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detection in Shanghai Holstein cattle
population identified genes related to
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Abstract

Background: Over several decades, a wide range of natural and artificial selection events in response to subtropical
environments, intensive pasture and intensive feedlot systems have greatly changed the customary behaviour,
appearance, and important economic traits of Shanghai Holstein cattle. In particular, the longevity of the Shanghai
Holstein cattle population is generally short, approximately the 2nd to 3rd lactation. In this study, two
complementary approaches, integrated haplotype score (iHS) and runs of homozygosity (ROH), were applied for the
detection of selection signatures within the genome using genotyping by genome-reduced sequence data from
1092 cows.

Results: In total, 101 significant iHS genomic regions containing selection signatures encompassing a total of 256
candidate genes were detected. There were 27 significant |iHS| genomic regions with a mean |iHS| score > 2. The
average number of ROH per individual was 42.15 ± 25.47, with an average size of 2.95 Mb. The length of 78 % of the
detected ROH was within the range of 1–2 MB and 2–4 MB, and 99% were shorter than 8 Mb. A total of 168 genes
were detected in 18 ROH islands (top 1 %) across 16 autosomes, in which each SNP showed a percentage of
occurrence > 30%. There were 160 and 167 genes associated with the 52 candidate regions within health-related QTL
intervals and 59 candidate regions within reproduction-related QTL intervals, respectively. Annotation of the regions
harbouring clustered |iHS| signals and candidate regions for ROH revealed a panel of interesting candidate genes
associated with adaptation and economic traits, such as IL22RA1, CALHM3, ITGA9, NDUFB3, RGS3, SOD2, SNRPA1,
ST3GAL4, ALAD, EXOSC10, and MASP2. In a further step, a total of 1472 SNPs in 256 genes were matched with 352 cis-
eQTLs in 21 tissues and 27 trans-eQTLs in 6 tissues. For SNPs located in candidate regions for ROH, a total of 108 cis-
eQTLs in 13 tissues and 4 trans-eQTLs were found for 1092 SNPs. Eighty-one eGenes were significantly expressed in at
least one tissue relevant to a trait (P value < 0.05) and matched the 256 genes detected by iHS. For the 168 significant
genes detected by ROH, 47 gene-tissue pairs were significantly associated with at least one of the 37 traits.
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Conclusions: We provide a comprehensive overview of selection signatures in Shanghai Holstein cattle genomes by
combining iHS and ROH. Our study provides a list of genes associated with immunity, reproduction and adaptation.
For functional annotation, the cGTEx resource was used to interpret SNP-trait associations. The results may facilitate the
identification of genes relevant to important economic traits and can help us better understand the biological
processes and mechanisms affected by strong ongoing natural or artificial selection in livestock populations.
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Background
There are more than 85,000 cows and nearly 200 proven
bulls in the Shanghai Holstein cattle population, which
not only guarantees the basic needs of milk in Shanghai
but also provides more than 3 million doses of sperm
per year nationwide. Shanghai Province has long taken
the leading position and become one of the largest
breeding centres in China.
Holstein cattle have been extensively imported to

China, mostly from Canada, the USA, France and north-
ern Europe, since the 1940 s for use in crossbreeding
aimed at improving the productivity of Chinese native
cattle by combining the environmental adaptation fea-
tures of the Chinese cattle with the high milk yield po-
tential of foreign cattle [1]. The Holstein breed is
categorized as a heat-sensitive cattle breed, and the most
appropriate temperature for production is 5 ~ 20 degrees
Celsius [2]. However, the Shanghai Holstein cattle popu-
lation is exposed to long, hot and humid summers with
abundant rain and temperatures of over 35 degrees Cel-
sius. It is worth noting that Mao et al. (2015) found that
the longevity of the Shanghai Holstein cattle population
is generally short, approximately the 2nd to 3rd lactation
[3], whereas the maximum milk yield is obtained in the
fourth lactation in most Holstein populations [4].
Over several decades, a wide range of natural selection

and artificial selection events in response to subtropical
environments and intensive pasture and feedlot systems
have greatly changed the customary behaviour, appear-
ance, and important economic traits of Shanghai Holstein
cattle. According to the theory of population genetics, the
functional genes subject to selection will reveal character-
istic patterns due to selection preference, and these pat-
terns are known as “selective signatures” [5].
Recently, with the development and the prevalent ap-

plication of high-throughput and cost-effective genotyp-
ing techniques, the power of detecting selection
signatures at the molecular genetic level has experienced
a major breakthrough. Compared to high-throughput
single nucleotide polymorphism (SNP) chip technology,
which has made it possible to uncover traces of positive
selection and detect candidate genes based on linkage
disequilibrium, next-generation sequencing (NGS) has
been widely adopted by several platforms and has de-
creased the cost of DNA sequencing, which allows the

systematic identification of selection signatures at a
higher effective resolution and sensitivity [5]. Further-
more, studies based on sequence data do not suffer from
SNP ascertainment bias, as do studies that are per-
formed using commercially available SNP assays [6, 7].
To date, various analytical methods have been proposed

to detect different kinds of selection signatures. A consid-
erable amount of research has been conducted to detect
selection signatures in selected populations during the last
decade by using various statistical approaches, including
Tajima’s D [8], extended haplotype homozygosity (EHH)
statistic [9], integrated Haplotype Score (iHS) [10], cross-
population Extended Haplotype Homozygosity (XPEHH)
and cross-population composite likelihood ratio (XP-CLR)
[11]. EHH is a popular approach that is known for reliably
detecting ongoing selection and is a long haplotype-based
test. In populations under positive selection, the mutation
frequency will rapidly increase. Therefore, regions with ex-
tremely strong and long-range LD with high haplotype al-
lele frequencies can be used to detect recent selection by
EHH [12]. The iHS approach was developed by Voight
et al. (2006); it is based on EHH and can overcome the in-
fluence of heterogeneous recombination rates across the
genome. iHS can distinguish the ancestral and derived al-
leles of a polymorphic site, as a much larger EHH score
for the derived allele than for the ancestral allele is ex-
pected to represent positive selection. iHS is usually sensi-
tive for detecting positive selection signatures for
intermediate frequency variants [13].
Signatures of selection could be observed in genome-

wide ROH scans in animals. It was suggested that gen-
etic diversity is reduced under selective pressure; thus,
ancestral genetic variations are often transformed into
long stretches of consecutive homozygous genotypes
across the genome [14]. The size and frequency of ROH
vary according to population diversity and selection
pressure. Analyses of ROH allow the identification of
genomic regions with possible selection signatures for
breed [15]. There are many studies with ROH for the
identification of selection signatures in cattle [16, 17],
sheep [18, 19], horses [20, 21] and pigs [22, 23]. To im-
prove the power and spatial resolution for identifying se-
lection signatures, combining multiple methods into
composite tests is useful for mapping the comprehensive
footprint of selection across the genome.
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Genome-scale bioinformatics annotations are available
from a number of sources, including the cattle
Genotype-Tissue Expression (cGTEx, http://cgtex.roslin.
ed.ac.uk/) atlas, which represents the most comprehen-
sive reference resource of the cattle transcriptome to
date and is based on 11,642 RNA sequences from pub-
licly available datasets representing over 100 cattle tis-
sues. This database provides a detailed characterization
of the genetic control of gene regulation across 24 major
tissues and provides novel biological insights into the
molecular regulatory mechanisms underpinning agro-
nomic traits in cattle by conducting a transcriptome-
wide association study (TWAS) linking gene expression
in different tissues with 43 economically important traits
[24]. Mapping expression quantitative trait loci (eQTLs)
has provided great supporting evidence for important in-
sights into the regulatory pathways involved in disease,
which contain genetic variants associated with gene ex-
pression. We defined genes whose expression levels were
significantly associated with SNPs as eGenes. eGenes in
a disease-relevant tissue provide insight into gene regu-
lation and are genes whose expression levels are associ-
ated with genetic variants. cGTEx data were used to
estimate the variation in gene expression regulation be-
tween tissues by comparison with our data. If the select-
ive signatures or the candidate genes identified are also
eQTLs or eGenes, then there is strong evidence to fur-
ther study these variants or genes.
However, little information is available from the scien-

tific literature about the selection signatures and popula-
tion structure of the Shanghai Holstein population.
Therefore, the aims of this study were to 1, investigate
the recent selective signatures based on next-generation
sequencing data in the Shanghai Holstein population in
response to local climatic conditions and artificial selec-
tion for economical purposes, and 2, explore the genes
related to biological processes and traits of interest to
identify important functional candidate genes undergo-
ing positive selection in Shanghai Holstein cattle.

