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Abstract

Tumor segmentation in oncological PET is challenging, a major reason being the partial-volume 

effects (PVEs) that arise due to low system resolution and finite voxel size. The latter results 

in tissue-fraction effects (TFEs), i.e. voxels contain a mixture of tissue classes. Conventional 

segmentation methods are typically designed to assign each image voxel as belonging to a 

certain tissue class. Thus, these methods are inherently limited in modeling TFEs. To address 

the challenge of accounting for PVEs, and in particular, TFEs, we propose a Bayesian approach to 

tissue-fraction estimation for oncological PET segmentation. Specifically, this Bayesian approach 

estimates the posterior mean of the fractional volume that the tumor occupies within each 

image voxel. The proposed method, implemented using a deep-learning-based technique, was 

first evaluated using clinically realistic 2D simulation studies with known ground truth, in the 

context of segmenting the primary tumor in PET images of patients with lung cancer. The 

evaluation studies demonstrated that the method accurately estimated the tumor-fraction areas 

and significantly outperformed widely used conventional PET segmentation methods, including 

a U-net-based method, on the task of segmenting the tumor. In addition, the proposed method 

was relatively insensitive to PVEs and yielded reliable tumor segmentation for different clinical-

scanner configurations. The method was then evaluated using clinical images of patients with 

stage IIB/III non-small cell lung cancer from ACRIN 6668/RTOG 0235 multi-center clinical 

trial. Here, the results showed that the proposed method significantly outperformed all other 

considered methods and yielded accurate tumor segmentation on patient images with Dice 

similarity coefficient (DSC) of 0.82 (95% CI: 0.78, 0.86). In particular, the method accurately 

segmented relatively small tumors, yielding a high DSC of 0.77 for the smallest segmented 

cross-section of 1.30 cm2. Overall, this study demonstrates the efficacy of the proposed method to 

accurately segment tumors in PET images.
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1. Introduction

Reliable segmentation of oncological PET images is Required for tasks such as PET-based 

radiotherapy planning and quantification of radiomic and volumetric features from PET 

images (Zaidi et al 2009, Jha et al 2017, Mena et al 2017, Cook et al 2018). However, 

tumor segmentation in PET is challenging for several reasons such as partial-volume 

effects (PVEs), system noise, and large variabilities in the shape, texture, and location 

of tumors (Foster et al 2014). Tumor segmentation can be performed by having trained 

readers delineate the tumors manually. However, manual delineation is both labor- and 

time-intensive, and suffers from intra- and inter-reader variability (Foster et al 2014). To 

address these issues, computer-aided segmentation methods have been developed. These 

include methods based on thresholding, region growing, boundary detection, and stochastic 

modeling (Kass et al 1988, Foster et al 2014, Sridhar et al 2014, Layer et al 2015). However, 

these methods suffer from limitations, such as requiring user inputs, sensitivity to model 

assumptions (Belhassen and Zaidi 2010), and limited ability to account for PVEs. Learning-

based methods (Blanc-Durand et al 2018, Zhao et al 2018) have been developed to address 

these issues. While these methods have demonstrated promise, they typically require manual 

delineations for training, which are likely affected by PVEs. Thus, accounting for PVEs 

remains an important challenge in accurate delineation of PET images.

The PVEs in PET arise from two sources, namely the limited spatial resolution of PET 

system and the finite voxel size in the reconstructed image (Soret et al 2007). The limited 

spatial resolution leads to blurred tumor boundaries. The finite voxel size results in voxels 

containing a mixture of tumor and normal tissue. This phenomenon is referred to as 

tissue-fraction effects (TFEs) (Rousset et al 2007). A recently developed deep-learning 

(DL)-based technique (Leung et al 2020) has attempted to account for PVEs arising due 

to the low system resolution. However, this method is not able to account for the TFEs. 

This shortcoming arises because this method, similar to conventional classification-based 

segmentation methods, is not designed or trained to model TFEs. Instead, this method is 

designed and trained on the task of classifying each voxel in an image as belonging to 

a single region. Note that while these learning-based methods can output a probabilistic 

measure of a voxel belonging to a region, that probability is unrelated to TFEs. Similarly, 

other probabilistic techniques, such as simultaneous truth and performance level estimation 

technique (Dewalle-Vignion et al 2015), can yield a probabilistic estimate of the true 

segmentation. However, again, this probabilistic estimate has no relation to TFEs. Fuzzy 

PET segmentation methods have attempted to account for TFEs by assigning different fuzzy 

levels to voxels that are partially occupied by the tumor (Hatt et al 2007, 2009). However, 

the goal of these methods is not to directly estimate the tumor-fraction volume within each 

voxel. Thus, they are not able to explicitly model TFEs.
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To address the challenge of accounting for PVEs, and in particular, TFEs, while performing 

tumor segmentation in PET, in this manuscript, we propose a Bayesian approach to tissue-

fraction estimation. Specifically, the segmentation problem is posed as a task of estimating 

the fractional volume that the tumor occupies within each voxel of an image. Through this 

strategy, we are able to explicitly model TFEs. The proposed method was developed in the 

context of segmenting the primary tumor in [18F]fluorodeoxyglucose (FDG)-PET images of 

patients with lung cancer.

In the next section, we develop a theoretical formalism for the proposed method. Our 

evaluation of the method using both clinically realistic simulations and clinical images of 

patients with stage IIB/III non-small cell lung cancer (NSCLC) from ACRIN 6668/RTOG 

0235 multi-center clinical trial, is then presented in section 3, followed by the results of this 

evaluation, discussions, and conclusions.

2. Method

2.1. Theory

Consider a PET system imaging a radiotracer distribution, described by a vector f(r), where 

r = (x, y, z) denotes the spatial coordinates. We denote the tracer uptake in the tumor by 

fs(r). The rest of the regions are referred to as background, and uptake in the background is 

denoted as fb(r). Thus, the tracer uptake can be represented mathematically as follows:

f(r) = fb(r) + fs(r) . (1)

We define a support function for the tumor region as s(r), i.e.

s(r) =
1,  if fs(r) > 0.
0,  otherwise.

(2)

The radiotracer emits photons that are detected by the PET system, yielding projection 

data. Reconstruction with the projection data yields the reconstructed image, denoted by an 

M-dimensional vector f . Thus, the mapping from the tracer distribution to the reconstructed 

image is given by the operator Θ:L2 ℝ3 EM.

Denote the PET system by a linear continuous-to-discrete operator H, and let the vector 

n describe the Poisson-distributed noise. Denote the reconstruction operator, quite possibly 

nonlinear, by R. The eventual reconstructed image is given in operator notation as follows:

f = ℛℋf + n . (3)

In the reconstructed image, denote the volume of each voxel by V and define the voxel 

function as ϕm(r), i.e.

