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ABSTRACT

Perturbation and time-course data sets, in combin-
ation with computational approaches, can be used
to infer transcriptional regulatory networks which
ultimately govern the developmental pathways and
responses of cells. Here, we individually knocked
down the four transcription factors PU.1, IRFS,
MYB and SP1 in the human monocyte leukemia
THP-1 cell line and profiled the genome-wide
transcriptional response of individual transcription
starting sites using deep sequencing based Cap
Analysis of Gene Expression. From the proximal
promoter regions of the responding transcription
starting sites, we derived de novo binding-site
motifs, characterized their biological function and
constructed a network. We found a previously
described composite motif for PU.1 and IRF8 that
explains the overlapping set of transcriptional
responses upon knockdown of either factor.

INTRODUCTION

The human genome project (1) and the subsequent
annotation efforts (2,3) provided us a catalog of genes
present in our genome. These efforts quickly gave rise to
system approaches aiming at understanding the
interactions between genes that ultimately govern pheno-
type and disease pathology (4). The complex interactions
among transcription factors derived from such networks
point to diverse regulatory programs responsible for cell
differentiation during development and cellular responses
to outside stimuli.

A powerful technique to understand gene regulatory
networks is the perturbation of individual transcription
factors in concert with high-throughput expression
profiling of all genes (5). Commonly, microarrays are
used to measure the changes in gene expression (6-8).
In addition to defining regulatory interactions, transcrip-
tion factor binding site (TFBS) motifs can be extracted
from promoter regions of affected genes. Searching the
genome sequence in silico with such motifs can reveal
putative downstream targets of the transcription factors.
However, these predictions are fraught with difficulties
summarized by the ‘futility theorem’ (9). In brief, most
predicted binding sites will have no functional role in
general and, despite binding in vitro, may not be function-
al in the cellular model studied or may only be functional
in presence of additional factors (co-regulation).
Therefore, it is desirable to couple computational
approaches with experimental techniques to identify
actively used TFBS.

Chromatin immunoprecipitation (ChIP) in conjunction
with tiling microarrays or sequencing is able to tell us the
possible binding sites of transcription factors. To be able
to perform experiments for specific transcription factors,
however, specific antibodies are needed whose production
is both difficult and, for many of the transcription factors,
not yet available (10). Additional specific experimental
optimizations are required.

Here, we describe the use of deep sequencing based Cap
Analysis of Gene Expression (deepCAGE) (11) to study
the effects of transcription factor (TF) perturbations on
target gene expression at the promoter level. Previously,
deepCAGE was used to accurately define and com-
pare the transcriptional start sites (TSS) of genes in
various tissues (7), determine the distance of the
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TATA-box from the TSS (12), as well as during cell dif-
ferentiation (3). Restricting TFBS analysis to the accur-
ately mapped TSSs discards many false-positive
predictions in intergenic regions and thus improves the
accuracy of transcriptional regulatory networks (3). In
contrast to previous approaches, this allows for the con-
struction of transcriptional regulatory gene networks at
the resolution of individual promoters.

In this study, we combined our deepCAGE (3,13)
technology with knockdown (KD) perturbation experi-
ments of four key transcription factors (PU.1, IRFS,
MYB and SP1) expressed in the human monoblastic
leukemia cell line THP-1 (14). Previously, we demons-
trated by using siRNA-mediated gene knockdown and
microarray profiling that these four factors regulate
large numbers of genes important to monocyte biology.
In particular, MYB knockdown promotes monocytic
differentiation of THP-1 cells, indicating a central role in
maintaining the undifferentiated monoblast state (3).

DeepCAGE profiles were generated for each of the
samples and compared to cells treated with a scrambled
negative control oligo. This approach allowed us to
identify the most strongly affected TSSs for each TF
knockdown and their corresponding promoter regions.
We then attempted to derive de novo TFBS motifs from
the promoter regions and compared our results to the
known binding-site models in the TRANSFAC
database. Finally, these data were used to draw a basic
regulatory network based on the direct regulatory inter-
actions we identified.