Results
After filtration, we utilized 164,312 high-quality SNPs
for analysis of the genomic selection signature in our
study. These SNPs covered 2.51 Gb of the cattle genome
(UMD3.1), with an average distance of 15.56 kb between
adjacent SNPs. The average distance between the adja-
cent SNPs across autosomes ranged from 7.43 kb on
BTA25 to 22.49 kb on BTA6, and the standard deviation
of the adjacent SNPs ranged from 18.86 on BTA25 to
46.70 on BTA1, which is presented in Additional file 1:
Table S1. An overview of the relationships among these
animals from 24 farms is presented in Additional file 1:
Figure S1. We further estimated the inbreeding coeffi-
cient based on the genomic information for all Shanghai

Holstein cattle. The average inbreeding coefficients esti-
mated using GCTA (-ibc command) are shown in Add-
itional file 1: Table S2. The inbreeding coefficient
reflects the deviations in the observed inbreeding from
the expected values in the current population, and the
average inbreeding coefficient of this population was
0.36.

Detection of selection signature using iHS approach
The iHS test was used to detect strong footprints of re-
cent selection within the Shanghai Holstein cattle popu-
lation. We obtained a total of 62,140 SNPs with
estimated |iHS| scores (Additional file 2). The
chromosome-wide scans of iHS for the studied popula-
tion are shown in Fig. 1A. The plots show clear evidence
of selective forces in different regions of the genome. A
total of 9304 regions were detected based on the single
site |iHS| score. Based on the top 1 % of values, 101 can-
didate regions were identified. In total, 256 candidate
genes overlapped with these significant iHS genomic re-
gions according to the UMD 3.1 assembly (Additional
file 3). Among the 101 candidate regions, there were 27
significant |iHS| genomic regions with a mean |iHS|
score > 2, and 84 genes were located in these regions in-
cluding ITGA9, MASP2, SLC39A11, SSTR2, TGFBR1,
TSPEAR, LRRC3, SNRPA1, PFKL, RGS3, SRSF10,
SUPT3H, FUCA1, CSPP1, IL22RA1, and AOX2. (Table 1).
The region located on BTA6 (BTA6:78,000,000–
78,500,000) had the highest |iHS| score (2.942), and no
candidate gene overlapped with this region.

Genomic distribution of runs of homozygosity
In total, 44,509 ROH among 1092 samples were identi-
fied. The average number of ROH per individual was
42.15 ± 25.47, ranging from 1 to 121 ROH. The genomic
distribution of ROH was nonuniform both in length and
position across chromosomes. The average length of
ROH was 2.95 Mb across all autosomes, but the total
length of ROH per individual varied considerably from
1.51 Mb to 430 Mb. The longest segment was 18.82 Mb
in length (381 SNPs) and was found on BTA6. Figure 2
shows the percentage of bovine chromosomes covered
by ROH and the highest coverage by ROH was observed
on BTA11 (7.8 % of chromosomal length), whereas the
lowest was on BTA9 (2.24 % of chromosomal length).
The number of ROH per chromosome was greatest for
BTA11 (2976 segments) and lowest for BTA9 (800 seg-
ments) (Fig. 2).
In this study, we classified ROH into four different cat-

egories according to their physical length: 1 to < 2 Mb, 2
to < 4 Mb, 4 to < 8 Mb and > 8 Mb. Descriptive statistics
of each length category are given in Table 2. Our results
show that 99 % of the ROH were shorter than 8 Mb.
The total length of ROH for the Shanghai Holstein cattle
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population was composed mostly of shorter segments
(1–2 Mb and 2–4 Mb). These segments accounted for
approximately 78 % of all ROH detected, which contrib-
uted to 0.79 % and 2.16 % of the cumulative length of
ROH. ROH (1–2 Mb) were more abundant throughout
the genome than ROH (4–8 Mb); however, the propor-
tion of the genome covered by ROH (1–2 Mb) was
much smaller than that covered by ROH (4–8 Mb).
To identify the genomic regions that were most com-

monly associated with ROH in all individuals, the top
1 % of SNPs observed in the ROH was selected, and the
adjacent SNPs over this threshold were merged into gen-
omic regions corresponding to ROH islands [25]. In the
ROH islands detected here, each SNP showed a percent-
age of occurrence > 30 % (occurring in over 30 % of the
samples) (Fig. 1B). This approach resulted in the identifi-
cation of 18 ROH islands across 16 autosomes, with one
on BTA1, 3, 4, 6, 9, 10, 11, 12, 13, 19, 20, 23, 25 and 29

and two on BTA2 and 21, and the length of these re-
gions ranged from 679 kb on BTA11 to 2.79 Mb on
BTA12 (Table 3). Among the described ROH islands,
the strongest pattern was observed on BTA13:
39,852,457–41,196,648, with an overlapping ROH region
present in 50 % of the samples.
Within all of the ROH islands reported here, a rea-

sonable number of genes (n = 168) was observed
(Table 3). We found that some SNPs in ROHs were
located in intergenic regions, and a few genes were
detected in some identified regions. For example, the
length of region BTA25:15,526,462–16,728,810 was
1.2 Mb, but only contained 2 annotated genes. Al-
though the length of the region on BTA2 was 793 kb,
no gene was detected. The possible reasons were ei-
ther that the annotation of the cow reference genome
is still incomplete or that the genomic region was po-
sitioned in a noncoding region.

Fig. 1 A Genome-wide distribution of selection signatures detected by iHS. The dashed line represents the threshold levels of top 1 % (|iHS| = 2);
B Manhattan plot of incidence of each SNP in the ROH across individuals. The dashed line represents the top 1 % threshold
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Overlap between selection metrics
In total, 101 and 18 candidate regions were detected by
the iHS approach and ROH estimation, respectively. All
the candidate regions were spread across 27 of the 29
autosomal chromosomes of the bovine genome. Coinci-
dent signatures identified by both methods were found
on chromosomes BTA12, BTA13, BTA21 and BTA23
(Table 4). There were 11 common genes revealed by
both iHS and ROH analyses: MTIF3, UBD, OR12D2,
KIZ, LNX2, USP12, POLR1D, GTF3A, GSX1, RPL21, and
MIR12033. The majority of the 11 common genes de-
tected by both methods were related to heat stress,
reproduction, immunity, and mastitis.

Functional analyses of the candidate genes
A total of 256 and 168 genes were fully or partially
contained within each selected region, as detected
by iHS and ROH, and were subjected to GO anno-
tation and KEGG pathway enrichment to further
analyze their biological functions. Multiple categor-
ies were statistically significant (P value < 0.05).
All the genes from the iHS method were grouped

into several different annotation clusters, of which 18

GO terms and 5 KEGG pathways were significantly
enriched (Additional file 1: Table S3). The enriched
annotation terms from iHS analysis were associated
with different molecular functions, biological pro-
cesses, and cellular components. A gene list analysis
revealed a high percentage of genes involved in intra-
cellular part (GO:0044424), organic substance meta-
bolic process (GO:0071704), cellular metabolic
process (GO:0044237), primary metabolic process
(GO:0044238), nitrogen compound metabolic process
(GO:0006807) and membrane-bounded organelle (GO:
0043227) and organelle part (GO:0044422). Similarly,
the 5 KEGG pathways included vitamin B6 metabol-
ism, folate biosynthesis, tryptophan metabolism, meta-
bolic pathways and valine, leucine and isoleucine
degradation.
All the genes detected in all ROH were grouped

into several different annotation clusters (Additional
file 1: Table S4). 16 GO terms (2 molecular func-
tions, 6 biological processes, and 8 cellular compo-
nents) and 1 KEGG pathway were enriched.
Biological terms were further labelled based on the
following categories: positive regulation of sequence-

Fig. 2 Number of ROH longer than 1 Mb per chromosome (bars) and average percentage of each chromosome covered by ROH (red line)

Table 2 Descriptive statistics of runs of homozygosity (ROH) number and length (in Mb) by ROH length class (ROH 1–2 Mb, ROH 2–
4 Mb, ROH 4–8 Mb, ROH > 8 Mb and total)

Class No. of ROH Percent (%) Mean length Standard deviation Genome coverage (%)

ROH1 − 2 Mb 13,992 31.00 1.54 0.28 0.79

ROH2 − 4 Mb 20,915 47.00 2.84 0.57 2.16

ROH4 − 8 Mb 9279 21.00 5.08 0.89 1.72

ROH> 8 Mb 323 1.00 9.41 1.37 0.11

Total 44,509 100 2.95 1.49 4.8
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specific DNA binding transcription factor activity
(GO:0051091), cell growth (GO:0016049), macromol-
ecule localization (GO:0033036), developmental
growth (GO:0048589), regulation of molecular func-
tion (GO:0065009), and primary metabolic process
(GO:0044238).