ϕm(r) = 1,  if r lies within the mth  voxel of the PET image.
0,  otherwise.

(4)
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The fractional volume that the tumor occupies in the mth voxel, denoted by vm, is given by

vm = 1
V ∫ d3rs(r)ϕm(r) . (5)

Our objective is to design a method that estimates this quantity vm from the reconstructed 

image f  for all M voxels. Denote the estimate of vm by vm. Further, denote the M-

dimensional vector {v1, v2, …, vM} by v, and denote the estimate of v by v.

Estimating v from the reconstructed image is an ill-posed problem due to the null spaces of 

the H and ℛ operator. Thus, we take a Bayesian approach to estimate v. We first need to 

define a cost function that penalizes deviation of v from v. A common cost function is the 

ensemble mean squared error (EMSE), which is the mean squared error averaged over noise 

realizations and the true values v. However, in our case, the variable vm is constrained to 

lie within 0 and 1. The EMSE loss does not directly incorporate this constraint. In contrast, 

using the binary cross-entropy (BCE) loss as the penalizer allows us to incorporate this 

constraint on vm directly, as also suggested in Creswell et al (2017). The BCE loss between 

vm and vm, denoted by lBCE vm, vm , is given by

lBCE vm, vm = − vmlog vm − 1 − vm log 1 − vm . (6)

We define our cost function C(v, v), as the negative of aggregate BCE loss over all voxels 

averaged over the joint distribution of true values v and noise realizations f . The cost 

function is then given by

C(v, v) = − ∫ dMf∫ dMvpr(f , v)∑m = 1
M lBCE vm, vm

= − ∫ dMfpr(f)∫ dMvpr(v ∣ f)∑m = 1
M lBCE vm, vm ,

(7)

where in the second step we have expanded pr(f , v) using the conditional probability. 

Inserting equation (6) into (7), we obtain

C(v, v) = ∫ dMf pr(f)∫ dMvpr(v ∣ f) ∑
m = 1

M
vmlog vm + 1 − vm log 1 − vm . (8)

To estimate the point at which this cost function is minimized, we differentiate the cost 

function with respect to the vector v and set that equal to zero. Because pr f  is always 

nonnegative, the cost function is minimized by setting the derivative of inner integral in 

equation (8) equal to zero, i.e.

∂
∂v∫ dMvpr(v ∣ f) ∑

m = 1

M
vmlog vm + 1 − vm log 1 − vm = 0. (9)
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This is then equivalent to performing component-wise differentiation and setting each 

differentiated component to 0 (Barrett and Myers 2013). For the mth component of equation 

(9), we get

∂
∂vm∫ dvmpr vm ∣ f vmlog vm + 1 − vm log 1 − vm

= ∂
∂vm∫ dvmpr vm ∣ f vmlog vm − log 1 − vm + log 1 − vm

= 0.

(10)

Since ∫ dvmpr vm ∣ f = 1, the solution to equation (10), denoted by vm*  is given by

vm* = ∫ dvmpr vm ∣ f vm . (11)

Equivalently, in vector notation, we get

v* = ∫ dMvpr(v ∣ f)v, (12)

which is simply the posterior-mean estimate of v. Note that the same estimator is obtained 

when the cost function is the EMSE between v and v. Thus, by minimizing the cost function 

in equation (8), we obtain an optimal estimator that achieves the lowest mean squared error 

among all possible estimators. We can further show that this estimator is unbiased in a 

Bayesian sense (proof provided in appendix B).

In summary, we have shown that by developing an optimization procedure that minimizes 

the cost function defined in equation (8), we obtain a posterior-mean estimate of the tumor-

fraction volumes in each voxel of the reconstructed image. This estimator yields the lowest 

mean squared error among all possible estimators. Further, this estimator is unbiased in a 

Bayesian sense.

2.2. Implementation of the proposed technique

While we have developed the theoretical formalism in 3D, in this manuscript, the method 

was implemented and evaluated on a simplified per-slice basis. Thus, for each pixel in the 

2D reconstructed image, the optimizer was designed to yield the posterior mean estimate a*
of the true tumor-fraction area (TFA), which we denote by a. We now describe the procedure 

to implement this optimizer.

Estimating the posterior mean a* requires sampling from the posterior distribution pr(a ∣ f). 
Sampling from this distribution is challenging as this distribution is high-dimensional and 

does not have a known analytical form. To address this issue, the proposed method was 

implemented using a supervised learning-based approach. Specifically, an encoder–decoder 

network was constructed, as shown in figure 1. During the training phase, this network is 

provided with a population of PET images, and the corresponding ground-truth TFA map, 

i.e. the vector a for each image, as described in section 2.1. The network, by minimizing 
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the cost function defined in equation (8) over this population of images, becomes trained to 

yield the posterior-mean estimate of a given the input PET image.

The network architecture is similar to those for estimation tasks, such as image denoising 

(Creswell et al 2017) and image reconstruction (Nath et al 2020). To summarize, the 

network is partitioned into a contracting and an expansive path. The contracting path learns 

the spatial information from the input PET images and the expansive path maps the learned 

information to the estimated TFA map for each input image. Skip connections with element-

wise addition were applied to feed the features extracted in the contracting path into the 

expansive path to stabilize the training and improve the learning performance (Mao et al 
2016). In the final layer, the network yields the estimate of the TFAs. A detailed description 

of the network architecture is provided in appendix A (table A1).

As outlined in section 1, the goal of the proposed method is to explicitly model the TFEs 

while performing tumor segmentation. Our training strategy and network architecture are 

specifically designed for this goal by defining the ground truth as the TFAs for each 

image. We contrast this to the conventional DL-based segmentation methods, where, in the 

ground truth, each pixel is exclusively assigned to the tumor or the normal tissue class 

and the network is trained to classify each pixel as either tumor or background. Further, 

as mentioned above, while the conventional DL-based methods can output a probabilistic 

estimate for each image pixel, this estimate is only a measure of classification uncertainty, 

and thus has no relation to TFEs, unlike the proposed method.

The network was trained via the Adam optimization algorithm (Kingma and Ba 2014). 

In the various experiments mentioned later, the network hyperparameters were optimized 

on a training set via five-fold cross validation. The network training was implemented in 

Python 3.6.9, Tensorflow 1.14.0, and Keras 2.2.4. Experiments were performed on a Linux 

operating system with two NVIDIA Titan RTX graphics processing unit cards.

