the simulations presented in 
Figure 1. However, gene flow between a pair of populations may not 
always increase with the presence of other nearby populations, but 
could also decrease when the nearby populations act as an attractor 
for individuals that would otherwise have moved between the respec-
tive population pair (i.e., conspecific attraction; Lima & Zollner, 1996; 
Bowler & Benton, 2005). Whereas fairly simple measures of population 
topology p were used in the above example, more elaborate measures 
of p could further increase the explanatory power. Inspiration for such 
measures could perhaps be drawn from variables used to characterize 
nodes or links in spatial networks, such as betweenness, centrality, or 
closeness (Barthélemy, 2011; Boccaletti et al., 2006). Note that also 
for the calculation of many of such measures, it is important to use 
pruned as opposed to saturated population networks.

Considering the population topology when calculating response 
and explanatory variables could be another way of accounting for its 
effect on gene flow. This would imply replacing the variables G, D and 
L in Equation (1) with versions in which the effect of population topol-
ogy has been factored in: Gpt, Dpt, and Lpt

One of the very few successful attempts to obtain a measure re-
sembling Gpt is presented in Dyer and Nason (2004), who calculate 
conditional genetic distances (cGD) from Population Graphs. Between 
each population pair, cGD is calculated from the length of the short-
est path through the Population Graph. Dyer et al. (2010) show that 
cGD is a better indicator of the spatial distribution of genetic variation 
than traditional indicators are (i.e., FST and Dc). Population Graphs can 
potentially also be used to calculate explanatory variables that factor 
in population topology, Dpt and Lpt. By quantifying the landscape and 
distance for all the links in the Population Graph, average measures for 
Dpt and Lpt can be calculated along the same shortest path as cGD was 
calculated from. In the same way, dispersal distance networks or other 
pruned population networks could also be used to calculate measures 
for Dpt and Lpt along a shortest path through the network. However, 
the multiple dispersal events that result in historic gene flow were not 
necessarily along the same shortest path through a population net-
work, but could have followed several “gene flow routes.” One possible 
approach to incorporate such multiple routes is to average measures 
of Gpt, Dpt, and Lpt calculated along all possible routes in a Population 
Graph or dispersal distance graph. For this, inspiration could be drawn 
from the approach to calculate resistance distances, which are calcu-
lated along multiple routes in a resistance surface (McRae, Dickson, 
Keitt, & Shah, 2008; Spear et al., 2010). Instead of using a resistance 
surface, pruned population graphs could be used. To my knowledge, 
no studies have yet experimented in this direction.

(2)G = f(D, L,P)

(3)Gpt= f(Dpt, Lpt)
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The effect of population topology on link- based analyses can also 
be reduced by selecting other measures of gene flow between pop-
ulations. Opposed to the measures of historic gene flow, measures 
of current or contemporary gene flow are less likely to result from a 
series of dispersal events over several generations and are thus less 
affected by population topology. Individuals that have dispersed to 
other populations during their lifetime (i.e., first- generation migrants) 
can be detected with, for instance, genetic assignment tests (e.g., Frei 
et al., 2016; Kraaijeveld- Smit, Beebee, Griffiths, Moore, & Schley, 
2005) or paternity analysis (e.g., Kamm et al., 2009). However, due to 
natural fluctuations in dispersal, it could occur that the number of first- 
generation migrants that is detected may be too small for valid statis-
tical testing or that this number is exceptionally high for the particular 
year within which the study was conducted. Compared to FST, certain 
other measures of gene flow between populations (i.e., G′ST) or between 
individuals (Mantel’s r from proportion of shared alleles) have been 
found to respond faster to the establishment of barriers (Landguth 
et al., 2010) and are therefore considered to reflect more recent gene 
flow. Another alternative to measures of genetic differentiation or dis-
tance (e.g., FST) is coalescent- based methods, which estimate popu-
lation parameters, such as migration rates, with maximum- likelihood 
techniques (e.g., Beerli & Felsenstein, 2001). Such estimates seem to 
be fairly insensitive to missing populations in some situations (Beerli, 
2004), but certainly not in all the cases (Slatkin, 2005). By running co-
alescent simulations with demographic input variables derived from 
time series of habitat suitability maps, causal relationships between 
genetic patterns and temporal as well as spatial landscape heteroge-
neity can be tested (He, Edwards, & Knowles, 2013; Lacey Knowles & 
Alvarado- Serrano, 2010). This in contrast to link- based methods, with 
which only the relationship between genetic and landscape distances 
is described, but no conclusions about the causality of these relation-
ships can be made. However, coalescent- based methods as well as as-
signment test often fail to produce results due to convergence issues 
(Epps & Keyghobadi, 2015; Meirmans, 2014).

