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Abstract
Background  The present study aims to identify immune-related RBPs signature to predict prognosis and therapy response 
in prostate cancer.
Methods  Differentially expressed RBPs were compared and visualized using R packages. Immune-related RBPs were 
selected by Pearson correlation analysis. The prognostic immune-related RBPs were identified using the Kaplan–Meier 
method and LASSO regression. A multivariable Cox regression model was used to construct immune-related RBPs signature.
Results  We constructed a prognostic predictive risk model of prostate cancer containing ten immune-related RBP genes. 
We found that high-risk prostate cancer patients presented poorer prognosis, higher tumor immune cell infiltration, higher 
rates of genomic alterations, and were more sensitive to targeted and immunotherapy than the low-risk group.
Conclusions  The immune-related RBPs’ signature is an independent prognostic marker that could help screen patients with 
advanced prostate cancer who are better suited for targeted and immunotherapy.
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Background

Prostate cancer is the second most common cancer and the 
main leading cause of cancer-related death in humans, with 
almost 1.3 million new cases and 359,000 deaths in 2018[1]. 
Due to the widespread use of prostate-specific antigen (PSA) 
testing and biopsy in the past 30 years,  prostate cancer inci-
dence rates have increased rapidly. PSA-based screening 
indeed decreased mortality. When newly diagnosed with pros-
tate cancer, patients first want to know the risk of progression 
to fatal disease and the benefits of surgical treatment. Urolo-
gists perform risk stratification based on stage, Gleason score 
(GS), serum PSA, imaging, and sometimes genomic profiling. 
Therefore, it is vital to explore new biomarkers for both the 
early detection and prognosis of prostate cancer.f

RNA-binding proteins (RBPs) play a crucial role in post-
transcriptional events. From the conventional view, RBPs 
control gene expression in the form of ribonucleoproteins 
(RNPs). They interact with other proteins or RNAs, regu-
lating RNA polyadenylation, stability, translation, splicing, 
and degradation [2]. Many RBPs bind to their target RNA 
through specific RNA-binding domains (RBDs). Differ-
ent RBDs assemble like puzzle pieces and give RBPs the 
conformational flexibility and adaptability properties. Sci-
entists have presented a census of 1542 human RBPs and 
detailed their essential roles in developmental processes 
[3]. The loss-of-function of RBPs causes specific disease 
phenotypes. For example, ribosomal protein defects may 
cause Shwachman–Diamond syndrome [4]. Many stud-
ies have shown that RBP dysregulation may be related to 
cancer genesis or progression by impacting the expression 
of tumor suppressor proteins or oncoproteins. Some stud-
ies have compared RBP expression between cancer tissue 
and adjacent normal tissue and found some clinically rel-
evant RBPs. RBP regulation mechanisms such as genomic 
alterations [5], posttranscriptional regulation [6], and post-
translational modifications (PTMs) have been revealed [7]. 
However, there are still many questions concerning RBPs in 
tumor biology that need to be explained. Exploring RBPs 
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and their target interaction networks will undoubtedly help  
understand cancer biology better and provide new targets 
for tumor treatment.

The relative genes and molecular mechanisms of prostate 
cancer initiation, progression, and metastasis are still being 
studied globally. Identifying innovative functional genes or 
pathways can help us identify new biomarkers for early diag-
nosis and therapy targets. High-throughput microarray tech-
nology and various online datasets facilitate the screening of 
potentially differentially expressed genes and key players or 
hub genes controlling the deep interaction network. In the 
present study, we downloaded the RNA sequencing (RNA-
Seq) data of all the RBPs and clinical information of patients 
in The Cancer Genome Atlas (TCGA)-prostate adenocarci-
noma (PRAD) dataset. Differentially expressed RBPs were 
compared. Gene Ontology (GO), gene set enrichment analy-
sis (GSEA), and prognostic analysis were then performed for 
downstream analysis. Our study reported the key RBPs of 
prostate cancer using integrated bioinformatics analysis and 
may help discover potential diagnostic markers or prognostic 
indicators for prostate cancer.