3. Evaluation

Evaluating the proposed method requires access to ground truth where either the ground-

truth TFA map or a surrogate for the true TFA map, such as tumor delineations defined by 

trained readers, are known. In section 3.2, we first evaluated the proposed method using 

clinically realistic simulation studies, where the ground-truth TFA map was known. In these 

studies, the support of tumor can be described at a very high resolution, simulating s(r) in 

equation (2). From this high-resolution description, the true TFA within each image pixel 

can be computed using equation (5), thus providing the TFA map. Realistic simulation 

studies also model imaging physics and variability in patient populations. Thus, these 

studies provide a rigorous mechanism to evaluate the method. However, we recognize that 

simulation studies may have limitations in modeling all aspects of system instrumentation, 

patient physiology, and patient-population variability, especially in multi-center settings, 

accurately. Thus, it is important to assess the performance of the method using patient 

studies, ideally with multi-center trial data. For this purpose, in section 3.3, we evaluated 

the proposed method on clinical images from the ACRIN 6668/RTOG 0235 multi-center 

clinical trial, where trained-reader-defined segmentations were used as the surrogate ground 
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truth. We first describe the performance metrics used to quantitatively evaluate the proposed 

method.

3.1. Evaluation metrics

Since the proposed method is an estimation-based segmentation approach, our evaluation 

used performance metrics for both the task of estimating the true TFA map and of 

segmenting the tumor.

3.1.1. Evaluation on estimation performance—Performance on the estimation task 

was evaluated using the EMSE between the true and estimated TFA maps. EMSE provides 

a combined measure of bias and variance over the distribution of true values and noise 

realizations, and is thus considered as a comprehensive figure of merit for estimation tasks 

(Barrett and Myers 2013). The error in the estimate of the TFA maps and the tumor area 

was quantified using the pixel-wise EMSE and normalized area EMSE, respectively. Denote 

〈…〉X as the expected value of the quantity in the brackets when averaged over the random 

variable X. The pixel-wise EMSE is given by

Pixel‐wise EMSE  = a − a 2
2

f ∣ a a.  (13)

The normalized area EMSE denotes the EMSE between the true and estimated areas of each 

tumor, normalized by the true areas. The true and estimated areas, denoted by A and A, are 

given by the L1 norms of a and a, respectively. The normalized area EMSE is then given by

Normalized area EMSE  =
A − A 2

A2
f ∣ A A

. (14)

We have shown (equation (B4) in appendix B) that the proposed method yields an unbiased 

estimate of a in a Bayesian sense. To verify this, the ensemble-average bias was computed. 

This term, denoted by b, is an M-dimensional vector b1, b2, …, bM, with the mth element of 

the vector quantifying the average bias of the estimated TFA within the mth pixel. Consider 

a total of P tumor images and N noise realizations for each tumor image. Let amnp and amnp
denote the true and estimated TFA within the mth pixel for the nth noise realization in the 

pth tumor image. The mth component of ensemble-average bias, bm, is then given by

bm = 1
P ∑

p = 1

P 1
N ∑

n = 1

N
amnp − amnp . (15)

The proximity of the elements of b to 0 would indicate that the estimator was unbiased in a 

Bayesian sense.

3.1.2. Evaluation on segmentation performance—The proposed method estimates 

the TFA within each pixel, which is a continuous-valued output. For evaluation of 

segmentation methods that yield such non-binary output, as in Taha and Hanbury (2015), 
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the spatial-overlap-based metrics can be derived based on the four cardinalities of confusion 

matrix, namely the true positives (TP), false positives (FP), true negatives (TN), and false 

negatives (FN). The four cardinalities are given by

TP = ∑
m = 1

M
min am, am FP = ∑

m = 1

M
max am − am, 0

TN = ∑
m = 1

M
min 1 − am, 1 − am FN = ∑

m = 1

M
max am − am, 0.

(16)

The spatial-overlap metric of Dice similarity coefficient (DSC) and Jaccard similarity 

coefficient (JSC) were used to measure the agreement between the true and estimated 

segmentation. The DSC and JSC are defined as

DSC = 2TP
2TP + FP + FN, JSC = TP

TP+FP + FN . (17)

Higher values of DSC and JSC indicate higher segmentation accuracy. These metrics were 

reported as mean values with 95% confidence intervals (CIs). Statistical significance was 

assessed via a paired sample t-test, with a p-value < 0.01 inferring statistically significant 

difference.

We also qualitatively evaluated the performance of the proposed method on the task of 

estimating the TFA map. For this purpose, ground-truth and estimated tumor topographic 

maps were first constructed from the true and estimated TFA maps using the contour 

function in MATLAB (MathWorks, Natick, Mass). Specifically, the tumor topographic 

map shows the topography of the TFA map by means of isocontours. Then, isocontours 

corresponding to the true and estimated TFA maps were plotted for the TFA values of 0, 1/3, 

2/3, and 1. A TFA of 0 implies that no area within that pixel contains the tumor, while a TFA 

of 1 implies that the entire pixel area is the tumor.

3.2. Evaluation of the proposed method using clinically realistic simulation studies

This evaluation study was conducted in the context of segmenting the primary tumor in 

FDG-PET images of patients with lung cancer. The study quantitatively evaluated the 

accuracy of the method, compared the method to existing techniques, studied the sensitivity 

of the method to PVEs, and also studied the performance of the method for different 

clinical-scanner configurations. In each evaluation, clinically realistic simulated PET images 

with known ground-truth tumor properties were generated, as described in section 3.2.1. The 

generated data was split into training and test sets. The proposed method was trained and 

cross-validated using the training set. The performance of the method was then evaluated 

using the independent test set. The evaluation study used clinical images, was retrospective, 

IRB-approved, and HIPAA-compliant with a waiver of informed consent.

3.2.1. Generating realistic simulated PET images—The simulation strategy 

advances on a previously proposed approach to simulate PET images (Leung et al 2020). 

Briefly, in the first step, realistic tumor-tracer distribution was simulated at a very high 

resolution, so that the simulated tumor can be described potentially as a continuous object, 
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equivalent to fs(r) in equation (1), except that r = (x, y) is a 2D vector. Specifically, the 

pixel size in the simulated tumor image was 0.13 mm. This was 1/32 of the resolution in 

the patient image. The shapes, sizes, and intensities of simulated tumors were sampled from 

the corresponding distribution derived from clinical images, so that the simulated tumors had 

variabilities as observed in patient populations. An advancement on the approach proposed 

in Leung et al (2020) was to simulate intra-tumor heterogeneity using a stochastic lumpy 

object model (Rolland and Barrett 1992). Existing clinical PET images containing the lung 

region but with no tumor present were selected as templates to ensure tumor-background 

realism and account for inter-patient variability. The projection data for the simulated tumor 

and background were generated using a PET simulation software (Leung et al 2020). Since 

the simulated tumor had higher resolution compared to the background, we had different 

projection models for the tumor and background separately. The projection data for the 

tumor and background were then added, enabling the impact of image reconstruction on 

the tumor appearance and noise texture to be inherently incorporated (Ma et al 2017). 