4  | SAMPLING OF POPULATIONS

There is ample evidence that missing nodes and edges can have pro-
found effects on results from studies using networks analyses (e.g., 
Guimerà & Sales- Pardo, 2009; Kossinets, 2006), which include link- 
based methods in landscape genetics. For example, in Figure 1, sup-
pose that population c was not known and that there was a certain 
landscape element located between populations a and b in the right 
scenario (and not in the other scenarios). In that case, the low gene 
flow between populations a and b in the right scenario could mistak-
enly be ascribed to the respective landscape element, while in reality 
the location of population c is the cause of the differences in gene 
flow between the scenarios. Recommendations given in the previ-
ous sections are all subject to having a good overview of the popula-
tion topology: Unknown or unsampled populations (so- called ghost 
populations; Beerli, 2004) could influence the links that are selected 
after pruning a population network, could render variables quantifying 

population topology unreliable, or could bias response and explana-
tory variables calculated from a certain population topology. The lat-
ter has been proven by Koen, Bowman, Garroway, and Wilson (2013), 
who showed that cGD is sensitive to unsampled or under- sampled 
populations. Furthermore, inference from results of link- based meth-
ods is influenced by the number of nodes removed from a complete 
population network, and the way links are defined in the network 
(Naujokaitis- Lewis et al., 2013). In the recently published handbook 
for landscape genetics, the study design implications drawn from 
the latter study are that one should try to sample the entire network 
(Balkenhol & Fortin, 2015). Thus, from several perspectives, it is im-
portant to sample in such a way that a good representation of the 
population topology is obtained for studies that plan to use link- based 
methods.

Ideally all populations in a study area are identified and sampled 
(i.e., complete sampling). However, this is not common practice in 
current landscape genetic studies (Appendix 1; but see Murphy et al., 
2010; Keller et al., 2013; Coster et al., 2015) and is also not generally 
propagated in the landscape genetic literature. It is usually dismissed on 
practical grounds or simply because the locations of all populations are 
not known (Beerli, 2004). However, these arguments do not justify that 
complete sampling should be neglected a priori. I argue that complete 
sampling should become “best practice” in landscape genetic studies 
that plan to use link- based methods. Obviously, there are logistical rea-
sons that may prevent complete sampling, in which case efforts should 
at least be made to obtain a sample that gives a good representation 
of the spatial distribution of populations throughout an area. In studies 
without a complete sample, the sensitivity of results to the removal 
of nodes and links from the population network should be assessed 
(Naujokaitis- Lewis et al., 2013). This can be performed, for instance, by 
iteratively performing a landscape genetic analysis on a complete data-
set (i.e., including all sampled populations), from which an increasing 
number of populations is randomly removed. Or, analogous to calculat-
ing patch importance in habitat connectivity networks (Urban & Keitt, 
2001), the effect that single populations have on landscape genetic re-
sults could be assessed by comparing results from a complete dataset 
with those from a dataset from which single populations have been re-
moved. If high elasticity is found in the results or if certain populations 
have an exceptionally large influence on the results, then care should 
be taken to draw strong inference from the results. However, even if 
results appear fairly insensitive to changes in the population network, it 
does not automatically imply that the results are unbiased. Comparing 
landscape genetic results from a complete sampling of populations with 
those from an incomplete sample containing only 35% of all popula-
tions, Naujokaitis- Lewis et al. (2013) found that, with saturated popu-
lation networks, 11%–16% of the random incomplete samples showed 
an opposite landscape effect to the complete sample. For pruned popu-
lation networks, this percentage could be as high as 88%. Thus, if only a 
small proportion of the populations in a study area has been sampled to 
begin with, there is no way of knowing how different the results would 
be if all, or at least most, populations had been sampled.