Methods

Data collection

We downloaded the RNA-Seq data of all the RBPs and clini-
cal information of 495 patients in the TCGA-PRAD dataset 
(https://​portal.​gdc.​cancer.​gov/) and MSKCC dataset (https://​
www.​mskcc.​org/) as validation prostate cancer cohort. Gene 
alteration data were visualized using R “maftoosl” pack-
age. A list of RBP genes was obtained based on previous 
literature [3, 7, 8]. A list of immune-related genes was 
downloaded from the Immunology Database and Analysis 
Portal (ImmPort) database (https://​www.​immpo​rt.​org) [9]. 
The Human Protein Atlas (HPA) (https://​www.​prote​inatl​as.​
org/) database was used to validate the protein expression of 
ten hub RBPs in normal prostate tissues and prostate cancer 
tissues.

Identification of differentially expressed RBPs 
and immune‑related RBPs

The “edgeR” R package was used to compare mRNA 
expression differences between 55 normal prostate tissues 
and 495 tumor tissues. All the differentially expressed RBPs 
were visualized by the “pheatmap” R package. All immune-
related RBPs genes were screened according to the Pearson 
correlation between differentially expressed RBP genes and 
immune-related genes in 495 samples with the p-value less 
than 0.01 and |correlatin coefficient| more than 0.5.

Visualization and enrichment analyses

To explore the mechanisms that may exist downstream of min-
ing, we performed a functional enrichment analysis of all dif-
ferentially expressed RBPs. We applied the “clusterProfiler” R 
package to implement and visualize the downstream analyses 
of the differentially expressed RBPs, including GO and GSEA.

Kaplan–Meier estimator and Cox regression 
analyses

Before performing cox survival analysis, we screened RBPs 
with Lasso's method to filter out those with prognostic sig-
nificance. The Kaplan–Meier method was used to evaluate 
the effects of RBPs on progression-free survival (PFS) in 
prostate cancer. Then, univariable and multivariable Cox 
survival regression analyses were carried out to identify 
significantly valuable RBPs. We set a p-value of less than 
0.0005 to indicate significance in the Kaplan–Meier estima-
tor analysis.

Tumor microenvironment and infiltrated immune 
cell evaluation

We applied the Estimation of STromal and Immune cells 
in MAlignant Tumor tissues using Expression data (ESTI-
MATE) tool to calculate the presence of stromal/immune 
cells infiltration and prostate cancer purity based on tran-
scriptome data [10]. Three principal scores were generated 
by ESTIMATE algorithm based on the single sample Gene 
Set Enrichment Analysis (ssGSEA), including stromal score 
that captures the presence of stromal cells in tumor tissue, 
immune score that represents the infiltration of immune 
cells in tumor tissue, and estimate score that infers tumor 
purity. Then, we calculate the scores of 28 different immune 
cell types by ssGSEA method [11]. Panels of gene markers 
for each immune cell type were acquired from the previous 
publication [12]. Each ssGSEA enrichment score repre-
sents the degree to which the genes in a particular immune 
cell type are coordinately up- or down-regulated within a 
sample.

Target therapy and immunotherapy response 
prediction

To further elucidate the efficacy of target therapy drugs in 
high- and low-risk patients in prostate cancer, the “pRRo-
phetic” R package was used to calculate IC50 of all 138 
types of target therapy drug in prostate cancer patients 
according to the Genomics of Drug Sensitivity in Cancer 
database. The Cancer Immunome Atlas (TCIA, https://​
tcia.​at/) was applied to evaluate the benefits of response 
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to anti-PD1 and anti-CTLA4 immunotherapy in prostate 
cancer.

Statistics analyses

All data analyses were performed in R v3.6 platform. Wil-
coxon rank-sum tests were applied to compare the mRNA 
expression level of RBPs between normal and tumor tis-
sue. The hub genes of RBPs were filtered by Lasso and 
Cox regression method. The risk score for prostate cancer 
patients was calculated by multiplying each RBP expression 
in the Cox regression model by the corresponding coefficient 
and then summing cumulatively. Differences with p-value 
less than 0.05 were considered statistically significant.