QTLs based on identified regions
QTLs and selection signatures in the same location indi-
cate a precise relationship between the selection for traits
and the effects of variation at a locus [12]. Thus, we inves-
tigated the candidate regions overlapping QTL regions ex-
tracted from the cattle QTLdb. Overall, 89 genomic

Table 3 List of genomic regions of extended homozygosity detected in Shanghai Holstein cattle population

Chr Start (bp) End (bp) Length (bp) SNPs No. of Genes Candidate Genes

13 39,852,457 41,196,648 1,344,191 120 3 KIZ、NKX2-2、XRN2

2 135,983,904 137,968,708 1,984,804 134 17 ALPL、CAMK2N1、CDA、CDC42、CELA3B、DDOST、
ECE1、HP1BP3、KIF17、LOC515042、LOC789612、
MIR2284U、MUL1、PINK1、RAP1GAP、SH2D5、ZBTB40

12 30,773,910 33,562,640 2,788,730 117 21 ATP8A2、CDX2、FLT1、GPR12、GSX1、GTF3A、
LNX2、MIR2285O-2、MIR2300A、MIR2300B、MTIF3、
PDX1、POLR1D、POMP、RNF6、RPL21、SHISA2、
SLC46A3、URAD、USP12、WASF3

21 31,435,280 33,563,201 2,127,921 81 17 COMMD4、CSPG4、ETFA、HMG20A、IMP3、ISL2、MAN2C1、
MIR631、NEIL1、ODF3L1、PSTPIP1、PTPN9、RCN2、
SNUPN、SNX33、TMEM266、TSPAN3

10 18,844,833 21,194,474 2,349,641 98 43 ADCY4、ADPGK、ARIH1、BBS4、CBLN3、CELF6、
CHMP4A、CIDEB、DCAF11、DHRS1、FITM1、GMPR2、
HEXA、INSYN1、IPO4、IRF9、KHNYN、LTB4R、
LTB4R2、MDP1、MIR11989、MIR12031、NEDD8、NFATC4、
NOP9、NPTN、NR2E3、NYNRIN、PARP6、PKM、
PSME1、PSME2、RABGGTA、REC8、RIPK3、
RNF31、SDR39U1、TBC1D21、TGM1、
THSD4、TINF2、TM9SF1、TSSK4

23 27,948,371 29,204,475 1,256,104 85 4 MIR12033、OR12D2、TRIM27、UBD

3 123,888,189 124,870,683 982,494 92 10 ASB1、ESPNL、HES6、ILKAP、MIR2902、
PER2、SCLY、TRAF3IP1、TWIST2、UBE2F

4 98,248,048 100,380,507 2,132,459 95 5 CHCHD3、EXOC4、MIR2423、MIR320B、PLXNA4

25 15,526,462 16,728,810 1,202,348 91 2 ABCC1、ABCC6

6 107,592,661 108,740,633 1,147,972 58 3 EVC、EVC2、MSX1

21 61,326,146 64,094,599 2,768,453 103 6 AK7、ATG2B、BDKRB1、GSKIP、PAPOLA、VRK1

29 30,857,817 31,924,963 1,067,146 105 8 DCPS、FAM118B、FOXRED1、KIRREL3、RPUSD4、
SRPRA、ST3GAL4、TIRAP

1 144,773,205 145,465,387 692,182 49 4 C2CD2、RIPK4、TMPRSS2、ZBTB21

9 99,670,895 101,121,625 1,450,730 85 10 ACAT2、AGPAT4、AIRN、IGF2R、MRPL18、PLG、
SLC22A1、SOD2、TCP1、WTAP

19 62,790,612 63,501,716 711,104 48 8 ABCA9、AMZ2、ARSG、MGC134105、PRKAR1A、
RGS9、SLC16A6、WIPI1

11 25,226,313 25,905,694 679,381 29 2 PKDCC、MIR12030

20 780,499 2,012,217 1,231,718 70 5 FOXI1、KCNMB1、LCP2、SLIT3、SPDL1

2 139,926,793 140,719,836 793,043 69 0 ——

Table 4 List of overlapped genomic regions detected by iHS and ROH

iHS candidate regions ROH candidate regions Genes in regions

Chr Start (bp) End (bp) Mean |iHS| Value Chr Start (bp) End (bp) Length SNPs

12 32,000,000 32,500,000 1.65 12 30,773,910 33,562,640 2,788,730 117 MTIF3、LNX2、USP12、POLR1D、
GTF3A、GSX1、RPL21

13 40,000,000 40,500,000 2.67 13 39,852,457 41,196,648 1,344,191 120 KIZ

21 63,000,000 63,500,000 2.00 21 61,326,146 64,094,599 2,768,453 103 ——

23 28,000,000 28,500,000 2.18 23 27,948,371 29,204,475 1,256,104 85 MIR12033、OR12D2、UBD
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regions for 101 candidate regions detected by the iHS
method overlapped with QTLs. We compared the signifi-
cant regions with the QTL regions associated with health
and reproduction. As shown in Additional file 4, 52 sig-
nificant regions were located within the health-related
QTLs, and 59 significant regions were located within the
reproduction-related QTLs. The candidate regions de-
tected in the present study contain several QTLs for im-
portant health-related traits in cattle, including somatic
cell score (SCS), heat tolerance, and clinical mastitis.
Twenty-six candidate regions overlapped with the somatic
cell score, 7 candidate regions overlapped with clinical
mastitis, and 4 candidate regions overlapped with heat tol-
erance. Simultaneously, 21 candidate regions overlapped
with calving ease, 18 candidate regions overlapped with
inseminations per conception, 15 candidate regions over-
lapped with stillbirth, and 15 candidate regions overlapped
with interval to first oestrus after calving.
Furthermore, 160 and 167 genes were associated

with the 52 and 59 candidate regions within the

health-related and reproduction-related QTL intervals,
respectively. The results also showed that a significant
region might overlap with several QTLs associated
with different traits. Among 89 candidate regions,
35.96 % (32 regions) were related to both health traits
and reproductive traits. In total, 104 genes were de-
tected in these 32 candidate regions and included 28
genes overlapping with the most significant genomic
regions (mean |iHS| score > 2). These genes were
CNR2, UBD, TSPEAR, UBE2G2, SUPT3H, FUCA1,
IFNLR1, IL22RA1, PNRC2, SRSF10, EXOSC10,
MASP2, SRM, TARDBP, MIR12033, OR12D2,
CFAP410, FAM207A, ITGB2, LRRC3, PFKL, PTTG1IP,
SUMO3, KRTAP10-2, KRTAP10-8, KRTAP12-2,
LOC617218 and LOC780781. The 28 genes were used
to determine whether other literature reported the
function of these genes. Sixteen genes overlapped
with candidate regions with a mean |iHS| >2 and
were only related to health QTLs; 23 genes over-
lapped with candidate regions with a mean |iHS| >2

Table 5 Health-related and Reproduction-related genomic region with mean |iHS| value >2 and associated genes

QTL Chr Start (bp) End (bp) Mean |iHS|
Value

Genes

Health-related 2 92,500,000 93,000,000 2.68 AOX1、AOX2、AOX4、BZW1、CLK1、NIF3L1、
ORC2、PPIL3、SGO2

2 92,750,000 93,250,000 2.27 AOX2、AOX4、BZW1、CFLAR、CLK1、NDUFB3、
NIF3L1、PPIL3、ORC2

22 11,000,000 11,500,000 2.24 CTDSPL、ITGA9、MIR2367、MIR26A-1、MIR26C、VILL

8 107,500,000 108,000,000 2.22 ALAD、BSPRY、C8H9orf43、CDC26、HDHD3、
POLE3、PRPF4、RNF183、RGS3、SLC31A1、SLC31A2

18 10,500,000 11,000,000 2.00 COX4I1、EMC8、IRF8

Reproduction-related 6 78,000,000 78,500,000 2.94 ——

13 34,000,000 34,500,000 2.88 SVIL、ZNF438

13 40,000,000 40,500,000 2.67 KIZ

21 28,750,000 29,250,000 2.66 SNRPA1、TARS3、TM2D3

14 30,750,000 31,250,000 2.60 ARFGEF1、COPS5、CSPP1、PPP1R42、SGK3

1 113,500,000 114,000,000 2.20 GMPS

8 66,500,000 67,000,000 2.14 ALG2、COL15A1、SEC61B、TGFBR1

27 1,000,000 1,500,000 2.10 CLN8、MIR10169、MYOM2

6 78,250,000 78,750,000 2.08 ——

19 59,750,000 60,250,000 2.06 SLC39A11、SSTR2

14 58,500,000 59,000,000 2.03 ——

Health-related and Reproduction-related 2 134,250,000 134,750,000 2.37 CNR2、FUCA1、IFNLR1、IL22RA1、PNRC2、SRSF10