Reconstruction was performed using a 2D ordered subset expectation maximization (OSEM) 

algorithm. We have validated the realism of the images simulated using this approach (Liu et 
al 2021). Detailed simulation and reconstruction parameters will be provided for each of the 

studies mentioned below.

3.2.2. Evaluating accuracy of the proposed method and comparing to other 
segmentation methods—We quantitatively compared the proposed method to several 

commonly used semi-automated PET segmentation methods, including 40% SUV-max 

thresholding (Sridhar et al 2014), active-contour-based Snakes (Kass et al 1988), and 

Markov random fields-Gaussian mixture model (Jha et al 2010, Layer et al 2015). The 

method was also compared to a fuzzy segmentation method, namely the fuzzy local 

information C-Means (FLICM) clustering algorithm (Krinidis and Chatzis 2010). Further, 

the method was compared to a U-net-based PET segmentation method (Leung et al 2020). 

The ground truth for training this U-net-based method was defined such that each voxel was 

classified as either tumor or background. For all the semi-automated segmentation methods, 

the tumor location was provided by manually generating a rectangular region of interest 

containing the tumor. In contrast, the proposed and U-net-based method did not require any 

manual input and were fully automated.

To generate the simulated images for this study, following the procedure in section 3.2.1, 

we used 318 2D slices from 32 patients for the background portion of the image. The 

simulated PET system had a spatial resolution of 5 mm full width at half maximum 

(FWHM). The projection data were reconstructed using the OSEM algorithm with 21 

subsets and 2 iterations, similar to the PET reconstruction protocol for the patient images. 

The reconstructed pixel size was 4.07 mm × 4.07 mm. The network was trained and cross-

validated using 9540 images with five-fold cross validation. Evaluation was then performed 

on 2070 completely independent test images, which were generated using 69 2D slices from 

7 patients.

3.2.3. Evaluating sensitivity of the proposed method to PVEs—To conduct this 

evaluation, similar to Le Pogam et al (2011) and Leung et al (2020), we studied the 
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performance of the method as a function of tumor area. For this purpose, all test images 

were grouped based on the range of the true tumor area. Specifically, the tumor areas 

were binned with a bin width of 2 cm2. For each test image, PVEs-affected tumor masks 

were generated by applying a rectangular filter to the ground-truth tumor mask, following 

the strategy in Leung et al (2020). This filter modeled the resolution degradation due to 

the forward projection and the reconstruction process. The tumor area measured using the 

proposed method and the PVEs-affected tumor area in all the test images were obtained 

and divided by the true tumor area. A ratio of unity would indicate that the output was 

insensitive to PVEs. A ratio lower or higher than unity would indicate an underestimation 

or overestimation of the true tumor area, respectively, showing that the segmentation output 

was affected by PVEs (De Bernardi et al 2009).

3.2.4. Evaluating accuracy of the proposed method for different clinical-
scanner configurations—For this purpose, we simulated two PET systems with 

configurations similar to the Siemens Biograph 40 and Biograph Vision scanners. The 

PET images reconstructed from these two scanners had different pixel sizes, as dictated by 

the protocol. The Biograph 40 generated images of 128 × 128 pixels, while the Biograph 

Vision generated images of 192 × 192 pixels. Details of the PET scanner acquisition and 

reconstruction parameters are provided in appendix A (table A2). Clinical PET images of 

patients with lung cancer were obtained from these scanners. Using these clinical scans and 

following the simulation procedure described in section 3.2.1, a total of 5520 and 6120 

simulated PET images were generated for each scanner, respectively. These were used for 

optimizing and training the network. Next, the trained network was tested on 1200 and 1320 

independent simulated images, respectively. The performance of the proposed method was 

also compared to the U-net-based method.

3.3. Evaluation of the proposed method using clinical multi-center PET images

We next evaluated the proposed method using clinical PET images. For this purpose, we 

used de-identified patient data from the ACRIN 6668/RTOG 0235 multi-center clinical 

trial (Machtay et al 2013), (Kinahan et al 2019), available from The Cancer Imaging 

Archive (Clark et al 2013). In this evaluation study, FDG-PET images of 78 patients 

with inoperable stage IIB/III NSCLC were included. Detailed patient demographics with 

clinical characteristics are provided in appendix A (table A3). As in Machtay et al (2013), 

the standard imaging protocol involved recommended dose level from 10 to 20 mCi and 

image acquisition beginning 50–70 min after FDG injection. PET images were acquired 

from ACRIN-qualified clinical scanners (Scheuermann et al 2009), with attenuation, 

scatter, random, normalization, decay, and deadtime correction applied in the reconstruction 

protocol. For all the 78 patients, the PET images were of size 128 × 128, with the pixel size 

ranging from 4.69 to 5.47 mm. Detailed reconstruction parameters are provided in appendix 

A (table A4).

Evaluation of the proposed method would require the knowledge of true TFA maps. For this 

purpose, a board-certified nuclear-medicine physician (J.C.M) with more than 10 years of 

experience in reading PET scans identified the primary tumor of each patient by reviewing 

the PET, CT, and fused PET/CT images along axial, sagittal, and coronal planes using MIM 
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Encore (MIM Software, version 6.9.3). The radiologist was asked to delineate a continuous 

(un-pixelated) boundary for each identified tumor. For each tumor, the radiologist drew 

an external tumor boundary and considered the whole volume within that boundary as 

belonging to the tumor class. A workflow was created in MIM to assist the radiologist with 

this delineation task. The radiologist used a MIM-based edge-detection tool to segment the 

tumor in 3D on the fused PET/CT image, by placing the cursor at the center of the tumor 

and dragging it out until the three orthogonal guiding lines reached the tumor boundary. The 

radiologist then examined and adjusted the segmentation to make it more accurate and also 

account for PVEs. This manual segmentation was continuous and allowed for a voxel to 

consist of a mixture of tumor and normal tissues. The segmentation was saved at a higher 

resolution than that of the PET image.