Results

Differentially expressed RBPs between tumor 
and normal prostate tissues

We compared all the mRNA expression levels of the RBPs 
in normal prostate and tumor tissues in the TCGA-PRAD 
dataset and found a total of 110 differentially expressed 
RBPs with a log fold change greater than 1 (Fig. 1A, C). 
At the same time, 13 RBPs were identified as differentially 
expressed with a log fold change greater than 2 (Supplemen-
tary Fig. 1A). Most of these differentially expressed RBPs 
were down-regulated in prostate cancer compared with nor-
mal tissue. However, in prostate cancer patients with differ-
ent GSs, the RBPs did not show  different expression levels 
(Supplementary Fig. 1B).

To elucidate the biological functions of the differen-
tially expressed RBPs between normal and tumor tissues, 
enrichment analyses were carried out. The results showed 
that the differentially expressed RBPs could participate in 
some vital biological processes, such as mRNA processing, 
RNA splicing, and DNA modification (Fig. 1B). The GSEA 
results revealed that MYC target genes, Apical Junction, and 
Epithelial–Mesenchymal transition pathway played essen-
tial roles in the regulatory mechanisms of RBPs in prostate 
cancer (Fig. 1D).

Identification and construction immune‑related 
RBPs’ signature in prostate cancer

From 110 RBP genes that were differentially expressed 
in prostate cancer tumor tissues and normal tissues, we 
screened 71 immune-related RBP genes based on gene cor-
relation analysis. Then, LASSO regression analysis was 
applied to screen 15 RPB genes (Fig. 2 A, B). Then, using 
univariable and multivariable Cox survival analyses, we 
identified ten immune-related RBPs to construct the model 

(Fig.  2C, Supplementary Table  1). The Concordance 
index of ten immune-related RBP genes model is 0.75, 
which is relatively high. Concretely, the risk scores for 
the ten immune-related RBP gene models were calculated 
as follows: risk score = (− 0.159 × EXPCSRP1) + (0.403 
× EXPTFRC) + (0.417 × EXPZC3HAV1L) + (−  0.712 
* EXPOGN) + (−  1.06 ×  EXPTPT1) + (0.055 ×  
EXPRNASE2) + (0.252 ×  EXPDHX58)  + (0.591 ×  
EXPDDX17) + (0.1 ×  EXPTLR8) + (0.452 × EXPTMSB4X). 
To further assess the discrimination of the model and its 
ability to predict the prognosis of prostate cancer patients, 
we compared the prognostic differences between high- and 
low-risk patients. Survival analysis shows shorter PFS in 
high-risk prostate cancer patients compared to low-risk 
group (p < 0.001, Fig. 2D). The AUC of PFS at one year, 
two years, and three years was 0.846, 0.753, and 0.744, 
respectively (Fig. 2E). Moreover, compared with conven-
tional biomarkers of prostate cancer, such as prostate-
specific antigen (PSA) and androgen receptor (AR), the 
performance of RBPs risk model shows better predictive 
accuracy in MSKCC prostate cancer cohort (c-index 0.8, 
p < 0.001). In addition, we compared the expression differ-
ences of these ten immune-related RBP genes in high- and 
low-risk groups (Fig. 3). CSRP1, OGN, and TPT1 were 
significantly high- expressed in the low-risk group, while 
other RBPs were remarkably upregulated in the high-risk 
group (p < 0.001). To validate the differential expression 
of ten immune-related RBPs in protein level, we obtained 
and compared the immunohistochemistry figures of these 
hub RBPs from HPA database (Fig. 4). Furthermore, we 
found that these differential expressed RBPs between nor-
mal and tumor prostate tissues were consistent with our 
former RNA expression analysis.