26 2,750,000 3,250,000 2.29 ——

16 39,250,000 39,750,000 2.24 EXOSC10、MASP2、SRM、TARDBP

23 28,000,000 28,500,000 2.18 MIR12033、OR12D2、UBD

1 147,000,000 147,500,000 2.15 CFAP410、FAM207A、ITGB2、KRTAP10-2、KRTAP10-8、
KRTAP12-2、LOC617218、LOC780781、LRRC3、
PFKL、PTTG1IP、SUMO3、TSPEAR、UBE2G2

23 19,000,000 19,500,000 2.02 SUPT3H
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and were only related to reproductive QTLs (Table 5).
In particular, 12 genes overlapped with 4 candidate
regions related to heat tolerance QTLs, ADCK1,
GOLGA4, ITGA9, ECI2, PRPF4B, PXDC1, ADIPOR2,
ALKBH1, DCP1B, SLIRP, SNW1, and SPTLC2.

Using cGTEx in multiple tissues to discover eQTLs and
eGenes
We uploaded the Ensembl IDs of the 256 and 168 genes
detected by the iHS method (the top 1 %) and ROH ana-
lysis (top 1 %), respectively, to cGTEx. All cis-eQTLs and
trans-eQTLs associated with the expression of these
genes were then downloaded from the website. UCSC
liftOver tools were used to convert 1549 SNPs located in
256 candidate genes to ARS-UCD1.2 for consistency. A
total of 1472 SNPs were matched with 352 cis-eQTLs in
21 tissues and 27 trans-eQTLs in 6 tissues based on the
256 candidate genes (Additional file 5: Table S5; Add-
itional file 5: Table S6;). For SNPs located in candidate
regions for ROH, a total of 108 cis-eQTLs in 13 tissues
and 4 trans-eQTLs in blood were found among 1092
SNPs converted from 1101 SNPs (Additional file 5:
Table S7; Additional file 5: Table S8). Eighty-one eGenes
were significantly expressed in at least one tissue and re-
lated to at least one trait (P value < 0.05) by matching
the 256 genes detected by iHS with the 496 gene-tissue
pairs significantly associated with the 43 economically
important traits from cGTEx (Table 6). Thirteen gene-
tissue pairs (KCTD18-Adipose, SPATS2L-Blood, AOX1-
Adipose, UNC13B-Blood, COQ2-Adipose, FAM228B-
Liver, ALDH6A1-Liver, STOML2-Mammary, GTF3A-
Embryo, CHRND-Intramuscular_fat, PPP1R42-Intramus-
cular_fat, TTC22-Blood, and VPS35L-Liver) were
significantly associated with more than 5 traits; 7 gene-
tissue pairs (FAM135B-uterus, FAM228B-liver,
CFAP410-liver, GTF3A-embryo, CHTF8-liver, MINDY4-
hypothalamus, and VAPB-macrophage) were associated
with milk production traits; 5 gene-tissue pairs
(RPS6KA4-Uterus, INMT- Liver, MINDY4-Hypothal-
amus, and GGCT-Milk_cell) were associated with
productive life; ITGB2-Muscle, NCEH1-Blood and
ABCD4-Blood were significantly associated with SCS;
TARS3-Adipose and USP12-Intramuscular _fat were sig-
nificantly associated with mastitis; 30 gene-tissue pairs
were significantly associated with reproduction traits;
FAM228B-Liver was associated with heifer conception
rate, cow conception rate, daughter calving ease and
daughter pregnancy rate; and VPS35L- Liver was

significantly associated with sire still birth, sire calving
ease, age at first calving and daughter still birth (Table 7;
Additional file 5: Table S9). For the 168 significant genes
detected by ROH analysis, 47 gene-tissue pairs were sig-
nificantly associated with at least one of the 37 traits
(Table 6). Seven gene-tissue pairs (ETFA-liver, C2CD2-
embryo, GTF3A-embryo, TRIM27-macrophage, KIRR
EL3-adipose, GSKIP-muscle, and FLT1-macrophage)
were significantly associated with more than 5 traits; 6
gene-tissue pairs were associated with milk production
traits; C2CD2-embryo was associated with milk yield,
protein yield, protein percentage, and fat yield; 22 gene-
tissue pairs were associated with reproductive traits; and
7 gene-tissue pairs (ETFA-Liver, ATP8A2-Liver, CIDEB-
Blood, LTB4R-Blood, PTPN9-Muscle, MAN2C1-Blood,
and USP12-Intramuscular_fat) were significantly associ-
ated with mastitis (Table 8; Additional file 5: Table S10).
These eQTLs and eGenes provide great supporting evi-
dence for our genome-wide selection signatures and im-
portant insights into the regulatory pathways involved in
many diseases.

Discussion
In this study, we aimed to investigate genomic evidence
of selection signatures in Shanghai Holstein cattle using
GGRS data. Two complementary approaches were ap-
plied for the detection of selection signatures in the
studied population, i.e., the ROH and iHS methods,
which should boost the accuracy of detection and elim-
inate unknown bias [26–28]. Overall, 101 and 18 candi-
date regions under selection were detected by the iHS
approach and ROH estimation, respectively. These sig-
natures provided insight into the genes contributing to
the diverse phenotypes of these animals. Our results re-
vealed a series of well-known and novel genes, such as
FAM135B, C2CD2, GOLGA4, ARFGEF1, CTDSPL, TSPE
AR, SUPT3H, ATAD2B, KLHL29, FKBP2, STOML2 and
ECI2, which are related to milk production; IL22RA1,
CALHM3, SNW1, PLXNA4, ABCA9, DDOST, ATP1B3,
ALDH6A1 and ADCK1, which are associated with clin-
ical mastitis; SCS, ITGA9, FKBP1B, ACAT2, AMZ2,
MRPL18, HDHD3, GNAS, VSX2, PLAC8, PXDC1,
REG3G, DNAJB5 and PRDX5, which are involved in
body temperature during heat stress; NDUFB3, RGS3,
UBD, DIS3L2, NRXN2, PEX14, SPTLC2, AQP1, and
PTPN9, which are involved in adaptation, especially cli-
mate adaptation, such as adaptation to tropical humidity
and harsh environments; SOD2, SNRPA1, TGFBR1,

Table 6 The number of cis-eQTLs, trans-eQTLs and gene-tissue pairs discovered by using cGTEx

Methods Genes SNPs cis-eQTLs tissues trans-eQTLs tissues Gene-tissue pairs

iHS 256 1549 352 21 27 6 81

ROH 168 1101 108 13 4 1 47
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SLC39A11, PDE5A, HPSE and PRPF4B, which are in-
volved in reproduction events, ST3GAL4, ALAD, NOD1
and ITGB2, which are involved in immune response,
and EXOSC10, MASP2 and CSPP1, which are candidate
genes for longevity. To further understand the functional
consequences of genetic variants on the cattle transcrip-
tome, we explored the candidate genes on the cGTEx
website.
According to the PCA based on genotypes, there was

no obvious structure in the Shanghai Holstein cattle
population. Kim et al. (2015) reported that modern dairy
cattle populations are composed of both inbred (F ~ 0.1)
and outbred structures because of the intensive use of a
small number of influential males selected for artificial
insemination (AI) and mated to cows that probably orig-
inated from common ancestors born more than three
generations ago, which creates complex pedigree struc-
tures consisting of multiple inbreeding loops [17].
The SNPs used to detect regions associated with

