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Eicosanoids are a class of functionally bioactive lipid mediators derived from the
metabolism of long-chain polyunsaturated fatty acids (PUFAs) mediated by multiple
enzymes of three main branches, including cyclooxygenases (COXs), lipoxygenases
(LOXs), and cytochrome P450s (CYPs). Recently, the role of eicosanoids derived by
COXs and LOXs pathways in the control of physiological and pathological processes
associated with cancer has been well documented. However, the role of CYPs-mediated
eicosanoids, such as epoxyeicosatrienoic acids (EETs), epoxyoctadecenoic acids
(EpOMEs), epoxyeicosatetraenoic acids (EpETEs), and epoxydocosapentaenoic acids
(EDPs), as well as hydroxyeicosatetraenoic acids (HETEs), in tumorigenesis and cancer
progression have not been fully elucidated yet. Here we summarized the association of
polymorphisms of CYP monooxygenases with cancers and the pleiotropic functions of
CYP monooxygenase-mediated eicosanoids (EETs, EpOMEs, EpETE, EDPs, and 20-
HETE) in the tumorigenesis and metastasis of multiple cancers, including but not limited to
colon, liver, kidney, breast and prostate cancers, which hopefully provides valuable
insights into cancer therapeutics. We believe that manipulation of CYPs with or without
supplement of ω-3 PUFAs to regulate eicosanoid profile is a promising strategy to prevent
and/or treat cancers.
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INTRODUCTION

Eicosanoids, a class of bioactive lipid mediators, are the metabolites of
long-chain n-3 and n-6 polyunsaturated fatty acids (PUFAs) mediated
by three primary enzymatic systems, cyclooxygenases (COXs),
lipoxygenases (LOXs), and cytochrome P450s (CYPs) enzymes. The
common PUFAs include arachidonic acid (20:4 n � 6, AA), linoleic
acid (18:2 n� 6, LA), γ-linolenic acid (18:3 n� 6,GLA), α-linolenic acid
(18:3 n � 3, ALA), eicosatetraenoic acid (20:5 n � 3, EPA) and
docosahexaenoic acid (22:6 n � 3, DHA). Eicosanoids are synthesized
rapidly in response to multiple factors (e.g. allergy, infection, and
injury) and act putatively through their cognate receptors in local cells.
Although some eicosanoids exhibit immediate and short-lasting
activity, they play an important role in many chronic diseases,
including asthma, allergy, autoimmune diseases, and malignancies
since they have pleiotropic functions, such as pro-inflammation,
anti-inflammation, vasodilation, analgesia, and hyperalgesia (Dennis
and Norris, 2015; Sokolowska et al., 2020). Interestingly, some
eicosanoids were found to have dual actions, for example, lipoxins,
resolvins, and protectins, which have been extensively reported to be
anti-inflammatory and pro-resolving (Serhan et al., 2008). Emerging
evidence showed the dominant roles ofmetabolites of PUFAs involved
in the regulation of inflammation, pain, angiogenesis, and cancer
(Zhang et al., 2014a). The COX- and LOX-mediated PUFAs
metabolism have been well documented in tumorigenesis and
cancer progression (Wang and Dubois, 2006; Cathcart et al., 2012;
Knab et al., 2014; Tuncer andBanerjee, 2015).However, the roles of the
CYP pathway-mediated metabolites of PUFAs in the pathogenesis of
cancer has not been fully studied.

CYP enzymes catalyze a variety of oxidative and some reductive
reactions involving thousands of substrates (Guengerich, 2007). The
substrates of CYPs encompass xenobiotics, including substances that
occur biologically but are exogenous to humans, such as antibiotics
and synthetic organic chemicals (Porter and Coon, 1991), and
endogenous compounds, such as cholesterol, testosterone,
progesterone, prostaglandin H2, corticosterone, retinoic acid,
vitamin D3, and some PUFAs, like AA and LA (Guengerich,
2017). CYP enzymes can mediate the metabolisms of the
lipophilic endogenous and xenobiotic compounds into hydrophilic
or polar compounds, which could be excreted from the body easily
(Chang and Kam, 1999). Firstly, the substrate binds to the active sites
of CYP enzymes. Then the reductive reaction of the heme iron from a
ferric to a ferrous is occurred by an electron transferred from a
reduced NADPH (Chang and Kam, 1999). After that, the oxygen
molecule temporarily binds at the heme-containing active site
(Zanger and Schwab, 2013). At last, the substrate molecule is
inserted by an oxygen atom, and water is formed by other
relevant atoms simultaneously. Therefore, CYP monooxygenases
incorporate one atom of oxygen into their substrates (Ortiz de
Montellano, 2010). Here we focus on the CYP-derived metabolites
of PUFAs and their multiple functions in cancer.