Establishment and validation of the predictive 
nomogram

To improve the prognostic power of patients with prostate can-
cer by combining their risk scores with other important clin-
icopathological features, we first compared the AUC of risk 
scores with other clinicopathological features and found that 
the AUC values of risk scores for the ten immune-related RBP 
gene prediction models (AUC = 0.846) were much higher than 
those of other clinicopathological markers (Fig. 5A). Then, 
we constructed a nomogram of PFS including risk scores and 
confirmed that the model has good stability by consistency 
analysis (Fig. 5B, C). To further validate the stability of our 
constructed model, we compared the ten immune-related RBP 
gene prediction models with four other published prediction 
models based on the TCGA prostate cancer database and found 
that our model had the best 1-year AUC to performance, which 
fully illustrated the better predictive ability of our signature 
(Supplementary Table 2).
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TME characteristics in different immune‑related 
RBPs signatures

We found that patients in the high-risk group had slightly 
higher immune scores (p < 0.05) compared to the low-risk 
group, and then, stromal scores and tumor purity did not 

differ significantly between the two groups (Fig. 6A). Fur-
thermore, immune cell infiltrations were accessed in high- 
and low-risk groups to demonstrate the immune landscape 
(Fig. 6B). The high-risk group presented higher abundance 
of activated CD4 T cell, activated dendritic cell, central 
memory CD8 T cell, gamma delta T cell, immature B cell, 
memory B cell, regulatory T cell, and type 2 T helper cell. 

Fig. 1   Differentially expressed RBPs and enrichment analysis in 
Prostate cancer. A Heatmap of differentially expressed RBPs genes. 
The rows include 110 differentially expressed RBPs with a log fold 
change greater than 1. The columns include normal and cancer tis-
sue samples. The colors indicate RBPs’ expression, which increased 

from a relatively low level (blue) to a relatively high level (red). B 
GO analysis of the differentially expressed RBPs. C Volcano plot of 
differentially expressed RBPs genes. RBPs, RNA-binding proteins. D 
GSEA analysis of the 110 proteins. GO gene ontology, GSEA gene 
set enrichment analysis
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Fig. 2   Construction and evaluation of an immune-related RBPs sig-
nature in prostate cancer. A The results of feature selection in LASSO 
regression. B The relationship between coefficients and log lambda 
in LASSO regression. C Multivariable Cox regression analysis of ten 
immune-related RBPs genes. D Kaplan–Meier curves of recurrence-
free survival between high-risk and low-risk patients by risk score 

in TCGA. E Time-dependent ROC curves in TCGA. F Concord-
ance index curves compared RBPs model with AR and PSA model in 
MSKCC cohort. RBPs RNA-binding proteins, LASSO least absolute 
shrinkage, and selection operator, TCGA​ The Cancer Genome Atlas, 
MSKCC Memorial Sloan Kettering Cancer Center
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Fig. 3   The expression levels of ten immune-related RBPs in the high- 
and low-risk groups in the TCGA cohort. A CSRP1. B TFRC. C 
ZC3HAV1L. D OGN. E TPT1. F RNASE2. G DHX58. H DDX17. I 

TLR8. J TMSB4X. RBPs RNA-binding proteins, TCGA​ The Cancer 
Genome Atlas
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In contrast, the low-risk group had a more infiltration of 
CD56bright natural killer cell, effector memory CD4 T cell, 
immature dendritic cell, mast cell, and type 17 T helper cell 
(Fig. 6C).

Enrichment analysis and mutation landscape 
in different immune‑related RBPs signatures

The GSEA results showed that the top six pathways of 
androgen response, cholesterol homeostasis, fatty acid 
metabolism, IL2-STAT5 signaling, peroxisome, and 
α-TNF signaling were highly enriched in the high-risk 
group (Fig. 7A). Moreover, we describe the distribution 
of the top 30 genes with mutation frequency in the high- 
and low-risk groups (Fig. 7B, C). The frequency of muta-
tions in prostate cancer was significantly higher in the 

high-risk group than in the low-risk group (80.66% vs. 
46.98%). In the high- and low-risk groups, the top three 
genes with the highest mutation frequencies were SPOP 
(15% vs. 5%), TP53 (15% vs. 6%), and TTN (13% vs. 
4%). Notably, the frequency of mutations in FOXA1, a 
critical transcription factor in prostate cancer, was signifi-
cantly higher in the high-risk group (7% vs. 2%).