There are several possible approaches to maximize the number 
of sampled populations. I echo recommendations of earlier studies 
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that landscape geneticists should rather allocate their time to sam-
pling more populations than to sample more individuals per population 
(Dyer, 2015; Koen et al., 2013). However, a lower limit of sampled in-
dividuals per population should be maintained to obtain a reliable es-
timate of the genetic variation within sampled populations (Balkenhol 
& Fortin, 2015; Hale, Burg, & Steeves, 2012). If knowledge on pop-
ulation occurrences is not available on forehand, a preliminary habi-
tat suitability analysis can be used to direct the search toward those 
areas in which the focal species could potentially occur (e.g., Williams 
et al., 2009). Although not yet used in landscape genetics, network 
evaluations could possibly also give clues as to where populations are 
potentially missing from a network (e.g., Eyal, Rosenfeld, Sina, & Kraus, 
2013). With a given amount of sampling effort, a (nearly) complete 
sampling of populations, compared to a random or stratified sampling, 
means that a smaller extent of study area can be covered. However, 
the study area extent should preferably remain larger than the maxi-
mum dispersal distance of the focal species (Anderson et al., 2010). In 
order to optimize sampling efficiency, researchers may want to specify 
a minimum distance between sampled populations. This minimum dis-
tance, however, should ideally be smaller than the maximum dispersal 
distance of the focal species.

Designing population sampling schemes is of course easiest for 
species that occur in spatially distinct groups. For species where the 
individuals are not clearly grouped in populations, but are more or less 
continuously scattered throughout the study area, it may be more dif-
ficult to design a sampling scheme (but see Gorospe & Karl, 2015). For 
such focal species, an individual- based sampling scheme should be se-
lected that is likely to accurately detect the emergent genetic patterns 
present throughout the landscape (Landguth, Johnson, & Cushman, 
2015). For recommendations on such sampling schemes, I refer to 
 reviews by Anderson et al. (2010) and Balkenhol and Fortin (2015).

5  | ACCOMMODATING POPULATION  
TOPOLOGY EFFECTS IN STATISTICAL  
ANALYSES

Considering population topology in landscape genetic analysis can also 
have consequences for the statistical analysis. For link- based analyses, 
the dependent and explanatory variables take the form of distance 
or (dis)similarity matrices with n rows and n columns, where n is the 
number of sampled populations (Wagner & Fortin, 2015). Thus, if all 
pairs of populations are considered, n(n − 1)/2 values are specified in 
the upper or lower triangle of the matrix (i.e., a fully specified matrix). 
In many studies, the significance of the relationship between fully 
specified matrices is tested against null- distributions that are created 
by permuting the rows and columns of the response variable matrix 
(i.e., Mantel tests or multivariable extensions thereof; Mantel, 1967; 
Legendre, Lapointe, & Casgrain, 1994). However, if response and 
explanatory variables are only calculated for those links in a pruned 
network, fewer than n(n − 1)/2 values will be specified and values will 
be missing for elements in the distance matrices (i.e., a partially speci-
fied matrix). Comparing unpermuted and permuted partially specified 

matrices can lead to a situation where the matrices have none or very 
few specified values in common. Therefore, significance testing for 
partially specified matrices with Mantel tests and derived forms can 
be problematic.

Partially specified matrices can be statistically analyzed with sev-
eral potential approaches. A first approach is to write the specified 
elements in the distance matrices to vectors and then carry out the 
correlation or regression analyses on these vectors. The significance 
of the coefficients can then be assessed by permuting the response 
vector (e.g., Angelone et al., 2011; Keller et al., 2013) or bootstrap-
ping both the response and explanatory vectors (e.g., Jaquiéry et al., 
2011). In these approaches, single elements from distance matrices 
are permuted or bootstrapped, whereas in the original Mantel test, the 
rows and columns in the matrix are permuted (Legendre et al., 1994; 
Mantel, 1967). Therefore, further stringent tests should be performed 
to determine whether these two methods result in unbiased signifi-
cance values. A second approach that can accommodate partially spec-
ified matrices are mixed effect models with an appropriate covariate 
structure (i.e., maximum- likelihood population- effects model [MLPE]; 
Clarke, Rothery, & Raybould, 2002; Van Strien et al., 2012). Whereas 
Mantel- like tests account for the correlated structure of the pairwise 
observations when testing the significance of model coefficients, 
MLPE models account for this structure when calculating the actual 
model coefficients. The covariate structure can be specified for fully 
specified as well as partially specified matrices. Although MLPE mod-
els are gaining in popularity in landscape genetics (Wagner & Fortin, 
2015), there remain some unsolved issues, especially regarding appro-
priate methods for model selection (Van Strien et al., 2012). A third 
statistical approach that can be applied to partially and fully specified 
matrices is the leave- one- out- cross- validation approach proposed by 
Van Strien et al. (2014). With this method, a regression model is fit to 
a calibration set and then its predictive accuracy is tested on a valida-
tion set consisting of one pairwise observation. To ensure complete 
“independence” of the validation set, all other pairwise observations 
involving any of the two populations in the validation set are removed 
from the calibration set. This method is particularly useful for model 
selection. However, significance of the regression coefficients was not 
calculated by Van Strien et al. (2014).