ROH were obtained from GGRS, a high-throughput
reduced representation sequencing method used in
our study. Similar to the genotyping-by-sequencing
approach, this method has been designed for higher
coverage (5×), which makes it more appropriate for
outbred animals; thus, it is suitable for the Shanghai
Holstein cattle population. However, the distribution
of markers is usually uneven. In the past few years,
several studies have explored the selection signatures
of cattle, pigs, sheep and horses by next-generation
sequencing. However, the detection of ROH is sensi-
tive to the parameters or thresholds used for sequen-
cing and pruning SNPs [29, 30]. The genotyping error
in NGS data has an impact on ROH detection.
Therefore, we allowed one heterozygous SNP per
ROH to avoid losing particularly long ROH because
of a single genotyping error; thus, the accuracy of de-
tection in the NGS data was shown to be high after
correction for bias by hidden errors in the genotyping
data [21, 31]. For the impact of the density of SNPs,

Table 7 The gene-tissue pairs significantly associated with
economically important traits from cGTEx (for iHS)

Traits Gene-tissue pairs

Milk yield C2CD2-Embryo、GSKIP-Muscle、SNX33-
Embryo

Protein yield C2CD2-Embryo、GSKIP-Muscle、SNX33-
Embryo、KIRREL3-Adipose、
HES6-Intramuscular_fat

Protein percentage C2CD2-Embryo、GTF3A-Embryo

Fat yield C2CD2-Embryo、KIRREL3-Adipose

Mastitis ETFA-Liver、ATP8A2-Liver、CIDEB-Blood、
LTB4R-Blood、PTPN9-Muscle、
MAN2C1-Blood、USP12-Intramuscular_fat

Sire conception rate TRIM27-Macrophage、GSKIP-Muscle、
RNF31-Milk_cell、ADCY4-Ileum、
ATG2B-Liver、SDR39U1-Intramuscular_fat

Sire calving ease RGS9-Blood、ARSG-Blood

Heifer conception rate RPUSD4-Adipose

Age at first calving CHMP4A-Blood、DCAF11-Blood、
HP1BP3-Lymph_node、WIPI1-Jejunum

Days to first breeding
after calving

GTF3A-Embryo、MGC134105-Liver

Daughter stillbirth FLT1-Macrophage、RGS9-Blood、TCP1-Blood

Cow conception rate EXOC4-Blood、MGC134105-Liver

Daughter pregnancy
rate

TRIM27-Macrophage、EXOC4-Blood、
CHMP4A-Blood、MGC134105-Liver、
CAMK2N1-Blood

Daughter calving ease PRKAR1A-Blood、RGS9-Blood、
CBLN3-Adipose、KCNMB1-Blood

Under depth ETFA-Liver、FLT1-Macrophage

Udder cleft ETFA-Liver、TRIM27-Macrophage、
FLT1-Macrophage

Teat length PTPN9-Muscle

Strength GTF3A-Embryo、FLT1-Macrophage、
KIRREL3-Adipose、PRKAR1A-Blood

Stature GTF3A-Embryo

Rump width KIRREL3-Adipose、ST3GAL4-Blood、
ARSG-Blood、FOXRED1-Blood

Rump angle GTF3A-Embryo、GSKIP-Muscle

Retained placenta C2CD2-Embryo、CHMP4A-Blood、
MDP1-Blood、TMPRSS2-Mammary

Rear udder height ETFA-Liver、TRIM27-Macrophage、
PAPOLA-Monocytes

Rear teat placemen ETFA-Liver、KHNYN-Intramuscular_fat、
PKM-Macrophage

Rear legs rear view SRPRA-Blood、ALPL-Blood

Net merit C2CD2-Embryo、TRIM27-Macrophage

Metritis EXOC4-Blood、CIDEB-Blood、
LTB4R-Blood、ABCC6-Liver

Ketosis FLT1-Macrophage、ATP8A2-Liver、
LTB4R-Blood、DCAF11-Blood、
RNF31-Milk_cell、FITM1-Blood、MRPL18-Blood

Hypocalcemia ATP8A2-Liver

Front teat placement ETFA-Liver、CIDEB-Blood

Table 7 The gene-tissue pairs significantly associated with
economically important traits from cGTEx (for iHS) (Continued)

Traits Gene-tissue pairs

Fore udder attachment ETFA-Liver、GSKIP-Muscle、
ST3GAL4-Blood、DCPS-Liver

Feet and legs SRPRA-Blood

Displaced abomasum ATP8A2-Liver、EXOC4-Blood、
HP1BP3-Lymph_node

Dairy form TRIM27-Macrophage、ACAT2-Liver

Body depth KIRREL3-Adipose、PRKAR1A-Blood

Foot angle GTF3A-Embryo、SRPRA-Blood

Overall conformation
score

ETFA-Liver、SRPRA-Blood、ST3GAL4-Blood
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many studies have reported that more signatures of
selection were able to be identified with NGS data
than with SNP microarray data. NGS data facilitate
the detection selection signatures at higher resolution
than SNP array data. Moreover, NGS-based detection
of ROH is more sensitive for short ROH that are typ-
ically missed using SNP array-derived genotypes [32].

Table 8 The gene-tissue pairs significantly associated with
economically important traits from cGTEx (for ROH)
Traits Gene-tissue pairs

Milk yield FAM135B-Uterus

Protein yield FAM228B-Liver、CFAP410-Liver

Protein percentage FAM228B-Liver、CHTF8-Liver、GTF3A-Liver

Fat percent MINDY4-Hypothalamus、VAPB-Macrophage

Productive lift ALDH6A1-Liver、RPS6KA4-Uterus、
INMT-Liver、MINDY4-Hypothalamus、
GGCT-Milk_cell

Somatic cell score ITGB2-Muscle、NCEH1-Blood、ABCD4-Blood

mastitis TARS3-Adipose、USP12-Intramuscular_fat

Sire stillbirth VPS35L-Liver、EIF4E2-Intramuscular_fat、
PDE6D-Mammary

Sire conception rate NOD1-Adipose

Sire calving ease VPS35L-Liver、SLC31A1-Liver、FUCA1-Blood

Heifer conception rate COQ2-Adipose、FAM228B-Liver、
TP53I3-Adipose、FKBP1B-Oviduct、
LIN54-Lung

Age at first calving UNC13B-Blood、ALDH6A1-Liver、
PPP1R42-Intramuscular_fat、VPS35L-Liver、
PRG4-Liver、UBE2G2-Intramuscular_fat

Days to first breeding after
calving

KCTD18-Adipose、SPATS2L-Blood、
AOX1-Adipose、GTF3A-Embryo、
PRPF4B-Embryo、SNRPA1-Adipose

Daughter stillbirth UNC13B-Blood、VPS35L-Liver、
ATAD2B-Skin_fibroblast、CELF4-Ileum、

LRRC3-Liver、SYNDIG1L-Adipose

Cow conception rate KCTD18-Adipose、FAM228B-Liver、
TTC22-Blood、SRM-Mammary、
PFKL-Intramuscular_fat

Daughter pregnancy rate KCTD18-Adipose、SPATS2L-Blood、
AOX1-Adipose、FAM228B-Liver、
SRM-Mammary

Daughter calving ease FAM228B-Liver、PPP1R42-Intramuscular_fat、
RAB22A-Milk_cell

Under depth ALDH6A1-Liver

Udder cleft KCTD18-Adipose、SPATS2L-Blood、
AOX1-Adipose、UNC13B-Blood、
COQ2-Adipose、ALDH6A1-Liver、
CHRND-Intramuscular_fat、TP53I3-Adipose、
IQCK-Adipose、MACROD1-Liver、
MOCS1-Adipose、PNRC2-Blood、
HPSE-Blood、CRHR2-Jejunum、GARS1-Embryo

Teat length UNC13B-Blood、EXOSC10-Mammary

strength COQ2-Adipose、GTF3A-Embryo、
PPP1R42-Intramuscular_fat、TTC22-Blood、
ADIPOR2-Hypothalamus、
FAM228A-Hypothalamus、UBXN2A-Blood、
CSPP1-Blood、MOCS1-Adipose、
WNT11-Macrophage

stature STOML2-Mammary、GTF3A-Embryo、
ADIPOR2-Hypothalamus、
FAM228A-Hypothalamus、UBXN2A-Blood、
IQCK-Adipose、ATAD2B-Skin_fibroblast、
UTP25-Adipose、ALG2-Adipose、LIN52-Liver

Rump width COQ2-Adipose、PPP1R42-Intramuscular_fat、
TTC22-Blood、ADIPOR2-Hypothalamus、
FAM228A-Hypothalamus、UBXN2A-Blood、
CSPP1-Blood、MOCS1-Adipose、PNRC2-Blood、
SGK3-Adipose、WNT11-Macrophage