Drug sensitivities and immunotherapy responses 
of different immune‑related RBPs signatures

To better explore the implications of our constructed risk 
model for guiding prostate cancer treatment, we evaluated 
the differences in the efficacy of various target therapy agents 
and immunotherapy in high- and low-risk groups. The results 
showed that 21 targeted therapies were more effective in 

Fig. 4   The immunohistochem-
istry figures of ten hub RBPs 
from HPA database
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treating patients with high-risk prostate cancer (Fig. 8, Sup-
plementary Table 3). Interestingly, we found that conventional 
chemotherapy regimens based on  cisplatin or docetaxel are 
more suitable for low-risk patients (Fig. 9A, B). Furthermore, 
the immunophenoscore (IPS) of PD1- and CTLA4-based 
immunotherapy was higher in the low-risk group, suggesting 
that the risk model helps  screen prostate cancer patients more 
suitable for immunotherapy and improves the efficacy of com-
prehensive treatment for advanced prostate cancer (Fig. 9C, 
D).

Discussion

The exact role of RBPs in the tumorigenesis and progression 
of prostate cancer is still unclear and needs further investi-
gation. However, some RBPs are abnormally expressed in 
cancer tissues compared with normal prostate tissues, imply-
ing their potential role in tumorigenesis and progression. In 
the present study, we downloaded RNA-Seq profiling data 
from TCGA and found 110 differentially expressed RBPs 

Fig. 5   Construction of predictive nomogram combined the immune-
related RBP signature with clinicopathologic features of prostate 
cancer. A ROC curves of the immune-related RBP signature and 

clinicopathological features. B Nomogram validation. C Predictive 
nomogram of RBP model risk score with critical clinicopathologic 
characteristics in prostate cancer
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Fig. 6   Tumor microenviron-
ment in high- and low-risk 
groups. A Comparison of the 
immune score, stromal score, 
and ESTIMATE score between 
high-risk and low-risk groups. 
B The immune landscapes C 
immune cell infiltration
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Fig. 7   Gene set enrichment 
analysis and genomic mutations 
analysis. A Gene set enrichment 
analysis results in high-risk and 
low-risk groups. The top 30 
most frequently mutated genes 
in high-risk (B) and low-risk 
(C) groups
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Fig. 8   Drug sensitivity comparison in high- and low- risk groups of 21 kinds target therapy drug in prostate cancer
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that served as candidates for downstream data analysis. We 
performed GO analysis to acquire the biological functions 
of these differentially expressed RBPs.

First, regarding biological processes, these differential 
RBPs mainly participate in mRNA processing, RNA splic-
ing, DNA modification, and DNA methylation or demeth-
ylation. Some of them are also related to base conversion 
or substitution editing and cytidine metabolic processes. 
Next, these RBPs are involved in cellular components, 
such as RNP granules or cytoplasmic RNP granules. RNP 
granules are responsible for the storage, transportation, 
and degradation of their target transcripts by physically 
separating or connecting mRNAs with proteins. Thus, they 
have a far-reaching influence on the regulation of onco-
gene or tumor suppressor gene expression [13]. Finally, 
regarding molecular functions, most of the RBPs are 
involved in mRNA binding, including 3´-UTR binding 
and AU-rich region binding. The GSEA results show that 
together, these prostate cancer-related differential RBPs 
play a vital part in the ribosome pathway. Some ribosomal 
proteins are related to prostate cancer, and those upregu-
lated proteins may serve as potential biomarkers [14].

In this study, we constructed risk prediction models for 
ten RBP genes by machine learning methods and univari-
ate and multifactor Cox regression. CSRP1, cysteine, and 
glycine-rich protein 1 are a specific biomarker for various 
tumors including prostate cancer, breast cancer, and colon 
cancer [15–17]. TFRC induces iron death in tumor cells in 