MATERIALS AND METHODS
Cell culture and knockdown experiments

We used RNA extracted from the same knockdown
human leukemia THP-1 cell batches used in the
recent FANTOM4 project (3,8). In brief, transfection
was performed using stealth siRNA (Invitrogen) and
RNA was harvested after 48h. TF gene-expression
levels in THP-1 cells treated with gene-specific sSiRNAs
(SP1, PU.1, IRF8 and MYB) or the calibrator
negative control (NC) siRNA were estimated by
qRT-PCR in triplicate [see Supplementary material of
Suzuki et al. (3)].

deepCAGE library generation, mapping and clustering of
deepCAGE tags

deepCAGE libraries were prepared for the five
knockdown experiments according to the deepCAGE
protocol (3,13) and sequenced using the Roche 454
sequencer. In total, 6187981 deepCAGE tags were
mapped to the human reference genome sequence (hglg)
using Nexalign (Lassmann,T., http://genome.gsc.riken
Jp/osc/english/dataresource/) allowing up to one
mismatch or one indel. Tags with TSS falling into
windows of 20 bp were grouped into 396 118 tag clusters
(TCs). For all further analyses, we focused on a filtered set
of 3332 robustly detected TCs with a minimum average
deepCAGE expression across the five (four KD and
control) libraries of 30 tags per million (TPM).

Comparison of deepCAGE and microarray expression

For comparing the perturbation of deepCAGE expres-
sion profiles with microarray expression, we first
mapped the 3332 robustly detected TCs to Entrez gene
models, requiring that the tags originated within the
boundaries of known transcripts for the locus or up to
1 kb upstream. The 3332 TCs mapped to 3114 Entrez
genes using this approach, with 84 genes possessing
more than one robustly detected TC. Fold change for
the deepCAGE data was then calculated by dividing the
gene expression in TF KD by the expression in the
negative control experiment. Microarray probe mapping
to Entrez gene and expression fold changes were
obtained as described in Suzuki er al. (3). This then
allowed direct comparison of fold changes measured by
deepCAGE with the corresponding measurement by
microarray.

De novo motif prediction, TFBS prediction and
ChIP-chip data

Proximal promoter regions of TSSs were defined as previ-
ously described (3) and include 300bp upstream and
100 bp downstream of the deepCAGE-defined TSS. We
extracted the corresponding active deepCAGE promoter
regions from the human genome (hgl8) and applied the
motif-finding program MEME (15). We applied MEME
to regions which are at least 1.5-fold up- or downregulated
in both microarray and deepCAGE measurement. The
selection was further restricted to the top 50 of such
regions based on recommendations found in Bailey et al.
(15). We hypothesize that this selection enriches for
promoters that are direct targets of the transcription
factor. In the case of IRF8, SP1 and PU.1, fewer than
50 TCs were upregulated by at least 1.5-fold (20, 22 and
38, respectively); therefore, smaller training sets were used
for these classes.

MEME can report multiple motifs for each set of the
proximal promoter regions. In such cases, we only selected
the motif with the most significant E-value for further
analysis. We did not attempt to merge similar motifs.

To assess whether the obtained motifs are biologically
relevant, we searched the remaining TCs (3332 TCs,
excluding the training sets) using the program Fimo
from the Meta-MEME package (16). For comparison,
we used the TRANSFAC database and the accompanying
Match program (17,18) to scan our sequences for the
presence of TRANSFAC defined motifs. Furthermore,
we overlaid our TCs with previously published
ChIP-chip data (3) for PU.1 and SP1 (detailed Methods
available in the Supplementary Data).

We used UCSC browser Vertebrate Multiz Alignment
& PhastCons trac to look for conservation of our motifs.
A base position in the motif was deemed to be conserved if
the conservation was at least 80%.

Accession codes

DNA Data Bank of Japan (DDBJ) Read Archive:
DRX000341 (CAGE library 105).