Rump angle FAM228B-Liver、GTF3A-Embryo、ISCA2-Lung、
MACROD1-Liver

Retained placenta UNC13B-Blood、VPS35L-Liver、SLC31A1-Liver、

Table 8 The gene-tissue pairs significantly associated with
economically important traits from cGTEx (for ROH) (Continued)
Traits Gene-tissue pairs

SRM-Mammary、WNT11-Macrophage、
SSTR2-Blood、FMNL2-Blood

Rear udder height KCTD18-Adipose、SPATS2L-Blood、
AOX1-Adipose、UNC13B-Blood、
COQ2-Adipose、CHRND-Intramuscular_fat、
SGK3-Adipose

Rear teat placemen KCTD18-Adipose、SPATS2L-Blood、
AOX1-Adipose、UNC13B-Blood、
FAM228B-Liver、ALDH6A1-Liver、
CHRND-Intramuscular_fat、ISCA2-Lung、
PNRC2-Blood

Rear legs side view STOML2-Mammary、ISCA2-Lung、
MACROD1-Liver、SLC31A1-Liver、
PROX2-Liver、RAB22A-Milk_cell、GK5-Liver

Rear legs rear view UNC13B-Blood、STOML2-Mammary、
TP53I3-Adipose、IFNLR1-Blood、IL22RA1-Rumen

Net merit RPS6KA4-Uterus、TTC4-Blood

metritis KCTD18-Adipose、SPATS2L-Blood、
AOX1-Adipose、CHTF8-Liver、INMT-Liver

ketosis KCTD18-Adipose、SPATS2L-Blood、
TTC22-Blood、CHTF8-Liver、RPS6KA4-Uterus、
TMOD2-Mammary、TRMT112-Lymph_node

hypocalcemia KCTD18-Adipose、NCEH1-Blood、
SSTR2-Blood、UTP25-Adipose、
VAPB-Macrophage、AOX2-Mammary、
ORC2-Liver

Front teat placement KCTD18-Adipose、SPATS2L-Blood、
AOX1-Adipose、CHRND-Intramuscular_fat、
ISCA2-Lung、TSPEAR-Oviduct

Fore udder attachment KCTD18-Adipose、SPATS2L-Blood、
AOX1-Adipose、IQCK-Adipose

Feet and legs COQ2-Adipose、STOML2-Mammary、
TP53I3-Adipose、HPSE-Blood、IFNLR1-Blood、
IL22RA1-Rumen

Displaced abomasum PRG4-Liver

Dairy form ALDH6A1-Liver、STOML2-Mammary、
CHRND-Intramuscular_fat、CFAP410-Liver、
ITGB2-Muscle、PROX2-Liver

Cow livability STOML2-Mammary、PFKL-Intramuscular_fat、
BSND-Uterus、FERMT3-Salivary_gland、
HAS3-Blood

Body depth KCTD18-Adipose、COQ2-Adipose、
ALDH6A1-Liver、PPP1R42-Intramuscular_fat、
TTC22-Blood、ADIPOR2-Hypothalamus、
FAM228A-Hypothalamus、UBXN2A-Blood、
CSPP1-Blood、SGK3-Adipose

Foot angle SPATS2L-Blood、AOX1-Adipose、
STOML2-Mammary、GTF3A-Embryo、
NPEPL1-Macrophage、PLS1-Liver

Overall conformation score KCTD18-Adipose、SPATS2L-Blood、
AOX1-Adipose、UNC13B-Blood、COQ2-Adipose、
KLHL29-Mammary
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In cattle, a low-density SNP microarray tends to over-
estimate the number of ROH that are shorter than
4 Mb, but using a dense chip leads to an underesti-
mation of the number of long ROH ( � 8 Mb) [33,
34]. SNPs that are genotyped with low coverage can
be used for detecting ROH. Compared with SNP
array data, SNP genotyping with low coverage (4× on
average) can achieve comparable detection of ROH by
allowing a high number of heterozygous calls in the
sliding window along the genome [29, 35].
In the past few years, many studies have been per-

formed in the fields of horse, human and cattle gen-
etics by the iHS method and the detection of ROH
within populations [36–38]. Saravanan et al. (2021)
implemented two complementary approaches viz. iHS
and ROH to detect selection signatures for intra-
population analyses in Indian cattle [28]. Pemberton
et al. (2012) reported that the frequencies of ROH
across the genome are correlated with signals of re-
cent positive selection [39]. iHS is a measure of posi-
tive selection based on haplotype patterns. The
positive correlation between the frequency of ROH
and iHS was confirmed, supporting a role for natural
selection in shaping genomic patterns of ROH. Re-
gions with homozygosity in the long haplotypes were
created by recent selection events. Short and inter-
mediate ROH created by older selection events either
have weaker iHS signals or are partially diluted by
the presence of short and intermediate ROH gener-
ated by other forces. Zhang et al. (2015) reported that
short ROH were selected and derived from ancient
haplotypes that became fixed in populations, while
long ROH were the result of more recent inbreeding
events based on next-generation sequencing data in
cattle populations [38]. Nolte et al. (2019) took genes
falling into ROH islands and overlapping with iHS
signals as input for enrichment analyses and found
several pathways when the selection signatures were
investigated in 942 stallions [36].
In this study, we focused mainly on detecting the foot-

prints of selection left in the Shanghai Holstein cattle
population after the process of introducing cattle from
Canada, the USA, France and northern Europe. Despite
their common relevance to Holstein breeding, the
current breeding focus of these countries differs with re-
spect to local climate conditions and national strategic
directions. In addition, historically, the Shanghai
Holstein cattle population underwent different breeding
policies regarding pure and cross breeding and different
primary foci of utilization. Shanghai Holstein has more
than 100 years of history and is the offspring of Chinese
native cattle and introduced breeds from Canada, the
USA, France and northern Europe [40]. The Shanghai
Holstein population is under high susceptibility to

diseases such as mastitis, abortions and still births due
to the harsh environment in Shanghai. Mastitis can de-
crease the yield and quality of milk in cattle. To reduce
the environmental stress put on animals, exploring the
mechanism of adaptation of livestock breeds to local cli-
matic conditions for contemporary agriculture is import-
ant. Thus, the production of animals adapted to local
climatic conditions can increase and be more environ-
mentally friendly [41]. The method used here is an ef-
fective way to identify the genes relevant to important
economic traits by identifying selection signatures within
the genome. This method can also help us better under-
stand the biological processes and mechanisms affected
by ongoing strong artificial selection in livestock popula-
tions [31].
We found a total of 101 candidate regions, and 27 can-