6  | CONCLUSION

In this article, I discuss how population topology and the related popu-
lation network topology can influence the assessment of gene flow 
with link- based methods and how landscape genetic studies can ac-
count for population topology in their choice of analysis, sampling, and 
statistical approaches. This is important, as disregarding population 
topology can lead to biased results and, in the worst case, wrong con-
clusions. I conclude with a summary of the six main recommendations 
in this article. Landscape geneticists planning to employ link- based 
methods to explain gene flow between populations with landscape 
variables should (1) ideally sample all populations or, at least, sample 
in such a way that a good representation of the population topology 



5078  |     VAN STRIEN

is obtained. (2) If not all populations were sampled, tests should be 
performed to assess the sensitivity of the results to missing popula-
tions. (3) Absent or reduced gene flow can be caused by landscape 
barriers or by physical dispersal limitations of the focal species (i.e., 
populations are too far apart). To correctly identify landscape barriers, 
researchers should try to differentiate between these two causes. (4) 
Researchers should carefully consider which pairs of populations to 
include in linked- based analyses. Opposed to considering all possible 
population pairs, it may be advantageous to include only a selection 
of population pairs; for instance, only those between which direct 
dispersal is possible. (5) To improve model fit, population topology 
should also be considered when calculating response and/or explana-
tory variables. (6) If fewer than all possible pairs of populations are 
considered in a link- based analysis, statistical tests should be selected 
that do not assume fully specified matrices.
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APPENDIX 1

Simulations on the effect of population topology on 
historic gene flow

In support of my examples in the article, I have performed some sim-
ple simulations of gene flow between three populations of a certain 
species (a, b, and c). For these simulations, I have used the stochastic 
agent- based numerical model presented by Van Strien et al. (2015). 
In short, agents in this model are represented by diploid individuals 
that can move between populations of which the location is fixed. 
The probability that an individual reaches another population is a 
function of the Euclidean distance to the other population. After the 
first phase in which individuals potentially disperse among popula-
tions, random sexual reproduction takes place between the individu-
als within a population. By iteratively repeating the dispersal and 
reproduction steps, one can simulate the emergence of genetic pat-
terns that could emerge in certain population topologies or under 
certain dispersal patterns. More details of the simulation model can 
be found in Van Strien et al. (2015). For the current simulations, I 
used many of the same input settings as in the latter study. Here, I 
only mention those settings that I have changed for the current simu-
lations or those that are important for the understanding of the 
simulations. 

The locations of the three populations were specified in 10 × 10 
cell landscape rasters (e.g., Figures 1,2 in the main article). The loca-
tions of population a and b were the same in all simulations, while the 
location of population c could vary. Each population consisted of 
200 individuals characterized by 10 loci that each contained two of 
10 potential alleles. At the beginning of a simulation, alleles were 
randomly assigned to individuals. The probability that an individual 
leaves the natal population was set to .2. With an exponential prob-
ability density function (pdf; commonly used in landscape genetic 
simulations; Epperson et al., 2010), I calculated the probability that 

an individual successfully moves over a certain distance between 
populations. The shape of the pdf is determined with the parameter 
μ. With an increasing value of μ, the dispersal probability to more 
distant populations increases. Although the dispersal probability be-
tween populations never becomes absolutely 0, beyond certain 
probability levels dispersal becomes highly unlikely. As in Van Strien 
et al. (2015), I arbitrarily set this threshold at a probability of .0001. 
After 300 dispersal- reproduction cycles (i.e., generations), pairwise 
FST values between population a and b were calculated following Nei 
(1977). The FST values represent the genetic differentiation between 
populations and are negatively correlated to estimates of historic 
gene flow. 

The results of the simulations are presented in Figures 1 and 2 in 
the main article. The input settings for these results are described in 
more detail below.