From this manual segmentation, we obtained a discrete version of the tumor mask, s(r), 

as defined in equation (2), for each 2D PET slice and at a higher resolution than the PET 

image. Specifically, the pixel size in the tumor mask was 1/8 of that in the PET image. This 

resolution was chosen since more fine sampling did not cause changes in the definition of 

the tumor mask. Let this high-resolution manual segmentation be an N-dimensional vector 

(N > M), where we recall that M was the dimension of the PET image. Denote the pixel 

function in this high-resolution space by ϕn
manual (r), following the similar definition in 

equation (4). Define an N-dimensional vector ψ(r) with each element of this vector defined 

as

ψn(r) = 1  if pixel n in the manual segmentation is assigned to tumor class.
0  otherwise. (18)

Denote the pixel area of the PET image by A. We computed the ground-truth TFA within 

each image pixel as follows:

am = 1
A ∑

n = 1

N
ψn(r)∫ d2rϕn

manual (r)ϕm(r), (19)

where the integral computes the fractional area that nth pixel in the manual segmentation 

occupies within the mth pixel of the PET image. The network was then trained to estimate 

the posterior mean of am for the mth image pixel, following the training strategy described in 

section 2.2.

The network was trained and cross-validated using 565 2D slices from 61 out of 78 patients. 

The trained network was then evaluated on 140 completely independent 2D slices from the 

remaining 17 patients. The performance of the proposed method was compared to the other 

segmentation methods, described in section 3.2.2, both quantitatively and qualitatively, using 

the procedure and metrics described in section 3.1.2.
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4. Results

4.1. Evaluation of the proposed method using clinically realistic simulation studies

4.1.1. Evaluating accuracy of the proposed method and comparing to 
other segmentation methods—Quantitatively, the proposed method significantly 

outperformed (p < 0.01) all other considered methods, including the U-net-based method, 

on the basis of the pixel-wise EMSE, normalized area EMSE, DSC, and JSC (figure 2, 

table A5 in appendix A). The proposed method yielded the lowest pixel-wise EMSE, the 

lowest normalized area EMSE of 0.02, the highest DSC of 0.90 (95% CI: 0.90, 0.91), 

and the highest JSC of 0.83 (95% CI: 0.83, 0.84). In addition, all the elements of the 

ensemble-average bias map were close to 0, providing the evidence that the method yielded 

an unbiased Bayesian estimate of the TFA map, as shown in section 2.1. Further, the 

proposed method accurately segmented relatively small tumors, and in particular, yielded 

high DSC of 0.84 for the smallest segmented tumor axial cross-section of 0.88 cm2 in area. 

The diameter of this tumor was approximately twice the FWHM of the system resolution.

We next qualitatively show the performance of the proposed method on the task of 

estimating the TFA map, following the procedure described in section 3.1.2. We first 

illustrate the procedure to obtain the isocontours from the ground-truth and estimated TFA 

maps for a representative tumor (figure 3). We then followed this procedure to obtain 

the isocontours from the TFA maps for different cases. In figure 4, the comparisons 

between the true and estimated isocontours for representative slices at four different TFA 

values are shown. We observe that the proposed method yielded isocontours close to 

the true isocontours at different considered TFA values. In addition, the method yielded 

accurate segmentation for different tumor types, including those with substantial intra-tumor 

heterogeneity as best observed in figures 4(b)–(d).

4.1.2. Evaluating sensitivity of the proposed method to PVEs—Figure 5 shows 

that the method yielded percent area overlap close to 100% for all considered tumor sizes, 

including small tumors with axial cross-section less than 2 cm2. For these smaller tumors, 

the diameter was approximately less than 3 times the FWHM of the system resolution. 

This was unlike the PVEs-affected tumor areas, which, as expected, were significantly 

overestimated for smaller tumors. In addition, the proposed method yielded high DSC and 

JSC for these small tumors, indicating accurate segmentation performance. Further, the 

proposed method significantly outperformed the U-net-based method. Overall, these results 

demonstrate the relative insensitivity of the proposed method to PVEs when segmenting 

relatively small tumors. Further, figure 6 shows that the proposed method consistently 

yielded lower pixel-wise EMSE and lower area EMSE normalized by the true tumor areas, 

compared to the U-net-based method. The proposed method also yielded higher DSC and 

JSC for all tumor sizes.

4.1.3. Evaluating accuracy of the proposed method for different clinical-
scanner configurations—Figure 7 shows the comparison of the segmentation 

accuracy between the proposed and the U-net-based method for two different clinical-

scanner configurations, as described in section 3.2.4. The proposed method significantly 
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outperformed the U-net-based method for both clinical settings, on the basis of pixel-wise 

EMSE, normalized area EMSE, DSC, and JSC.

4.2. Evaluation of the proposed method using clinical multi-center PET images

Quantitatively, the proposed method yielded reliable segmentation with DSC of 0.82 (95% 

CI: 0.78, 0.86). For 16 out of 17 test patients (94.2%), both the proposed and U-net-based 

method yielded correct tumor localization in all 2D slices. When considering the patient 

cases with correct tumor localization, as shown in figure 8 (with details provided in table 

A6 in appendix A), the proposed method significantly outperformed (p < 0.01) all other 

considered methods, yielding the lowest pixel-wise EMSE, the lowest normalized area 

EMSE of 0.14, the highest DSC of 0.87 (95% CI: 0.85, 0.89), and the highest JSC of 0.74 

(95% CI: 0.70, 0.78). In addition, the proposed method accurately segmented relatively 

small tumors and yielded high DSC of 0.77 for the smallest segmented tumor axial cross-

section of 1.30 cm2 in area.

Qualitatively, we observe in figure 9 that the proposed method yielded an accurate match 

to the true isocontours defined at different considered TFA levels, following the strategy 

in section 3.1.2 with illustration in figure 3. Further, figure 10 shows that the method 

accurately segmented tumors with small sizes (a), (e), tumors with convex shape (b), (f), 

tumors surrounded by regions with high uptake (c), (d), (g), (h), and tumors with substantial 

intra-tumor heterogeneity (b), (d), (f), (h).

5. Discussion

In this manuscript, we proposed a Bayesian approach to tissue-fraction estimation 

for segmentation in oncological PET. Conventional segmentation methods are typically 

classification-based, i.e. classifying each voxel in the image as belonging to a certain tissue 

class. Thus, these methods are inherently limited in modeling TFEs. While probabilistic 

techniques can provide estimates of probabilities that each image voxel belongs to a tissue 

class, these probabilistic estimates are unrelated to TFEs. We address this inherent limitation 

by framing the segmentation task as an estimation problem, where the fractional volume 

that the tumor occupies in each voxel is estimated. Through this strategy, we are able to 

explicitly model the TFEs while performing segmentation.

Quantitatively, the proposed method yielded accurate performance on estimation of the 

ground-truth TFA maps and on segmentation tasks, and significantly outperformed the 

considered segmentation methods, yielding the lowest pixel-wise EMSE and normalized 

area EMSE, and the highest DSC and JSC, as evaluated using both clinically realistic 

simulation studies (figure 2) and clinical images from multi-center trial data (figure 8). With 

clinical images, the method yielded a DSC of 0.82 (95% CI: 0.78, 0.86). Qualitatively, 

the method yielded isocontours of close match to the ground-truth isocontours defined 

at different considered TFA values, as we observe from the results in figures 4 and 9. 