The Cytochrome P450-Derived Eicosanoids
of n-6 Polyunsaturated Fatty Acids
CYPs consisting of 57 functional genes in human are a superfamily
of enzymes which mediate the metabolism of exogenous and

endogenous compounds (Jamieson et al., 2017; Nelson et al.,
2004). AA and LA are the most common substrates of the CYP
enzyme system. CYP enzymes relevant to AA metabolism include
two main branches: the ω-hydroxylase and epoxygenase pathways
(Panigrahy et al., 2010). Epoxygenases (mainly CYP2C and CYP2J
isoforms) convert AA to epoxyeicosatrienoic acids (EETs),
including 5(6)-, 8(9)-, 11(12)-, and 14(15)-EET (Wu et al.,
1997). ω-hydroxylases (mainly CYP4A and CYP4F isoforms)
convert AA to 19-, and 20-hydroxyeicosatetraenoic acids
(HETEs) (Figure 1) (Panigrahy et al., 2010). In addition,
CYP4X1 and CYP2U1 can metabolize AA to 19- and 20-HETE,
as well as 8(9)-, and 14(15)-EET (Chuang et al., 2004; Stark et al.,
2008). LA is the primary exogenous precursor of essential fatty
acids, obtained from many diets. Within the body, LA can be
catalyzed to the formation of 9(10)- and 12(13)-epoxyoctadecenoic
acids (EpOMEs) in the presence of CYP epoxygenases. Both EETs
and EpOMEs are metabolically unstable and can be rapidly
metabolized to corresponding fatty acid diols,
dihydroxyeicosatrienoic acids (DHETs), and
dihydroxyoctadecenoic acid (DiHOMEs), respectively, by soluble
epoxide hydrolase (sEH) and microsomal EH (mEH) (Figure 1)
(Zhang et al., 2014a). Recently, the CYP/sEH eicosanoid pathway
related to inflammation and cancer gains many interests in
academic researches.

The Cytochrome P450-Derived Eicosanoids
of n-3 Polyunsaturated Fatty Acids
The n-3 PUFAs, mainly EPA and DHA, can be catalyzed by CYP
isozymes into functional eicosanoids. EPA is metalized into
ω/(ω-1)-hydroxyeicosapentaenoic acids (19- and 20-HEPE) by
CYP ω-hydroxylases, and five regioisomeric
epoxyeicosatetraenoic acids [5(6)-, 8(9)-, 11(12)-, 14(15)-,
17(18)-EEQ, or EpETE] by CYP epoxygenases (Figure 1)
(Van Rollins et al., 1988). DHA can also be metalized into
ω/(ω-1)-hydroxydocosahexaenoic acids (21- and 22-HDoHE)
by CYP ω-hydroxylases, and six regioisomeric
epoxydocosapentaenoic acids [4(5)-, 7(8)-, 10(11)-, 13(14)-,
16(17)-, 19(20)-EDP, or EpDPE), respectively, by CYP
epoxygenases (Figure 1) (VanRollins et al., 1984). The epoxy
metabolites EEQ and EDP can be further metabolized by sEH and
mEH enzyme to the corresponding diols.

The Presence and Location of Cytochrome
P450s in Organs
The CYP superfamily comprises 57 functional CYP genes and 58
pseudogenes in humans (Nelson et al., 2004). The CYPs have
been reported to express in all human tissues investigated (Porter
and Coon, 1991). They are expressed predominately in the
endoplasmic reticulum membrane, cell surface, and
mitochondria (Neve and Ingelman-Sundberg, 2010), with the
greatest abundance in the liver (Porter and Coon, 1991), small
intestine (Thelen and Dressman, 2009), and kidney (Renaud
et al., 2011).

In humans, CYP2C and CYP2J are the predominant
epoxygenases that metabolize PUFAs. CYP2C and CYP2J are
widely distributed in the human body, including but not limited
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to the cardiovascular system, kidney, lung, brain, gastrointestinal
tract, cerebral cortex, hippocampus, fetal nasal mucosa, and
many other tissues (Nelson et al., 2004). The CYP2C family is
located on chromosome 10 and consists of at least seven genes
and/or pseudogenes. The CYP2C8, CYP2C9, CYP2C18, and
CYP2C19 are most involved in the metabolism of PUFAs.
They are also convinced to be involved in the progression of
a malignant tumor (Xu et al., 2011). Besides the above-
mentioned four CYP2C enzymes, CYP2J2 is another
epoxygenase acting as a regulator that catalyzes the
metabolism of PUFAs. In the human body, CYP2J2 is mainly
distributed in cardiovascular tissues, such as cardiomyocytes,
coronary endothelial cells, and aorta and vein of coronary
smooth muscle cells. Liver enzymes account for only 1–2% of
total CYP in the liver, jejunum, ileum, and colon. Limited by its
content, CYP2J2 generally does not play a decisive role in
exogenous metabolism in theory. However, CYP2J2 has been
found to play a dominant role in the intestinal metabolism of
certain drugs, such as antihistamines, terfenadine, and ebastine.
In the kidney, CYP2J2 is expressed in proximal convoluted
tubule and collecting tubule. In addition to the expression in
tissues such as the heart, kidney, and liver, CYP2J2 is also highly
expressed in the cerebral cortex, frontal lobe, and hippocampus.
Dutheil et al. showed that a variety of CYPs are distributed in the
human brain, and the expression level of CYP2J2 is about 20% of
the total content of CYPs. Moreover, Ahmed E. et al. reported
that CYP2J2 was expressed in the pancreatic islets, consistent
with the finding that EETs, the metabolic products of AA,

regulate the levels of insulin and glucagon (Zeldin et al.,
1997). CYP2J2 and CYP2C9 enzymes are co-expressed in the
pituitary gland, suggesting they can regulate the release of
pituitary hormones including prolactin and growth hormone
most likely via EETs (Snyder et al., 1989; Irusta et al., 2007).