didate regions representing strong signals (mean |iHS|
score > 2) were identified using the iHS method. Fifty-
nine significant regions containing 167 genes were lo-
cated within the reproduction-related QTLs. Shanghai
Holstein cows have only 2–3 parities over their entire
life. The high proportion of candidate regions overlap-
ping with reproduction-related QTLs indicated that this
population was subjected to selection on reproductive
traits, which was consistent with the fact that Shanghai
Holstein has reproductive disorders [3]. Moreover, we
found that 53 genes overlapped with candidate regions
located within health-related or reproduction-related
QTLs. Among these 53 genes, SGO2, PPIL3, ORC2,
NIF3L1, CLK1, BZW1, AOX1, AOX2, ALAD, BSPRY,
CDC26, CFLAR, COX4I1, CTDSPL, EMC8, HDHD3,
IRF8, ITGA9, MIR2367, MIR26A-1, MIR26C, NDUFB3,
POLE3, PRPF4, RGS3, RNF183, SLC31A1, SLC31A2,
VILL and C8H9orf43 overlapped with health-related
QTLs. ITGA9 is a heat shock response protein that is as-
sociated with body temperature during heat stress; it
was discovered by conducting a genome-wide associ-
ation study in a cattle population [42]. COX4I1 has been
shown to be associated with protein yield in Jersey cattle
[43]. NDUFB3 was identified to be involved in Mediter-
ranean climate adaptations and morphology and stature
[44], which supports the hypothesis that climate strongly
influences body size because a smaller size is positively
correlated with heat and aridity [45]. Taye et al. (2017)
found that ALAD contributed to superior heat tolerance
mechanisms in an African cattle population [46]. ALAD
was also related to the inflammatory response [47]. IRF8
is present within footprints of selection for Iraqi breeds
and is linked to the acquired immune response to proto-
zoan and bacterial infections [48]. Ben-Jemaa et al.
(2020) provided an outline of potential selection signa-
tures in North African cattle, and IRF8 was found [49].
RGS3 is an essential factor for the proper growth and
development of calves [50]. Previous studies showed that
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RGS3 was suggested to be a prognostic biomarker for
small yellow follicle development in chickens. In rats,
RGS3 had negative regulatory functions in signalling. In
humans, this gene was involved in GnRH responsiveness
in granular cells [51]. In goats, CTDSPL was positively
correlated with milk yield. Moreover, miR-26b and
CTDSPL were significantly correlated with milk fat con-
tent [52]. TGFBR1, SVIL, SNRPA1, SSTR2, SLC39A11,
GMPS, CSPP1, COPS5, ARFGEF1 and MYOM2 over-
lapped with reproduction-related QTLs, which over-
lapped with 8 candidate regions with mean |iHS| >2:
BTA13:34,000,000–34,500,000, BTA14:30,750,000–
31,250,000, BTA27:1,000,000–1,500,000, BTA21:
28,750,000–29,250,000, BTA13: 40,000,000–40,500,000,
BTA8: 66,500,000–67,000,000, BTA1: 113,500,000–
114,000,000, and BTA19: 59,750,000–60,250,000.
Among these genes, SVIL overlapped with the candidate
regions with the highest iHS score. This gene, which is a
target of selection in seven Indian native cattle breeds, is
associated with resistance to diseases/higher immunity
[53]. SNRPA1 is related to reproductive traits in live-
stock [54]. A comparison of selective regions and pub-
lished QTL data suggests that SLC39A11 is a candidate
gene for reproductive traits. Association analysis demon-
strates that SLC39A11 has a substantial effect on the
calving interval in dairy cattle [55]. SLC39A11 was also
shown to be associated with fore teat placement in the
Chinese Holstein cattle population [56]. According to
functional analysis, SLC39A11 was a candidate gene for
immunity and defence [57]. CSPP1, which was associ-
ated with reproduction, was detected by identifying the
regions of signatures of selection across the genome of
five Swedish breeds [31]. It is worth noting that the
CSPP1 gene has been described to play an important
role in the productive life of Holstein cattle [58]. In the
Shanghai Holstein cattle population, we observed quite
high disease incidences for female fertility disorders.
Many studies have found that there is a strong time-
lagged effect of these female fertility disorders on lon-
gevity traits [59]. Genomic scans for selection signatures
revealed that ARFGEF1 is a hallmark gene for milk yield
in cattle [28, 60].
In particular, 12 genes overlapping with 4 candidate

regions related to heat tolerance QTLs, ADCK1,
GOLGA4, ITGA9, ECI2, PRPF4B, PXDC1, ADIPOR2,
ALKBH1, DCP1B, SLIRP, SNW1 and SPTLC2, were de-
tected in our study. Heat stress is an important problem
compromising animal production and productivity in
Shanghai, which is a subtropical region [61]. Heat stress
induces heat shock, oxidative stress and osmotic stress,
which are deleterious to normal cellular functions [62],
such as reduced oocyte competence, thereby causing
lower fertility [63]. Heat shock proteins play a crucial
role in environmental stress adaptation and thermal

balance [15]. PRPF4B and PXDC1, which are potential
candidate genes affecting pregnancy establishment and
maintenance in Chinese Holstein cattle, were identified
by revealing the genetic and biological basis of the re-
productive performance of dairy cows under heat stress
[64–66]. The SNPs in GOLGA4 explained the greatest
proportion of the genetic variation in the cow concep-
tion rate in Holstein cows [67, 68]. GOLGA4 was found
to be associated with milk yield in many dairy popula-
tions [69]. ITGA9 was identified in a large number of
studies on the signature of selection and environmental
adaptation to exposure to thermal stress in cattle [28,
70–72]. According to the study of Makina et al. (2015),
ADIPOR2, which is related to reproductive performance,
was identified by detecting signatures of selection within
and between six cattle breeds in South Africa [73].
DCP1B was identified and considered a hub gene be-
cause it was involved in multiple pathways related to
milk production [74]. SNW1 was considered to be a can-
didate gene associated with alternative subclinical mas-
titis traits [75].
We employed a strict criterion that the top 1 % of

SNPs with the highest number of occurrences was
chosen as an indication of a possible ROH island in the
genome. The same threshold was reported in a study on
cattle [25]. In our study, BTA21:31,435,280–33,563,201
was detected as a candidate region in the Shanghai Hol-
stein cattle population. Yanhuang cattle are native Chin-
ese cattle from South China. Small and medium ROH
were found to be predominant in Yanhuang cattle, and
three genes (TMEM266, ETFA and ISL2) at 32 Mb on
BTA21 were also detected [76]. ETFA was explored on
the cGTEx website and was reported to be significantly
associated with 8 economically important traits, such as
mastitis and overall conformation score. We detected
candidate selection regions in the Shanghai Holstein cat-
tle population by using ROH that harbour genes associ-
ated with milk production (ABCA9, ALPL, C2CD2,
CDC42, and PER2), reproduction (ABCC1, AIRN, CDX2,
DCPS, ESPNL, ISL2, and MSX1), resistance to diseases/
higher immunity (ABCC6, COMMD4, CSPG4, DDOST,
KCNMB1, PLXNA4, RAP1GAP, SLIT3, and ST3GAL4),
heat stress (ACAT2, AMZ2, GMPR2, MRPL18, PINK1,
PKDCC, SOD2, and WTAP), and feed efficiency or lipid
metabolism (AGPAT4, KIF17, NEIL1, PRKAR1A,
SLC22A1, and THSD4).
There are 11 genes detected by both methods. The

MTIF3 gene located on chromosome 12 has been found
to inhibit the autophagy pathway in heat-shocked oo-
cytes, affecting the mRNA abundance of MTIF3 and fur-
ther disrupting oocyte energy balance, this impairing
embryonic development [77]. UBD has potential roles in
innate immunity [78]. Zare et al. suggested UBD and
POLR1D as candidates for susceptibility to
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Mycobacterium avium subspecies paratuberculosis infec-
tion [79]. A search for known QTLs affecting traits re-
lated to adaptation in the QTL database showed that
UBD is located in the region between 15 and 40 Mb on
chromosome 23 and harbours putative QTLs affecting
cattle cell- and antibody-mediated immune response,
tick resistance, heat tolerance, and respiratory rate [80].
LNX2 was described earlier in the literature as a
mastitis-related gene [81] and a candidate gene for re-
sidual body weight gain [82]. USP12 plays an important
role in stabilizing and enhancing the cellular function of
androgen receptors, which are very important in regulat-
ing various sperm functions and have also been reported
as fertility-related protein-coding genes in crossed cattle
breeds [83].
To make use of meaningful annotations rather than

simple annotations, we also conducted secondary GO
term and KEGG pathway enrichment analyses, which
have been proven to successfully identify overrepre-
sented terms. Population-level analysis further suggests
the presence of selection for adaptation in the Shanghai
Holstein cattle population. A total of 413 genes embed-
ded in selected regions belong predominantly to categor-
ies that are related to adaptation, such as molecular
adaptation under heat stress. For example, ‘vitamin B6
metabolism’ (3 genes: AOX1, AOX2 and AOX4; P value =
0.0045) is a growth- and development-related pathway
that is under selection, as the metabolically active form
of vitamin B6 aids in the synthesis of haemoglobin and
enhances oxygen binding [84]. L-tryptophan (Trp) plays
crucial roles in the balance between intestinal immune
tolerance and gut microbiota maintenance. Tryptophan
metabolism plays a pivotal role in human health [85].
Valine, leucine and isoleucine degradation and folate
biosynthesis were enriched among genes harbouring
SNPs associated with marbling score in Hanwoo cattle
[86]. Abnormal folate metabolism has been causally
linked with a myriad of diseases [87]. Purine metabolism
(bta00230) was a unique KEGG pathway identified as
significant in candidate regions for ROH. Purines and
pyrimidines are vital constituents of DNA and RNA
molecules as well as other substrates of lipid and carbo-
hydrate metabolism. Additionally, purine metabolites are
crucial for intracellular signalling and cellular energy,
which can also act as cofactors to promote cell growth,
proliferation and survival [88].