Additionally, as shown in figure 3 for a representative tumor with substantial intra-tumor 

heterogeneity, the proposed method correctly estimates the TFA value as unity for pixels 

that are within the tumor boundary but have relatively low intensity. This observation 

was consistent across different heterogeneous tumors, showing the reliable performance 
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of the proposed method even with heterogeneous tumors. We believe that the method is 

reliable in this scenario because the method estimates the TFA by computing the conditional 

expectation of the TFA in that pixel given the entire reconstructed PET image, and not just 

the intensity of that pixel ((equation 11)). All these results demonstrate the ability of the 

method to accurately estimate the TFA within each image pixel and yield accurate tumor 

segmentations.

The isocontours defined based on certain choices of TFA values were shown only to visually 

illustrate the performance of the proposed method on the task of estimating the TFA map. 

The proposed method yields the estimated TFA map as the final output. This allows the 

method to provide the end user, such as a physician or a radiation oncologist, the ability 

to visualize the TFAs within each PET-image pixel, which they can use to make a decision 

based on their clinical use-case scenario.

Further, the proposed method demonstrated the ability to accurately segment relatively small 

tumors. In realistic simulation-based evaluation studies, the method yielded a high DSC 

of 0.84 for the smallest segmented tumor, with an axial cross-section of 0.88 cm2 and a 

diameter approximately twice the FWHM of the system resolution. With clinical images, 

for the smallest tumor axial cross-section of 1.30 cm2, the method yielded a DSC of 0.77. 

This accuracy in segmenting small tumors is especially important for clinical tasks such as 

radiotherapy planning, where an accurate segmentation for small tumors is crucial to protect 

normal organs from radiations.

While the U-net-based method had demonstrated the ability to account for PVEs arising 

due to the low system resolution (Leung et al 2020), the proposed method significantly 

outperformed this method, emphasizing the significance of modeling the TFEs in PET 

segmentation. This need to model TFEs was also demonstrated in the results of evaluation 

using clinically realistic simulation studies, where the performance of the method was 

assessed for different clinical-scanner configurations (section 4.1.3). For example, for the 

higher-resolution Biograph Vision scanner, the TFEs may be more dominant compared to 

system-resolution-related blur. We observed in figure 7 that the proposed method was more 

accurate compared to the U-net-based method for this scanner. Further, for both clinical-

scanner configurations, the proposed method yielded similar performance in estimating the 

TFAs and segmenting the tumor, indicating that the method was relatively insensitive to the 

changes in voxel size.

Our evaluation of the proposed method with clinical images of patients with stage 

IIB/III NSCLC shows that the method, when trained with 61 patients, yielded a reliable 

segmentation performance with DSC of 0.82. When considering patient cases where the 

tumor was localized correctly by the method (94.2%), the DSC further improved to 0.87. 

These results demonstrate the accuracy of the method in clinical settings and motivate 

further clinical evaluation of the method with even larger datasets and with delineations 

defined by multiple readers. Further, the method is general, and the results motivate 

the evaluation of the method for segmenting tumors other than the primary tumors, 

including infiltrating tumors, and segmenting tumors at other stages of the disease, including 

metastasis. In all these cases, the method would require the corresponding definition of 
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the ground-truth TFAs, or a surrogate for the ground truth, such as those from manual 

delineations performed by trained readers.

The results obtained with the proposed method also motivate further evaluation of this 

method for PET-based clinical applications that require tumor delineation such as PET-based 

radiotherapy planning (El Naqa et al 2009, Zaidi et al 2009). Further, the results motivate 

evaluation of this method for the applications of computing PET-based volumetric markers 

of metabolic tumor volume (MTV) and total lesion glycolysis (Chen et al 2012, Ohri et al 
2015), and radiomic features (Zhang et al 2017, Mena et al 2017, Cook et al 2018), each of 

which are being evaluated as prognostic and predictive markers of therapy response. Such 

evaluation can be performed using task-specific evaluation frameworks (Kupinski et al 2006, 

Jha et al 2012, 2017, Barrett et al 2010). In this context, our initial results in both clinically 

realistic simulation (figure 2(b)) and patient studies (figure 8(b)) on estimating the tumor 

area indicate the promise of the proposed method on the task of quantifying MTV more 

accurately than conventional methods.

Our study has some limitations. First, while the theory of the proposed method was 

developed in the context of 3D imaging, our evaluation studies were conducted on a 

per-slice basis. This helped to increase the size of training data and was computationally 

less expensive (Leung et al 2020). However, implementing the method to 3D segmentation 

is relatively straightforward and would require only slight modifications to our network 

architecture, such as the ability to be input 3D images and output 3D tumor-fraction 

volume maps. Thus, the 2D convolutional layers in the network would be replaced by 

3D convolutional layers. The overall network design would remain similar. In fact, in the 

ongoing study on using an extended version of this method for segmenting 3D single-photon 

emission computed tomography (SPECT) images, we have seen that a similar design was 

sufficient to perform 3D segmentation (Moon et al 2020, Liu et al 2021). The results 

shown here and in the SPECT study suggest that the proposed method will yield reliable 

performance for 3D tumor segmentation in PET, and this is an area of further research. 

Additionally, in this study, the proposed method was used to segment the image into only 

two regions. However, the method is general, and in the ongoing study of 3D SPECT 

segmentation, we are applying this method to segment the images into seven different 

regions. Another limitation is that our evaluation studies currently consider cases where only 

the primary tumor is present in an image. However, again, the method could be generalized 

to potentially segment multiple tumors present in the same image slice. Confirming this 

though would require additional evaluation studies. Further, respiratory motion of the lung, 

which may also cause blurring of the tumor mask, was not considered in the proposed 

method. Extending the method to account for lung motion is also an important research 

area. Finally, the method does not incorporate tumor information from CT images while 

segmenting PET images. Incorporating information from CT images can provide a prior 

distribution of the TFAs for the estimation task. Thus, investigating the incorporation of CT 

images into the proposed method is another important research direction.