In mammals, the CYP4 family primarily mediates the
ω-hydroxylation of PUFAs, which includes 12 genes and 13
enzymes, such as, CYP4A, CYP4B, CYP4F, CYP4V, CYP4X,
and CYP4Z. CYP4A, CYP4B, CYP4X, and CYP4Z are located
on chromosome 1, while CYP4F and CYP4V on chromosome 19
and 4, respectively (Nelson et al., 2004). The CYP4 is the largest
one in the human CYP family, only a few of which mediate the
ω-hydroxylation of PUFAs (Simpson, 1997). In the CYP4 family,
CYP4A11, CYP4F2, CYP4F3A, and CYP4F3B are the most
studied. CYP4A11 has been reported to express primarily in
the liver and kidney, which can be regulated by peroxisome
proliferator-activated receptor-α (PPARα) and catalyze the
metabolism of AA and lauric acid. CYP4F2 is also mainly
expressed in the liver and kidney, and it is regulated by the
sterol regulatory element-binding protein (SREBP). The P450
gene CYP4F3 is unusual, and CYP4F3A and CYP4F3B are two
different spliceosomes. CYP4F3A is expressed in neutrophils and
CYP4F3B is primarily expressed in the human liver and kidney.
They are both the main ω-hydroxylases of long-chain PUFAs. In
addition, CYP4F8, CYP4F22, and CYP4V2 have been found to
express predominantly in extrahepatic tissues. Among these
enzymes, only CYP4V2 exhibits fatty acid ω-hydroxylase
activity. CYP4X1 and CYP4Z1 are both extrahepatic CYPs, the

FIGURE 1 | Metabolism of PUFAs by CYP enzymes. (A) A simplified cascade of PUFAs discussed in this paper. AA, arachidonic acid; LA, linoleic acid; EPA,
eicosapentaenoic acid; DHA, docosahexaenoic acid; CYP, cytochrome P450; sEH, soluble epoxide hydrolase; DHET, dihydroxyeicosatrienoic acid; DiHOME, dihydroxy
octadecamonoeneoic acid; DiHETE, dihydroxyeicosatetraenoic acid; DiHDTE, dihydroxydocosatetraenoic acid; EET, epoxyeicosatrienoic acid; EpOME,
epoxyoctadecamonoeneoic acid; EEQ or EpETE, epoxyeicosatetreaenoic acid; EDP or EpDPE, epoxydocosapentaenoic acid; HDoHE, hydroxydocosahexaenoic
acid; HEPE: hydroxyeicosapentaenoic acid; HETE, hydroxyeicosatetraenoic acid; HODE, hydroxyoctadecadienoic acid; mEH, microsomal epoxide hydrolase; sEH,
soluble epoxide hydrolase. The metabolites are from the fatty acids in the same color. (B) The chemical structures of PUFAs and the representative metabolites.
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former is highly expressed in the brain, skin, and airways, and is
inducible by glucocorticoids and progesterone.

Other CYPs, such as CYP1A1, CYP 1A2, CYP1B1, CYP2D6,
and CYP3A4, can detoxificate carcinogens regardless of whether
they are expressed in the liver or kidney.

In addition to many studies investigating the expression of
CYP epoxygenases in multiple organ tissues, a few studies
summarized the expression of CYP epoxygenases in some
specific cell types. Almost all the CYP epoxygenases were
found in peripheral blood cells, vascular endothelial cells, and
vascular smooth muscle cells (Xu et al., 2013; Sausville et al.,
2019). In addition, CYP2J was reported to express in many cells,
including but not limited to LS-174, ScaBER, SiHa, U251, A549,
Tca-8113, Ncl-H446, HepG2, K562, HL-60, MOLT-4, Jurkat,
Raji, autonomic ganglion nerves, and smooth muscle cells,
pancreatic islet cells, Purkinje cells (DeLozier et al., 2007; Xu
et al., 2013; Sausville et al., 2019).

The Association of Polymorphisms of
Cytochrome P450s With Cancers
Recently, the expression of various CYP genes has been proved to
be closely related to malignant tumors. Polymorphisms of CYPs
have been suggested to influence susceptibility to cancers for
many years. Genetic polymorphisms in CYPs have been reported
to be associated with individuals variations in drug metabolism
and disease susceptibility (Pikuleva and Waterman, 2013; Mittal
et al., 2015). Here, we discuss some important polymorphisms of
CYPs in cancers (Table 1).