RESULTS

deepCAGE and microarray profiling of siRNA
knockdowns identifies overlapping sets of perturbed genes

To evaluate deepCAGE as a platform for measuring
gene-expression perturbation, we used the same batches
of RNAs for both TF suppression and negative control
samples as were used in the microarray analysis for the
FANTOM4 main paper (3). For these samples, the effi-
cient knockdown was already confirmed by qRT-PCR
and western blotting. We observed an overall positive
correlation for all four TF knockdown samples across
both platforms (Figure 1). In general, deepCAGE fold
changes were greater than those measured by microarrays,
as has been previously noted (19).

De novo motif prediction using knockdown deepCAGE
identifies known core motifs, extended motifs and a
composite motif for PU.1 and IRF8

Knockdown of SP1, IRF8, PU.1 and MYB led to induc-
tion of 267, 347, 189 and 307 genes and repression of 428,
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527, 260 and 1160 genes by 1.5-fold up- or down-
regulation, respectively. Eight sets of proximal promoter
regions were extracted corresponding to the top 50 most
upregulated and most downregulated TCs for each
knockdown experiment (see ‘Methods’ section). The de
novo motif-finding algorithm MEME (15) was used to
identify motifs enriched in the perturbed promoters. We
identified motifs for all four downregulated promoter sets
and also identified motifs in the promoters of the
upregulated sets for MYB and PU.1.

Enrichment in the upregulated set of promoters suggests
the TF works as a repressor,whereas enrichment in the
downregulated set of promoters suggests the TF works
as an activator. As an example, we find that knockdown
of IRF8, a known activator (20), results in
downregulation in both the deepCAGE and microarray
experiments of XAFI1, a gene which we predict to
contain our novel motif (Figure 2). The observation that
MYB knockdown yielded motifs for both up- and
downregulated sets is consistent with its known role as
both a transcriptional activator and repressor (21).
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Figure 1. DeepCAGE and microarrays detect overall similar expression changes. The transcriptome-profiling technologies deepCAGE and micro-
arrays showed overall similar transcriptional response (log2 expression fold-change) comparing before and after siRNA-based knockdown of the
transcription factors IRF8, MYB, PU.1 and SP1. The Pearson correlation values for these two platforms are: (a) 0.389 (P = 1.3¢”'?) for IRFS, (b)
0.453 (P = 2.2¢7'°) for MYB, (¢) 0.450 (P = 1.2¢"'") for PU.1 and (d) 0.404 (P = 6.7¢') for SPI.
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Figure 2. DeepCAGE identified individual transcription starting sites responding to transcription factor knockdown. DeepCAGE profiling of the
transcriptome quantitatively measures individual transcription starting sites (TSS) of capped mRNA indicated by the vertical bars (a) before and (b)
after the knockdown of the IRF8 transcription factor. Red bars indicate CAGE tags that do not change upon knockdown while the black bars
represent tags showing significant change upon knockdown. One transcript cluster (TC) is shown in the promoter region of the XAF1 gene on
chromosome 17 (positions 6 6000476600 115, hgl8) together with the defining TSSs.

Despite this, the motifs found in either set appear to be
different, which may suggest different modes or different
co-factors for binding repressive and activating sites.

To assess whether our de novo motifs identify functional
sites, we examined the expression fold-changes of TCs
containing the predicted motifs compared to all other
TCs. The TCs used to derive the motifs in the first place
were excluded. Instead of using CAGE data based on a
single experiment, we used microarray expression data
based on three biological replicas from the same RNA
batch since we deemed it to be more reliable (Figure 3).
However, when using CAGE expression data instead,
there are no discernible differences (Supplementary
Figure SI).

Of the motifs tested, those for MYB up, MYB down,
PU.1 up and SP1 down data sets (Supplementary Figures
S2 and S3) did not show significant expression differences
between the sequences containing the motifs and those
that do not contain the motifs. Hence, we did not
further analyze these motifs.

However, promoters containing PU.1 down or IRF8
down motifs were expressed at significantly lower levels
than promoters lacking the motif. Moreover, when the
same test was carried out using the published
TRANSFAC (17,18) motifs for PU.1 and IRF8, or using
ChIP data for PU.1 to identify PU.I-bound promoters,
neither outperformed the novel motif (Figure 3).
Furthermore, comparison to UCSC’s vertebrate-
conservation track revealed that 32.8 and 35.5% of the
novel PU.1 and IRF8 base positions, respectively, are
strictly conserved, while 11 out of 47 and 7 out of 20

PU.1 and IRF8 motifs are completely conserved. This
compares with 3-8% average overall conservation and
11-24% conservation in coding regions.