Conclusions
Using two complementary analyses based on GGRS data,
we constructed a high-resolution map of selection signa-
tures in the Shanghai Holstein cattle population, which
increases the spectrum of selective signals in the cattle
genome. The selective signals identified in this study
clearly reflected the stronger adaptation to hot and

humid environments in Shanghai. Some candidate genes
that might underlie differences in adaptation to specific
environments and production systems were identified in
potentially selected regions, such as ITGA9, ACAT2, and
PLAC8. Genes associated with milk production, resist-
ance to diseases, and reproduction were also identified
as candidate regions in iHS and ROH analyses. We used
cGTEx further to understand the functional conse-
quences of genetic variants on the transcriptome of the
Shanghai Holstein cattle population. Our findings may
contribute to promoting the understanding of the gen-
ome evolution of and selection mechanisms in cattle.

Materials and methods
Genotypes
This study consisted of 1092 animals from the Shanghai
Holstein population. The genotypes were sequenced
using a genotyping by genome reducing and sequencing
(GGRS) protocol (http://klab.sjtu.edu.cn/GGRS/) [89].
The data were extracted from our previous publication
[90]. The raw reads with a base average quality score of
at least 20 and a score of at least 30 in the first 65 bp
aligned to the cow reference genome were retained. The
filtered reads were aligned to the btau4.6 assembly of
the cattle genome by using Burrows-Wheeler Aligner
[91]. The SNP data were edited prior to statistical ana-
lyses. First, the SNPs that could not be mapped to the
reference were removed. Afterwards, SNPs were ex-
cluded if they did not meet the following criteria: (1)
calling quality greater than 20 (99 % accuracy); (2) se-
quencing depth on average greater than 5×; (3) call
rate > 30 %; (4) minor allele frequencies (MAFs) ≥ 0.05;
and (5) located on an autosome. Missing genotypes were
imputed using iBLUP with the default parameters [92].
After quality control, the final data consisted of 164,312
autosomal SNPs. The mean distance between adjacent
SNPs was 15.56 kb. Since the UMD3.1 assembly is used
in most platforms, we converted SNP position informa-
tion from btau4.6 to UMD3.1 using UCSC liftOver
(https://genome.ucsc.edu/cgi-bin/hgLiftOver)[93], which
is a tool for conversion between genome assemblies by
coordinates.

Population structure analysis
To evaluate the population structure of the Shanghai
Holstein cattle population, principal component analysis
(PCA) was conducted using GCTA (http://cnsgenomics.
com/software/gcta/pca.html) [94]. The first three signifi-
cant components were visualized using the R package
“scatterplot3d”.

Inbreeding coefficient estimations
The inbreeding coefficient was estimated through the
-ibc command implemented in GCTA software, which
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returns three different inbreeding estimations, FGRM,
FHOM and FUNI. FGRM, calculated following VanRaden
(2008), was equivalent to the estimate of an individual’s
additive relationship to itself; FHOM, calculated following
Wright (1948), was estimated based on the excess homo-
zygosity; and FUNI was calculated based on the correl-
ation between uniting gametes, following Wright (1922).

Detection of selection signatures using iHS
The integrated haplotype score (iHS) test was performed
to investigate selection signatures in the Shanghai Hol-
stein population. Before computing iHS, the ancestral al-
lele of all bovine SNPs was inferred as the most
common allele in the entire dataset, as described by Bah-
bahani et al. (2015) and Bertolini et al. ( 2018). The iHS
score was calculated for each autosomal SNP using R’s
“rehh” package [97], which uses a function to detect se-
lection signatures in dense marker data using a test
based on extended haplotype homozygosity (EHH) dis-
cussed above. The package was applied to estimate the
statistics and generate plots to visualize and interpret
the results.
The normal standardized iHS was calculated as

iHS ¼
ln iHHA

iHHD

� �
� Ep ln iHHA

iHHD

� �h i

SDp ln iHHA
iHHD

� �h i

where iHHA and iHHD represent the integrated EHH
score for ancestral and derived core alleles, respectively.

Ep ln iHHA
iHHD

� �h i
and SDp ln iHHA

iHHD

� �h i
are the expectation

and standard deviation in terms of frequency bin p. We
divided the genome into 500-kb windows with a 250-kb
overlap and used the averaged |iHS| value in each win-
dow as the test statistic. Windows at the top 1 % of the
empirical distribution were considered to be candidate
regions of positive selection.

Runs of homozygosity analysis
We used the PLINK toolset version 1.9 to identify long
series of consecutive, homozygous SNPs [98]. ROH were
discovered using a sliding window of 100 SNPs, allowing
one possible heterozygous genotype (to account for po-
tential errors in genotyping and imputation) and 5 miss-
ing SNPs per window. The minimum SNP density was 1
SNP every 50 kb to ensure that low SNP density did not
increase the length of the ROH, and the maximum dis-
tance between two consecutive homozygous SNPs in a
run was kept at the default value of 100 kb. Homozygous
genotypes with a length of > 1 Mb were defined as ROH.
The algorithm in PLINK takes a window from a certain
SNP and slides this window across the genome. Whether
this window is a ROH was determined according to the

previous criteria. The proportion of ROH windows
encompassing each SNP was calculated. The percentage
of animals that had the region with the most overlapping
ROH on each chromosome was plotted. Statistical
thresholds were determined empirically by selecting the
top 1 % of the SNPs most commonly observed in ROH
[37]. The number of ROH, the average and maximum
length in kilobases and the number of SNPs were calcu-
lated for all the animals for chromosomes 1 to 29.

Enrichment analyses of candidate genes under selection
Enrichment analysis is a promising strategy for increas-
ing the likelihood of identifying biological processes that
are highly related to the biological phenomena under
study [99]. In this study, enrichment analyses for genes
within each significant ROH island (top 1 %) and candi-
date region detected by the iHS method (the top 1 %)
were performed. We used the database for annotation,
visualization and integrated discovery (DAVID 6.8;
https://david.ncifcrf.gov/summary.jsp) to extract bio-
logical features/meanings associated with the list of
genes. Kyoto Encyclopedia of Genes and Genomes
(KEGG) is a database resource for understanding the
high-level functions and utilities of biological systems,
such as cells, organisms and ecosystems, from
molecular-level information, especially large-scale mo-
lecular datasets generated by genome sequencing and
other high-throughput experimental technologies [100].
We explored the potential functions of the genes in all
samples using KEGG; thus, enriched pathways with an
adjusted P value < 0.05 were reported in our study.

Aligning core regions to QTL database
QTLs were used to determine the expression patterns of
these differentially expressed genes. Cattle QTLdb
(http://www.animalgenome.org/cgi-bin/QTLdb/BT/
index, updated Sep, 2014) contains 81,652 QTLs [101].
We used a Perl Script to conduct QTL-based annotation
to identify all the significant candidate regions detected
by the iHS method (top 1 %) contained or overlapped
across the QTLs. The number and function of candidate
regions was determined after annotation.

cGTEx gene expression data set
Understanding the functional consequences of genetic
variants on the transcriptome of livestock is essential for
interpreting the molecular mechanisms underlying traits
of economic value. In this study, to further investigate
the hypothesis that many of our leading variants are
regulatory, we retrieved multiple tissue gene expression
data from cGTEx and then compared the gene expres-
sion data with a list of genes within each significant
ROH island (top 1 %) and candidate region detected by
the iHS method (the top 1 %). First, we retrieved the
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Ensembl IDs of the genes that were detected by ROH
analysis and iHS simultaneously based on the annotation
for cow genes (UMD3.1) available from the Ensembl
database (http://www.ensembl.org/index.html). We
uploaded the Ensembl IDs of the genes to cGTEx and
downloaded all cis-eQTLs and trans-eQTLs related to
genes from the website. Notably, because all the genome
annotation files are based on ARS-UCD1.2 (https://
www.ncbi.nlm.nih.gov/assembly/GCA_002263795.2;
GenBank accession NKLS00000000.2) [102] for cGTEx,
conversion of our SNPs located in the genes from
UMD3.1 to ARS-UCD1.2 was performed using the
UCSC liftOver tool [93]. Then, we used a Perl script to
find SNPs shared between cGTEx and the SNP dataset
in our study, thus identifying genetic variations that
affect gene expression in specific tissues, which is a
promising approach to finding functionally relevant
pathways that contribute to traits.
TWAS integrates genome-wide association studies

(GWAS) and gene expression datasets to identify gene-
trait associations. We downloaded all 496 gene-tissue
pairs significantly associated with 43 economically im-
portant traits from cGTEx. The TWAS results were
compared with our genes that overlapped with candidate
regions detected by iHS and ROH to detect common
genes and to identify the genes that are significantly
expressed in tissues relevant to a trait (P value < 0.05).
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