CYP1A1
CYP1A1 is a hepatic and extrahepatic enzyme that is regulated by
the aryl hydrocarbon receptor signaling pathway. It has been
always associated with the metabolism of pro-carcinogenic
compounds to highly carcinogenic metabolites. For CYP1A1,
four common variants (T3801C, A2455G, T3205C, and C2453A)
were widely studied for the susceptibility to various cancers
(Bozina et al., 2009). T3801C (rs4646903) and T3205C are
situated in the 3′ noncoding region while A2455G (rs1048943)
and C2453A are ascertained in exon 7, which results in the
transition of isoleucine to valine on codon 462 and threonine to
asparagine on codon 461, respectively (Li et al., 2004). The
monomorphism of T3205C locus was reported in Indians
(Singh et al., 2007), Americans (San Francisco) (Hirata et al.,
2008), and Northeast Thai women (Wongpratate et al., 2020).
Among several populations, the polymorphisms of T3801C and/
or A2455G were reported to associate significantly with the
increased risk in cervical cancer (Juarez-Cedillo et al., 2007; Li
et al., 2016; Jain et al., 2017; Wang et al., 2017; Ding et al., 2018).
An association of T3801C (CC) genotype with increased cervical
cancer risk was reported among the Asians population by a meta-
analysis study (Wu et al., 2013). However, there is a lack of
significant association between T3801C and A2455G
polymorphisms and cervical cancer risk in Chinese, Japanese,
Israeli Jewish, Polish, Indian, and Thai populations (Sugawara
et al., 2003; Gutman et al., 2009; Roszak et al., 2014; Tan et al.,
2016; Wongpratate et al., 2020). The A allele of C2453A is

associated with the risk of lung cancer (Gallegos-Arreola et al.,
2008; Ezzeldin et al., 2017), laryngeal squamous cell carcinoma
(Gajecka et al., 2005), thyroid cancer (Siraj et al., 2008), and
cervical cancer (Wongpratate et al., 2020), but not associated with
breast (Li et al., 2004; Singh et al., 2007; Amrani et al., 2016),
colorectal (Little et al., 2006), or gastric cancer (Agudo et al.,
2006).

CYP1A2
CYP1A2, which is similar to CYP1A1, can metabolize a broad
range of foreign compounds and drugs. An SNP C>A (rs762551)
was found in intron one of CYP1A2 (Womack et al., 2012), which
influences the inducibility of CYP1A2 (Koonrungsesomboon
et al., 2018). The highest CYP1A2 induction rate was reported
in AA genotype (Sachse et al., 1999), and the high enzyme activity
carriers were at high risk of lung cancer (Seow et al., 2001; Bu
et al., 2014). On the other hand, the low activity or
downregulation of CYP1A2 influenced by the SNP would
result in the progression of hepatocellular carcinoma (HCC).
As the substrate of CYP1A2, 17 β-estradiol can be metabolized to
2-hydroxyestradiol which is then converted to 2-
methoxyestradiol that inhibits HCC cells proliferation by
inducing apoptosis (Ren et al., 2016). More recently, the
CYP1A2 SNP rs762551 was found to be significantly
associated with the high risk in breast cancer in the Jordanian
population (Al-Eitan et al., 2019).

CYP1B1
CYP1B1 not only mediates the metabolisms of xenobiotics, e.g.
theophylline, ethoxyresorufin, and caffeine (Rochat et al., 2001;
Zanger and Schwab, 2013) but also activates some
procarcinogens, such as aromatic amines, heterocyclic amines,
nitropolycyclic and polycyclic hydrocarbons (Chun and Kim,
2016). CYP1B1 mutations were a causative factor of diseases. For
example, L432V and A119S (rs1056827) polymorphisms of the
CYP1B1 gene were reported to increase the risk of developing
endometrial cancer (Zhu et al., 2011) and laryngeal cancers (Yu
et al., 2015).

CYP2A6
CYP2A6 is an essential hepatic enzyme involved in the
metabolism of drugs, is responsible for a major metabolic
pathway of nicotine. The first polymorphism identified of
CYP2A6 was a nonsynonymous polymorphism (L160H)
(rs1801272) which leads to no enzyme activity (Fernandez-
Salguero et al., 1995). There are more than 30 non-
synonymous polymorphisms in nine exons (Di et al., 2009).
Some polymorphisms were found to be associated with
smoking behavior, drug metabolism, and lung cancer risk (Di
et al., 2009). The wild type CYP2A6*1A is with normal enzyme
activity, and the CYP2A6*4, including CYP2A6*4A, CYP2A6*4B,
and CYP2A6*4D, have no enzyme activity (Hukkanen et al.,
2005). The CYP2A6*5 encoded an unstable enzyme activity since
the substitution of Glycin-479 by valine occurred (Oscarson et al.,
1999). CYP2A6 can activate procarcinogens, for instance,
nitrosamines and aflatoxins. The absence of the CYP2A6
enzyme could reduce the risk of lung cancer because the
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activation of procarcinogens would be decreased. Therefore, the
phenotypes of CYP2A6*4 and CYP2A6*5 protect the carriers
against lung cancer or other cancers (Raunio et al., 2001).