We evaluated our method in the context of segmenting oncological PET images of patients 

with lung cancer and demonstrated accurate tumor segmentation performance. The method 

is general and thus, these results motivate the evaluation of the method for other cancer 
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types. However, segmenting tumors in the lung region could be easier due to the scarce 

FDG uptake in the lung. In other cancer types, tumor-to-background intensity ratios may be 

lower, which may make the segmentation task challenging. For example, renal tumors often 

have similar FDG uptake as the normal renal cortex. Further, there may be situations where 

the FDG uptake in tumor is lower than the background, such as photon-deficient tumors on 

the liver. Thus, before application to other cancers, corresponding validation studies would 

be needed. Additionally, the method can be extended to segment PET images for other 

applications, such as those in cardiology and neurology. Further, the method can be extended 

to segment images from other imaging modalities that have low resolution, such as SPECT 

and optical imaging, with ongoing efforts in SPECT (Moon et al 2020, Liu et al 2021).

6. Conclusion

In this manuscript, we proposed a Bayesian approach to tissue-fraction estimation for 

oncological PET segmentation. We theoretically demonstrated that the proposed method 

yields a posterior-mean estimate of the tumor-fraction volume for each voxel in the 

PET image. Evaluation of the method using clinically realistic 2D simulation studies 

demonstrated the capability of the method to explicitly model TFEs by accurately 

estimating the TFAs. The method significantly outperformed the considered commonly 

used PET segmentation methods, including a U-net-based method. In addition, the 

method was relatively insensitive to PVEs and demonstrated accurate segmentation 

performance for different clinical-scanner configurations. Further, the proposed method 

demonstrated accurate performance in segmenting clinical images of patients with stage 

IIB/III NSCLC, obtained from the ACRIN 6668/RTOG 0235 multi-center clinical trial 

data. For this dataset, the method yielded DSC of 0.82 (95% CI: 0.78, 0.86). In 

conclusion, this study demonstrates the efficacy of the proposed method for tumor 

segmentation in PET. Open-source codes for the proposed method and supplementary 

data is available at https://github.com/ziping-liu/A-Bayesian-approach-to-tissue-fraction-

estimation-for-oncological-PET-segmentation.git.
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Appendix A

The architecture of the encoder–decoder network designed for the proposed method is 

provided in table A1. Details of the simulated PET systems used in the evaluation of 

proposed method for different clinical-scanner configurations are given in table A2.

Patient demographics with clinical characteristics and reconstruction parameters of clinical 

scanners in the ACRIN 6668/RTOG 0235 multi-center clinical trial are provided in tables 

A3 and A4, respectively.
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Evaluation results of the proposed method using clinically realistic simulation studies and 

clinical images from multi-center clinical trial are given in tables A5 and A6, respectively.

Table A1.

Architecture of the encoder–decoder network.

Layer type Filter size # of filters Stride Input size Output size

Layer 1 Conv. 3 × 3 32 1 × 1 168 × 168 × 1 168 × 168 × 32

Layer 2 Conv. 3 × 3 32 2 × 2 168 × 168 × 32 84 × 84 × 32

Layer 3 Conv. 3 × 3 64 1 × 1 84 × 84 × 32 84 × 84 × 64

Layer 4 Conv. 3 × 3 64 2 × 2 84 × 84 × 64 42 × 42 × 64

Layer 5 Conv. 3 × 3 128 1 × 1 42 × 42 × 64 42 × 42 × 128

Layer 6 Conv. 3 × 3 128 2 × 2 42 × 42 × 128 21 × 21 × 128

Layer 7 Conv. 3 × 3 256 1 × 1 21 × 21 × 128 21 × 21 × 256

Layer 8 Conv. 3 × 3 256 1 × 1 21 × 21 × 256 21 × 21 × 256

Layer 9 Transposed Conv. 3 × 3 128 2 × 2 21 × 21 × 256 42 × 42 × 128

Layer 9 Skip connection (add layer 5) — — — 42 × 42 × 128 42 × 42 × 128

Layer 10 Conv. 3 × 3 128 1 × 1 42 × 42 × 128 42 × 42 × 128

Layer 11 Transposed Conv. 3 × 3 64 2 × 2 42 × 42 × 128 84 × 84 × 64

Layer 11 Skip connection (add layer 3) — — — 84 × 84 × 64 84 × 84 × 64

Layer 12 Conv. 3 × 3 64 1 × 1 84 × 84 × 64 84 × 84 × 64

Layer 13 Transposed Conv. 3 × 3 32 2 × 2 84 × 84 × 64 168 × 168 × 32

Layer 13 Skip connection (add layer 1) — — — 168 × 168 × 32 168 × 168 × 32

Layer 14 Conv. 3 × 3 32 1 × 1 168 × 168 × 32 168 × 168 × 32

Layer 15 Conv. 3 × 3 2 1 × 1 168 × 168 × 32 168 × 168 × 2

Output Softmax — — — 168 × 168 × 2 168 × 168 × 2

Table A2.

Technical acquisition and reconstruction parameters of the PET systems (FOV: field of 

view).

Parameters Biograph 40 Biograph Vision

Transaxial FOV (mm) 550 700

Axial FOV (mm) 216 260

Reconstruction method OSEM OSEM

Subsets 21 21

Iterations 2 2

Crystal pitch (mm) 4.00 3.30

FWHM (mm) @ 1 cm 5.90 3.70

Voxel size (mm3) 4.30 × 4.30 × 4.25 3.65 × 3.65 × 3.27
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Table A3.

Patient demographics with clinical characteristics.

Demographics/clinical characteristics Value Percent

Age: median (range) 67.5 (37–82) —

Sex Male 63% (49/78)

Female 37% (29/78)

Race White 90% (70/78)

African American 5% (4/78)

Asian 2.5% (2/78)

Other/Unknown 2.5% (2/78)

Performance status Fully active 41% (32/78)

Ambulatory 59% (46/78)

Clinical stage IIB 5% (4/78)

IIIA 55% (43/78)

IIIB 40% (30/78)

Chemotherapy regimen Carboplatin/paclitaxel 60% (47/78)

Cisplatin/etoposide 27% (21/78)

Other 12% (9/78)

Not available 1% (1/78)

Radiation dose < 50 Gy 1% (1/78)

50–60 Gy 8% (6/78)

60–70 Gy 58% (45/78)

⩾ 70 Gy 27% (21/78)

Not available 6% (5/78)

Table A4.

Reconstruction parameters of PET/CT systems used in ACRIN 6668/RTOG 0235 multi-

center clinical trial. (DLYD: delayed event subtraction; SING: singles-based correction; 

N/A: not available).

Parameter GE Discovery ST GE Discovery 
STE

GE Discovery 
RX CPS 1023 CPS 1024

Reconstruction 
method OSEM OSEM OSEM OSEM OSEM

Subsets N/A N/A N/A 8 8

Iterations N/A N/A N/A 2 2

Attenuation 
correction CT CT CT CT CT

Scatter correction Convolution 
subtraction

Convolution 
subtraction

Convolution 
subtraction

Model-
based

Model-
based

Randoms correction DLYD/SING SING SING DLYD DLYD

Pixel spacing (mm) 4.69 × 4.69 5.47 × 5.47 5.47 × 5.47 5.31 × 5.31 5.31 × 5.31

5.47 × 5.47
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Parameter GE Discovery ST GE Discovery 
STE

GE Discovery 
RX CPS 1023 CPS 1024

Slice thickness (mm) 3.27 3.27 3.27 2.50 3.38

Table A5.