Simulations for Figure 1

In Figure 1, it is shown how genetic differentiation (FST) between two 
populations (a and b) is effected by the location of a third population 
(c). To produce these results, simulations were run with three locations 
of population c (depicted in the three little maps below the boxplots in 
Figure 1), while all other input settings remained constant. Dispersal 
probabilities between populations were derived from an exponential 
pdf with μ = 2. With this setting, dispersal probability between popula-
tions a and b was .0037. For the left, middle, and right population to-
pologies in Figure 1, the dispersal probabilities between populations a 
and c and b and c were .0353, .0159, and .0050, respectively. For each 
of the three population topologies, simulations were repeated 30 
times. The resulting distributions of FST values are shown in the box-
plots in Figure 1. It can clearly be seen that the historic gene flow be-
tween populations a and b is strongly influenced by the geographic 
location of population c.

Simulations for Figure 2

In Figure 2, the effect of a movement barrier on genetic differentiation 
(FST) between populations a and b is depicted. This effect was simu-
lated for two situations: One where dispersal was possible between a 
and b before the establishment of the barrier and one where there was 
no dispersal possible. In the first situation (top graphics in Figure 2), 
the dispersal probability between populations a and b, pab, is .0037 
(μ = 2 in the exponential pdf). In the second situation (bottom graphics 
in Figure 2), dispersal between populations a and b is negligible as pab 
lies below .0001 (μ = 1). In both situations, I then simulated the estab-
lishment of a movement barrier between population a and b by setting 
pab to 0. The probability of dispersal between populations a and c and 
b and c remained unchanged in all situations (Top: pac = pbc = .0249; 
Bottom: pac = pbc = .0025). Again, each combination of input settings 
was repeated 30 times and the distribution of FST values depicted in 
boxplots (right in Figure 2). It is evident from the simulation results 
that FST values only increase when dispersal was possible between 
populations a and b prior to establishment of a barrier (first situation). 
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When there was hardly any dispersal between populations a and b to 
begin with (second situation), FST hardly changed with or without a 
barrier.

APPENDIX 2

Review of landscape genetic studies

In this literature review, I determine common practice in landscape 
genetic studies that make use of link- based methods (Wagner & 
Fortin, 2013). The review focussed on the articles that were published 
during the first 6 months of 2015.

Methods

On 5 August 2015, I checked Web of Science for all English articles in 
2015 that had the words “landscape genetic” or “landscape genetics” 
in their title or as topic. From all the articles, I removed the duplicates, 
articles making use of simulated data (i.e., only empirical data) and 
primer notes. I also removed articles that did not actually use land-
scape genetic techniques, but only discussed or reviewed such tech-
niques or used them for purposes other than landscape genetics. 
Simple isolation by distance analyses or analyses where geographical 
distance was the only explanatory variable were also not considered 
as landscape genetic studies.

From all the remaining studies, I selected those studies that ap-
plied link- based methods (i.e., correlation or regression of genetic dis-
tances and landscape measures between populations or individuals). 
From these studies, I determined (1) whether a complete sampling of 
all populations was performed, (2) whether historic or contemporary 
measures of gene flow were used, (3) whether all possible population 

pairs were considered in the link - based analysis, (4) whether dispersal 
distance was considered in the study, and (5) whether the population 
topology was considered to determine response or explanatory vari-
ables. If studies did not explicitly mention that a complete sampling 
was performed, I assumed it was not performed in point 1. For point 
3, I presumed all pairs were taken into account when studies did not 
explicitly mention which pairs of populations were considered. To an-
swer point 4, I searched all articles for the words “dispersal,” “move-
ment,” “migration,” and “range” and assessed whether occurrences of 
these words referred to the construction of a population network.

Results

In total, I found 98 articles in Web of Science that met the search crite-
ria. After removing one duplicate, seven papers with simulated data, 
four primer notes, 15 papers not using landscape genetic techniques, 
and two papers that were applying landscape genetic techniques for 
other purposes, 69 articles remained. I found that 48% of the selected 
landscape genetic studies (n = 33) made use of link- based methods, 
many of which actually used a combination of different methods (i.e., 
combinations of link- based, node–based, and boundary- based meth-
ods; Wagner & Fortin, 2013). Of the studies using link based methods, 
15% (n = 5) made an effort to sample all populations in the study land-
scape. All studies made use of historical gene flow measures and only 
one additionally made use of contemporary measures. All possible 
population pairs were considered in the link- based analysis in 97% 
(n = 32) of the studies. In 6% (n = 2) of the studies, the dispersal dis-
tance was considered in the study setup, but only in one of these stud-
ies, it was used to determine the pairs of populations considered in the 
link- based analysis. Only 3% (n = 1) of the studies considered popula-
tion topology when calculating response and/or explanatory variables.