In a parallel effort, we used the program CLOVER (22)
to detect enriched motifs in the top 50 downregulated
IRF8 and PU.1 CAGE clusters. As expected, we found
enrichment for the corresponding known motifs in both
data sets (for details see Supplementary Data and Figures
S3 and S4 and Tables S2 and S3). However, the enriched
motifs are only weakly overrepresented when considering
all downregulated clusters. Therefore, the de novo derived
motifs describe the transcriptional response to TF
knockdown better than using known motifs or the
present ChIP-chip data.

The motifs obtained for PU.1 and IRF8 were longer
than the corresponding motifs in the TRANSFAC
database (Figure 4a). Manual alignment of our matrices
to each other and to the TRANSFAC motifs revealed that
both of our motifs contain regions similar to the
TRANSFAC PU.1 and the IRF8 motifs. Furthermore,
we observed 44 promoters that were downregulated in
both IRF8 and PU.1 knockdown (Supplementary Figure
S5 and Table S4). Our IRF8 motif contains three triple-T
(TTT) regions. To understand their significance, we
truncated our IRF8 motif by removing the triple-T
sub-motif from either end. The expression differences in
the test set became less pronounced (Figure 4b), indicating
that all three triple-Ts are important for the specificity.
Similar examples of combinatorial regulation were previ-
ously described for IRF8 and other IRF family members
and for the PU.1 transcription factor (20,23).
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Figure 3. TFBS motifs derived for PU.1 and IRF8 as activators. The 50 strongest downregulated TCs after knockdown of each of the two TFs PU.1
and IRF8 and their corresponding promoter regions were used as training data set to identify binding-site motifs and their respective PWMs (a and
b). The PU.1 motif was present in 47 out of 50 sequences with an E-value of 4.6e > and is 20 nucleotides wide while the IRF8 motif was present in
20 out of 50 sequences with an E-value of 2.2¢™? and is 21 nts wide. The expression levels of deepCAGE TSSs containing the motif in their promoter
sequences excluding the training data were contrasted to all other TSSs (¢ and d). The same comparisons were performed on promoter regions
containing the TRANSFAC motif as well as for regions where the TFs bound to DNA according to ChIP-chip measurements. P-values were

calculated using Student’s z-test on microarrays values.

A promoter-based gene regulatory network

Above we have demonstrated that KD followed by
deepCAGE expression profiling (KD-CAGE) can be
effectively used to identify promoters regulated by a given
transcription factor. Moreover, highly downregulated pro-
moters in the PU.1 and IRF8 KDs were shown to contain
PU.1 and IRF8 motifs indicating they are direct targets of
these factors. The approach can thus be used to directly
generate a transcriptional network model (24). For illustra-
tion purposes, we generated a small sub-network based on
genes co-perturbed by the knockdown of at least two of the
four factors (Figure 5). Edges wupregulated upon
knockdown are shown in red and those downregulated
are shown in blue. Genes co-regulated by PU.1 and IRFS8
were predominantly co-downregulated upon knockdown.
Interestingly, there is an antagonistic relationship for genes

co-regulated by PU.l and MYB, with the majority
downregulated upon PU.1 KD but upregulated upon
MYB KD. The network predicts 47 genes as targets of
our novel PU.1 motif. Eight of these (CD74, HCLSI,
NRGN, TNFSF13B, IFI6, MLC1, MARCH3 and
CHI3L1) are supported by ChIP signal for PU.I
(Supplementary Table S1). Most of these are known to
be important in hematopoietic lineages and IFI6 is
known to be an interferon-inducible gene. CHI3L1 has
been previously reported as a PU.1 target (25). However,
this is the first report that TNFSFI3B, a myeloid-
associated marker gene, is regulated by both PU.1 and
IRFS.