Evaluation result using clinically realistic simulation studies: performance comparison 

between the proposed method and other considered segmentation methods.

Metrics Proposed U-net-
based

MRF-
GMM Snakes 40%SUVmax FLICM

Pixel-wise 
EMSE 2.04 17.00 25.64 43.63 27.13 30.26

Normalized area 
EMSE 0.02 0.49 4.07 8.55 1.34 1.78

DSC 0.90 (0.90, 
0.91)

0.77 (0.77, 
0.78)

0.73 (0.72, 
0.74)

0.65 (0.64, 
0.66) 0.64 (0.63, 0.65) 0.61 (0.60, 

0.62)

JSC 0.83 (0.83, 
0.84)

0.64 (0.64, 
0.65)

0.60 (0.59, 
0.60)

0.51 (0.50, 
0.52) 0.50 (0.49, 0.51) 0.48 (0.47, 

0.49)

Table A6.

Evaluation result using clinical multi-center PET images: performance comparison between 

the proposed method and other considered segmentation methods on the basis of quantitative 

figures of merit. Results here are reported for patient cases with correct tumor localization 

(94.2%).

Metrics Proposed U-net-
based

MRF-
GMM Snakes 40%SUVmax FLICM

Pixel-wise 
EMSE 4.70 13.33 28.55 13.30 14.23 11.97

Normalized area 
EMSE 0.14 1.05 12.33 0.68 0.62 0.67

DSC
0.87 (0.85, 

0.89)
0.79 (0.77, 

0.82)
0.70 (0.68, 

0.73)
0.78 (0.76, 

0.80) 0.77 (0.75, 0.79) 0.79 (0.78, 
0.80)

JSC 0.74 (0.70, 
0.78)

0.63 (0.59, 
0.67)

0.56 (0.53, 
0.59)

0.65 (0.63, 
0.68) 0.64 (0.62, 0.67) 0.67 (0.65, 

0.69)

Appendix B

In this appendix, we provide the proof of showing that the optimal estimator minimizing 

the cost function in equation (8) is unbiased in a Bayesian sense. To show this, we take the 

average of the estimate v* over the joint distribution of noise realizations f  and true values v:
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v* = ∫ dMv∫ dMf pr(f , v)v*

= ∫ dMvpr(v)∫ dMf pr(f ∣ v)v*

= ∫ dMvpr(v)∫ dMf pr(f ∣ v)∫ dMv′pr v′ ∣ f v′,

(B1)

where in the second step we have expanded pr(f , v) using the conditional probability, and in 

the third step we have inserted equation (12). By using the Bayes’ theorem and changing the 

order of integration, the above equation becomes

v* = ∫ dMf pr(f)∫ dMv′pr v′ ∣ f v′∫ dMvpr(v ∣ f) . (B2)

Since ∫ dMvpr(v ∣ f) = 1, equation (B2) becomes

v* = ∫ dMf pr(f)∫ dMv′pr v′ ∣ f v′ . (B3)

Further, we can simplify the above equation using the law of total expectation and get

v* = ∫ dMv′pr v′ v′ = v . (B4)

Thus, the average value of the estimate is equal to the average true value, so that the 

estimator is unbiased in a Bayesian sense.
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Figure 1. 
Illustration of the developed optimization procedure by constructing an encoder–decoder 

network. Conv.: convolutional layer; BN: batch normalization; ReLU: rectified linear unit.
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Figure 2. 
Evaluation result using clinically realistic simulation studies: (a) the pixel-wise EMSE 

between the true and estimated tumor-fraction areas; (b) the normalized area EMSE 

between the measured and true tumor areas (plot displayed in log scale on y-axis for 

better visualization); (c) the ensemble-average bias of the proposed method; the (d) Dice 

similarity coefficient and (e) Jaccard similarity coefficient between the true and estimated 

segmentations.
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Figure 3. 
Illustration of the procedure to obtain isocontours from the ground-truth TFA map and the 

TFA map estimated by the proposed method.
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Figure 4. 
Evaluation result using clinically realistic simulation studies: comparison between the 

estimated isocontours using the proposed method (green) and the ground-truth isocontours 

(red), defined from set of points at four TFA values (0, 1/3, 2/3, 1).
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Figure 5. 
Evaluation result using clinically realistic simulation studies: (a) qualitative comparison 

between the isocontours generated from the PVEs-affected TFA maps and the isocontours 

generated from the estimated TFA maps using the proposed method. The isocontours were 

defined as the set of points with TFA equal to 0.5. (b) Quantitative evaluation of the 

sensitivity of the proposed method to PVEs. Results obtained using the U-net-based method 

are also shown.
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Figure 6. 
Evaluation result using clinically realistic simulation studies: effects of varying the tumor 

size on the task of (a) estimating the tumor-fraction areas, (b) estimating the whole tumor 

areas, and (c), (d) segmenting the tumor. Plots (a), (b) are displayed in log scale on y-axis for 

better visualization.
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Figure 7. 
Evaluation result using clinically realistic simulation studies: evaluation of the segmentation 

performance for different clinical-scanner configurations on the basis of (a) pixel-wise 

EMSE, (b) normalized area EMSE, (c) Dice similarity coefficient, and (d) Jaccard similarity 

coefficient.
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Figure 8. 
Evaluation result using clinical multi-center PET images: (a) the pixel-wise EMSE between 

the true and estimated tumor-fraction areas; (b) the normalized area EMSE between the 

measured and true tumor areas (plot displayed in log scale on y-axis for better visualization); 

the (c) Dice similarity coefficient and (d) Jaccard similarity coefficient between the true and 

estimated segmentations.
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Figure 9. 
Evaluation result using clinical multi-center PET images: comparison between the estimated 

isocontours using the proposed method (green) and the ground-truth isocontours (red), 

defined as set of points at four TFA values (0, 1/3, 2/3, 1).
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Figure 10. 
Evaluation result using clinical multi-center PET images: qualitative assessment of the 

performance of the proposed method in estimating the TFA maps for small tumors (a), 

(e), for tumors with convex shape (b), (f), for tumors surrounded by regions with high 

uptake (c)–(h), and for tumors with substantial intra-tumor heterogeneity (b), (d), (f), (h). 

Isocontours were defined as set of points at TFA = 0.5.
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