neuroblastoma through upregulation of iron ion transport 
by transferrin receptors on cell membranes, which regu-
lates tumor cell growth [18]. YTHDF1 as an m6A reader 
can recognize the m6A methylation site in the mRNA of 
TFRC, which in turn stabilizes the mRNA level of TFRC 
and promotes the protein translation of TFRC, thus upregu-
lating the ferritin content and promoting iron metabolism in 
tumor cells [19]. Meanwhile, TFRC has a role in predicting 
tumor prognosis and as a therapeutic target in bladder and 
lung cancers [20, 21]. ZC3HAV1L is also named Zinc fin-
ger CCCH-type antiviral protein 1-like. The function and 
role of ZC3HAV1L in tumors are unknown, and this study 
confirms for the first time the prognostic value of this gene 
in prostate cancer. OGN could induce bone formation by 
interacting with TGF and is highly associated with prog-
nosis in multitype cancer [22–25]. The transcription factor 
NFIC can bind to the promoter region of OGN and promote 
the transcriptional activity of OGN, which in turn inhibits 
the NF-κB signaling pathway and suppresses the ability of 
proliferation in bladder cancer [26]. OGN expression was 
reduced in paired breast cancer samples compared to nor-
mal tissue. Downregulated OGN expression was associated 
with higher pathological grade, more aggressive tumor 
subtypes, and poor overall survival in breast cancer. Pre-
vious study has also found that OGN expression reverses 
EMT through inhibition of the PI3K/Akt/mTOR pathway 
[27]. The ability of OGN highly expressed in tumor tissues 
to increase the infiltration of T lymphocytes in the tumor 

Fig. 9   Chemotherapy and 
immunotherapy responses in 
high- and low-risk groups of 
prostate cancer. A Cisplatin. B 
Docetaxel. C. IPS of CTLA4 
and PD1 negative. D IPS of 
CTLA4 negative and PD1 posi-
tive. IPS immunophenoscore
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microenvironment by inhibiting VEGF also suggests that a 
similar role may exist in prostate cancer [28].

In prostate cancer, although TPT1 can be used as a bio-
marker to distinguish CRPC from HSPC, the prediction 
model including TPT1 constructed by Jun et al., is generally 
effective in predicting prostate cancer prognosis and needs 
to be improved [29]. Moreover, the immune-related RBP 
prediction model constructed in our study including TPT1 
is better. Like prostate cancer, RNASE2 was able to partici-
pate in the construction of genetic risk prediction models in 
various tumors, indicating a significant correlation between 
RNASE2 and tumor development and prognosis [30, 31]. 
DHX58, also named Probable ATP-dependent RNA heli-
case DHX58, regulates DDX58/RIG-I and IFIH1/MDA5-
mediated antiviral signaling. DHX58 was mainly involved 
in innate immune responses to some RNA viruses and some 
DNA viruses such as SARS-CoV-2 coronavirus and the bac-
terial pathogen Listeria monocytogenes [32]. Meanwhile, 
DHX58 in dendritic cells is crucial for activating the body's 
immune anti-tumor response after tumor radiotherapy [33]. 
As an RNA helicase, DDX17 can deconvolute RNA by bind-
ing and hydrolyzing ATP to change the tertiary structure 
of RNA and is involved in various cellular processes such 
as immature mRNA splicing, ribosomal RNA and micro-
RNA synthesis, and transcriptional regulation [34–37]. 
TLR8, Toll-like receptor 8, plays an important role in innate 
and acquired immunity as an intranuclear receptor. TLR8 
induces the body's immune response by recognizing spe-
cific RNA degradation products of pathogenic microbial 
origin [38–40]. The above literature review shows that the 
ten immune-related RBP genes included in our constructed 
prediction model are indeed significant in tumor or prostate 
cancer.

We found that the high- and low-risk groups of prostate 
cancer patients distinguished by this risk prediction model 
had significantly different genomic characteristics and tumor 
immune microenvironment. The frequency of genetic muta-
tions was significantly higher in the high-risk group than in 
the low-risk group. The type and proportion of immune cell 
infiltration were also different in the high-risk group than in 
the low-risk group. To better evaluate the predictive model 
for the treatment of advanced prostate cancer, we evaluated 
138 different targeted therapies and ultimately identified 21 
drugs that were more suitable for patients in the high-risk 
group and 72 drugs that were more suitable for patients in 
the low-risk group.

The limitation of our study is obvious since our results 
were based on pure bioinformatics analysis. Future molecu-
lar biological experiments need to be performed to provide 
more evidence for our conclusion.

Conclusions

The risk prediction model we constructed for ten immune-
related RBP genes was able to significantly distinguish 
between the high-risk and low-risk groups of prostate can-
cer. We also found that patients in the high-risk group had a 
poor prognosis and were more sensitive to targeted therapy 
and immunotherapy.
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