CYP2C9
CYP2C9metabolizes about 15% of clinically administrated drugs.
Two common non-synonymous polymorphisms of CYP2C9,
R144C, rs1799853 (CYP2C9*2), and I359L, rs1057910
(CYP2C9*3), have been reported to be highly frequent in
Caucasian populations (Sistonen et al., 2009; Van Booven
et al., 2010). These two polymorphisms result in poor
metabolic activity of CYP2C9 (Van Booven et al., 2010), and
are positively associated with the risk of cancer. Individuals with
CYP2C9*2 (R144C, rs1799853) polymorphism have a several-
fold increased risk of head and neck squamous cell carcinoma
(HNSSC) (Yadav et al., 2014). On the contrary, as the CYP2C9
(R144C, rs1799853, and I359L, rs1057910) variants metabolize
AA less efficiently than CYP2C9 wild type, they were proved to
retard the development of non-small cell lung cancer (NSCLC)
due to the reduced ability to generate EETs (Sausville et al., 2018).
Recently, the relationship of CYP2C9 polymorphism with
colorectal cancer (CRC) susceptibility was investigated by a
number of case-control studies. But the results were
controversary. A meta-analysis of 13 studies involving a total
of 20,879 subjects for CYP2C9 (R144C, rs1799853 and I359L,
rs1057910) polymorphisms to evaluate the effect of CYP2C9 on
genetic susceptibility for CRC suggest that the CYP2C9 (R144C,
rs1799853 and I359L, rs1057910) polymorphisms are not
associated with CRC susceptibility (Zhao et al., 2013). Also,
the CYP2C9 (R144C, rs1799853, and I359L, rs1057910)
polymorphisms are not associated with lung cancer risk
among African-Americans and Caucasians in Los Angeles
(Zhao et al., 2013) or in white Spanish (Garcia-Martin et al.,
2002).

CYP2C19
Among the CYP2C subfamily, CYP2C19 is the most polymorphic
(Lee, 2012). CYP2C19 polymorphism leads to differences in
enzyme expression and metabolic activity between individuals.
CYP2C19 polymorphisms classified the population to poor,
extensive, and ultra-rapid metabolic activity (Reynald et al.,
2012). The two primary point mutation sites of CYP2C19 are
CYP2C19*2 and CYP2C19*3, which cause poor metabolizer
phenotype of CYP2C19. CYP2C19 polymorphisms have been
analyzed about the prostate, bladder, lung, liver, colorectal cancer,
and other cancers. No association of the CYP2C19*2 allele and
prostate cancer was identified in the Swedish and Danish
population (Wadelius et al., 1999). But there is a weak
association between the CYP2C19*2 allele and bladder cancer
(Brockmoller et al., 1996). Yan et al. found that there was a
significant interaction between CYP2C19*3 and smoking in
increasing the risk of lung cancer in a Chinese population
(Yan et al., 2014). Similar results were reported in the
Japanese population (Tsuneoka et al., 1996). CYP2C19*3 was
identified to be associated with breast cancer risk in women (Gan
et al., 2011). In contrast, a decreased breast cancer risk for carriers
of the CYP2C19*17 allele was observed in German women

(Justenhoven et al., 2009), and a meta-analysis has found that
CYP2C19*2 and CYP2C19*17 genotypes are associated with
increased survival of breast cancer patients treated with
tamoxifen (Bai et al., 2014). Zhou et al. found that
CYP2C19*2 causes a poor metabolizer phenotype, while
CYP2C19*3 is associated with the increased risk of digestive
system cancer, especially in East Asians (Zhou et al., 2013).
Moreover, poor metabolizer genotypes were found to be
associated with the increased risks in many cancers, such as
esophagus cancer, gastric cancer, lung cancer, head neck cancer,
and hepatocellular carcinoma, suggesting the CYP2C19*2 and
CYP2C19*3 most likely contributes to cancer susceptibility,
particularly in the Asian populations (Wang et al., 2013).