These directed edges reflect the regulation of individual
TSSs rather than responses at the gene level and represents
a powerful new approach to building alternative
promoter-aware networks in the near future.
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Figure 4. Overlapping motifs for PU.1 and IRF8 transcription factors. (a) The binding-site motifs we found for IRF8 and PU.1 were longer than the
TRANSFAC motifs and both our motifs contained each of the TRANSFAC motifs as sub-motifs. Our motif for IRF8 was longer than the motifs of

other IRF family members (data not shown). (b) Trimming the characteri

stic TTT sub-motif from either side of the IRF8 motif reduced the ability of

the motif to explain the changes in expression levels. P-values were calculated using Student’s r-test.

DISCUSSION

We have demonstrated for the first time that deepCAGE
technology is a feasible alternative to microarrays for
measuring RNAi-mediated perturbations and generating
perturbation networks. As the technique is a direct
measure of promoter expression, it allows focusing on
the actual promoters used in a given cellular context,
rather than ambiguous mapping of microarray expression
to the 5-ends of known transcripts. Furthermore, we have
shown that our approach can be used to de novo identify
regulatory motifs with a clear demonstration of functional
motifs for PU.1 and IRF8 with similarity to the published

TRANSFAC motifs. The motifs described by us perform
better at describing the response to the KD than
TRANSFAC and ChIP-chip data.

In the case of PU.1 and IRF8, many of the same
promoters responded to either knockdown and a longer
composite motif was identified. While the known IRFS8
TFBS contains two copies of a triple-T motif, ours
contains three copies. This longer motif, however, is func-
tionally relevant as truncating the motif by removing the
first or third triple-T reduced our ability to explain the
transcriptional response to IRF8 knockdown. These
observations are supported by the previously reported
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Figure 5. Network inferred from deepCAGE knockdown data. Our data can be transferred into network view using Cytoscape (24). The transcrip-
tion factors represent the nodes and the promoters associated to their genes are the edges. Edges drawn in red indicate upregulation after TF
knockdown while edges drawn in blue indicate downregulation. The dotted lines present edges that are detected by CAGE, while solid lines represent
the edges that have a motif found by our method. For easier viewing, we have only shown those nodes from the training set that are influenced by

more than one transcription factor.

cooperative binding of both factors (20,23). As the signifi-
cant motifs were identified in the promoters of
downregulated genes, we conclude that PU.1 and IRFS
in combination act primarily as activators as previously
reported (22), while the motifs observed for MYB suggest
it can act both as a repressor or an activator
(Supplementary Figure 2A and B).

This pilot experiment paves the way for building
regulatory networks and identifying regulatory motifs for
the majority of transcription factors. Genome-wide ChIP
of TFsis an alternative approach to identify transcriptional
regulatory regions (26), which is extensively being used in
the ENCODE project (4). However, to date only 160 ChIP
grade antibodies are available for the estimated 882
DNA-binding transcription factors in mammals (27).
KD-CAGE is not restricted by such reagents, and in the
light of constantly reducing costs of DNA sequencing (28)
it is possible to test a large collection of all DNA-binding
proteins to characterize their function. In addition to the
330 regulatory interactions, we reported in our four

knockdown experiments (Supplementary Table S1), only
3 were supported by current ChIP-chip experiments. This
highlights that there are sites where the TF is bound but is
functionally inactive, as noted by Wasserman and Sandelin
(9). However, in spite of this, a combined approach would
potentially be a very powerful method to discriminate
indirect targets from direct targets bound by factors at
both proximal and distal sites including enhancers and
insulators.

Finally, we have previously described the application of
motif activity response analysis (MARA) in a develop-
mental time course to predict the regulation by TFs on
individual promoters (3). However, this approach depends
on known TFBS motifs. The approach described here can
be used to identify TFBS motifs de novo. In the future, we
will aim to extend the set of known motifs using this
approach and extend our network analyses to encompass
the function and targets of uncharacterized DNA-binding
proteins and to provide a network of interactions among
such proteins.



8148 Nucleic Acids Research, 2010, Vol. 38, No. 22

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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