CYP2D6
CYP2D6 is one of the most studied enzymes in the field of
pharmacogenetics. It exhibits large interindividual variability on
drug metabolism. The polymorphism of CYP2D6 causes different
metabolizer genotypes, including poor, intermediate, efficient, or
ultra-rapid ones (Ingelman-Sundberg, 2005). The number of
CYP2D6 polymorphisms is over seventy-five, and the
association between CYP2D6 polymorphisms and cancer risk
has been studied for many years (Agundez, 2004). Over twenty
years ago, London et al. reported that the presence of inactivating
CYP2D6 alleles (CYP2D6*4, CYP2D6*3, CYP2D6*5, and
CYP2D6*16) may decrease the risk of lung cancer among the
African-Americans, suggesting the CYP2D6 genetic
polymorphism is not the strong risk factor for lung cancer but
may play a minor role (London et al., 1997). By a meta-analysis, a
minor but statistically significant association of CYP2D6
polymorphism with lung cancer susceptibility was established
(Rostami-Hodjegan et al., 1998). Recently, associations between
childhood acute leukemia (CAL) and genetic polymorphism of
CYP2D6*4 for homozygous alleles were reported, suggesting
CYP2D6*4 polymorphism could play a vital role in the
etiology of CAL (Ferri et al., 2018). The association of Liver
cancer with CYP2D6 genotype was also established by Agundez
et al. (Agundez et al., 1995) In the HCC patients, the CYP2D6*10
allelic frequency was significantly different from those of control
subjects. CYP2D6*10 is also suggested to be a potential biomarker
for hepatocarcinogenesis risk (Zhou et al., 2016). The role of
CYP2D6 polymorphism in melanoma has been investigated by
different research groups with consistent results, indicating
individuals with defect genes are at increased risk (Wolf et al.,
1992; Dolzan et al., 1995; Strange et al., 1999). In other cancers,
CYP2D6 polymorphisms were demonstrated to be associated
with prostate (Wadelius et al., 1999; Sobti et al., 2006), bladder
(Abdel-Rahman et al., 1997; Ouerhani et al., 2008) and renal
cancers (Ahmad et al., 2013).

CYP3A4
CYP3A4 is the best-studied gene polymorphism in the CYP3A
family. A meta-analysis comprising 55 separate studies including
22,072 cancer cases and 25,433 controls found a significant
association between CYP3A4*1B and cancer risk especially
leukemia in the overall population (Zheng et al., 2018). In the
Chinese Han population, a relationship between the TT genotype
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of CYP3A4*1G (rs2242480) polymorphism and the risk of breast
cancer was established (Liu et al., 2019). He et al. found that
CYP3A4 A392G polymorphism, but not CYP3A5 Met235Thr, is
associated with the increased risk in prostate cancer among
Caucasians (He et al., 2014). Although there are many studies on
CYP3A4 gene polymorphism and cancer susceptibility, the underlying
mechanism is still unclear and needs to be further investigated.

THE FUNCTION OF CYTOCHROME
P450-MEDIATED EICOSANOIDS IN
CANCERS
The Roles of Epoxyeicosatrienoic Acids in
Cancer
EETs were discovered in the early 1980s (Capdevila et al., 1981a;
Capdevila et al., 1981b; Chacos et al., 1982). EETs have been
found to function as the regulators of cardiac, vascular (Fleming,
2007; Fleming, 2008; Fleming, 2011; Fleming, 2016), and renal
physiology (Imig, 2005; Capdevila and Wang, 2013; Capdevila
et al., 2015), indicating many important roles on the homeostasis
of healthy tissues. Nakagawa et al. reported that the loss of EETs is
associated with hypertension (Nakagawa et al., 2006). More
recently, EETs have also been found to be associated with
tumorigenesis, cancer metastasis, and angiogenesis (Jiang et al.,
2005; Jiang et al., 2007; Pozzi et al., 2007; Pozzi and Capdevila,
2008; Yang et al., 2009; Mitra et al., 2011; Panigrahy et al., 2012),
recovery of cardiac tissue from ischemic insult (Seubert et al.,
2007) and other pathophysiologic processes.

CYP-mediated biosynthesis of four EETs [5(6)-, 8(9)-, 11(12)-,
and 14(15)-EET] has been implicated in tumor growth and
angiogenesis, as well as suppression of inflammation in murine
models of cancers (Panigrahy et al., 2011). Compared to adjacent
normal tissue, human breast cancer tissue has a higher level of 14
(15)-EET, which was due to increased CYP2C8, CYP2C9, and

CYP2J2 and decreased sEH (Wei et al., 2014). Overexpression of
CYP2J2 was found to be overexpressed in human neoplastic tissue
and human cell lines when compared with the adjacent normal
tissue and normal cell lines, respectively (Jiang et al., 2005; Jiang et al.,
2007). CYP2C9 was found to express in the vasculature of several
human tumor samples and be the regulatory target of human
peroxisomal proliferator-activated receptor-alpha (PPARα), which
have anti-angiogenic and anti-tumorigenic properties (Pozzi et al.,
2010). The elevated EET levels by CYP overexpression or directly
provided by the pump showed the ability to promote cancer
metastasis in a murine model of cancer (Panigrahy et al., 2012).
14 (15)-EET has been exhibited to promote the proliferation of
vascular endothelial cells (Cheranov et al., 2008) and estrogen
receptor-positive breast cancer epithelial cells (Mitra et al., 2011).
The molecular mechanism underlying the function of EETs on
cancer cell proliferation is partly through activation of the PI3-
kinase/AKT pathway and the STAT3 pathway (Jiang et al., 2005).
More recently, Guo et al. discovered the mechanisms by which
cancer cell-intrinsic CYP monooxygenases promote tumor
progression are associated with breast cancer mitochondria and
EETs promoted the electron transport chain/respiration and
inhibited AMPKα (Guo et al., 2017). In triple-negative breast
cancer (TNBC), EETs are important metastasis drivers. EET
concentrations are associated with the upregulation of CYP2C19
and CYP2J2 (Apaya et al., 2019). In addition, EETs promote
epithelial-mesenchymal transition (EMT) and resistance via the
STAT and AKT signaling pathways (Zhang et al., 2006; Jiang
et al., 2007; Mitra et al., 2011; Wei et al., 2014; Luo et al., 2018).

EETs are also anti-inflammatory (Node et al., 1999), which
makes the biological action of EETs on cancer more complicated.
In the murine model, 11(12)-EET can decrease the adhesion of
mononuclear to vascular endothelium induced by tumor necrosis
factor-α (TNF-α) (Node et al., 1999). 14 (15)-EET can also inhibit
the expression of TNF-α and IL-1β induced by LPS in mouse
macrophages (Zhang et al., 2013b). These results supported that
EETs are anti-inflammatory in human and mouse tissues.

FIGURE 2 | Schematic diagram of molecular mechanisms of eicosanoids on the biological function of tumors. Red: indicating the enhanced signaling pathway or
biological function; Green: indicating the suppressed signaling pathway or biological function solid line: proven pathways. Themolecular mechanisms of EETs (A), HETEs
(B), EpOMEs (C), EEQs (D), and EDPs (E).
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However, whether and how EETs play an anti-inflammatory role
in cancer cells needs to be further investigated. The possible
mechanisms underlying EETs regulate cancers are summarized in
Figure 2A.

Recently, EETs were discovered to act the biological function
in a receptor-dependent manner. However, the receptors of EETs
have not been identified. Some research suggested that the actions of
EETs are in part mediated via G protein-coupled receptor (GPCR)
signaling. Five G protein-coupled receptors of the prostaglandin
receptor family (PTGER2, PTGER4, PTGFR, PTGDR, and
PTGER3IV) may be the EET receptors (Liu et al., 2017).

The Roles of Hydroxyeicosatetraenoic
Acids in Cancer
The studies of the role of HETEs in cancer focus on 20-HETE. 20-
HETE formed by CYP4 enzymes exhibits the proinflammatory
function (Khanapure et al., 2007). In recent years, more attention
has been paid to the promoting role of 20-HETE in cancer
progression (Panigrahy et al., 2010; Alexanian and Sorokin,
2013). The endogenous 20-HETE formation has been
implicated in cell proliferation by growth factors, including
epidermal growth factor (EGF), platelet-derived growth factor

TABLE 1 | Examples of some cancers associated with cytochrome P450 enzymes.

CYPs Polymorphism Cancers population References

CYP1A1 T3801C Cervical cancer Asians Wu et al., 2013
(rs4646903) Caucasians and Asians Ding et al., 2018
and/or Indians Jain et al., 2017
A2455G Mexican Juarez-Cedillo et al., 2007
(rs1048943) Chinese Li et al., 2016
— Caucasians Wang et al., 2017
C2453A Lung cancer Egyptian Ezzeldin et al., 2017; Gallegos-Arreola et al., 2008

Mexican
— Laryngeal squamous cell carcinoma Caucasian Gajecka et al., 2005

Thyroid cancer Middle eastern Siraj et al., 2008
Cervical cancer Northeast Thai Wongpratate et al., 2020

T3205C Breast cancer Indians Singh et al., 2007
(rs1800031) Endometrial cancer Caucasian Hirata et al., 2008
— Cervical cancer Northeast Thai Wongpratate et al., 2020

CYP1A2 rs762551 Lung cancer Caucasians Bu et al., 2014
Breast cancer Jordanian Al-Eitan et al., 2019

CYP1B1 rs1056827 Endometrial cancer Chinese Zhu et al., 2011
Laryngeal cancer Chinese Yu et al., 2015

CYP2A6 CYP2A6*4 Lung cancer Japanese Raunio et al., 2001
and Caucasian
CYP2A6*5 —

CYP2C9 rs1799853 Head and neck squamous cell carcinoma Indian Yadav et al., 2014
rs1799853 Non-small cell lung cancer Caucasians Sausville et al., 2018
and
rs1057910

CYP2C19 CYP2C19*2 Bladder cancer German Brockmoller et al., 1996
(rs4244285)
CYP2C19*3 Lung cancer Chinese Yan et al., 2014
— Japanese Tsuneoka et al., 1996

Breast cancer Chinese Gan et al., 2011
Digestive system cancer East Asians Zhou et al., 2013

CYP2C19*17 Breast cancer German Justenhoven et al., 2009
(rs12248560)

CYP2D6 CYP2D6*1A Bladder cancer Egyptian Abdel-Rahman et al., 1997
CYP2D6*3 Lung cancer African-Americans London et al., 1997
CYP2D6*4
CYP2D6*5
and CYP2D6*16
CYP2D6*4 Childhood acute leukemia Italian Ferri et al., 2018

Malignant melanoma British Strange et al., 1999
CYP2D6*3 Prostate cancer Danish Wadelius et al., 1999
and
CYP2D6*4
CYP2D6*10 Hepatocellular carcinoma Chinese Zhou et al., 2016
(rs10655852)

CYP3A4 CYP3A4*1B Leukemia Chinese Zheng et al., 2018
CYP3A4*1G Breast cancer Chinese Liu et al., 2019
(rs2242480)
CYP3A4 A392G Prostate cancer Caucasians He et al., 2014
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(PDGF), and fibroblast growth factor (FGF). Guo et al. found
CYP4/20-HETE pathway could influence the tumor volume.
When implantation of glioma cells transfected with CYP4A1
into the rat, the tumor volume is a 10-fold increase compared
with normal cells (Guo et al., 2008). In NSCLC cells, CYP4A/20-
HETE increased the tumor growth rate and metastasis (Yu et al.,
2011). The signaling mechanisms in CYP4/20-HETE induced
cancer progression are mainly about the activation of MAPK
pathway (Muthalif et al., 1998), PI3K/Akt (Yu et al., 2011), and
reactive oxygen species (ROS) (Guo et al., 2007), which was
summarized as Figure 2B.

The Roles of Epoxyoctadecenoic Acids in
Cancer
EpOMEs are the major epoxygenated fatty acids in human
plasma produced from LA. EpOMEs，also called leukotoxins,
have been shown to act as a responsible factor in circulatory
shock, burn, pulmonary edema, and inflammation (Hanaki et al.,
1991; Hayakawa et al., 1990; Kosaka et al., 1994; Ozawa et al.,
1988; Totani et al., 2000). EpOMEs are pro-inflammatory in
severe burn patients (Totani et al., 2000; Zheng et al., 2001).
Recently, EpOMEs are found to have pro-cancer activity in a
murine model of colorectal cancer (Wang et al., 2019). Evidence
indicated that high LA diets increased the azoxymethane-induced
colon tumorigenesis in rat models (Zheng et al., 2001; Wu et al.,
2004; Fujise et al., 2007; Enos et al., 2016). Case-control studies
showed opposing associations of serum n-3 and n-6 PUFAs with
the risk of colorectal adenoma (Pot et al., 2008). Researchers
found treatment with 12(13)-EpOME increased cytokine
production and JNK phosphorylation in vitro and exacerbated
azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced
colon tumorigenesis in vivo (Wang et al., 2019). The underlying
molecular mechanisms involved in the regulatory role of EpOMEs
on cancer progression are not fully understood, partly because the
specific receptors or direct cellular targets of EpOMEs are unknown.
The effects of EpOMEs on cancers were summarized as Figure 2C.
EpOMEs could be further metabolized to form DiHOMEs in the
presence of sEH. Studies also showed DiHOMEs could induce
chemotaxis, tissue injury, and cause mortality like EpOMEs in
animal models (Moghaddam et al., 1997; Zheng et al., 2001).

The Roles of Epoxyeicosatetraenoic Acid in
Cancer
Epidemiological studies revealed that dietary intake of EPA, the
precursor of EEQs, decreases cancer risk (Bougnoux, 1999). Cui
et al. have found that 17(18)-EEQ, but not 14(15)-, 11(12)-, 8(9)-,
5(6)-EEQ suppressed cell proliferation by down-regulating
cyclin D1 and activation of growth-suppressing p38 MAP
kinase (Cui et al., 2011). Another research also revealed
that a novel synthetic analog of 17(18)-EEQ activated TNF
receptor-1/ASK1/JNK signaling to promote apoptosis in
human breast cancer cells, manifesting the anticancer
action of 17(18)-EEQ (Dyari et al., 2017). Up to now, the
role of EEQ in cancer and its molecular mechanism has not
been fully studied, which needs to be further studied in the

future. The putative mechanism underlying EEQ in cancer
was summarized as Figure 2D.

TheRoles of Epoxydocosapentaenoic Acids
in Cancer
EDPs are the metabolites of DHA mediated by CYP enzymes.
They are suggested to be responsible for some of the beneficial
effects of n-3 PUFAs and n-3 PUFA-rich diet (Arnold et al.,
2010). Evidence has shown that the metabolites of n-3 PUFAs,
mainly EDPs, mediate some effects in chronic disease
conditions, such as hypertension, pain, and kidney diseases
(Ulu et al., 2014; Deng et al., 2017; Hasegawa et al., 2017).
More recently, some experimental studies showed that
16(17)- and 19(20)-EDPs are important mediators in
suppressing inflammation and inhibiting angiogenesis,
endothelial cell migration, endothelial cell proliferation,
and tumor metastasis (Zhang et al., 2013a; Yanai et al.,
2014; Hasegawa et al., 2017). EDPs are super unstable in
vivo since they could be rapidly metabolized by sEH to form
corresponding diols. Zhang et al. found 19,20-
dihydroxydocosapentaenoic acid (19,20-DiHDPA), the
metabolite of 19 (20)-EDP mediated by sEH, did not have
any effect on tumor growth, indicating that the anticancer
effect was from 19 (20)-EDP but not its diol metabolite
(Zhang et al., 2013a). The putative mechanism of EDPs in
cancer was summarized as Figure 2E.

CONCLUSION

Increasing studies supported the important role of CYP-
derived eicosanoids in the progression of cancer and the
resolution of inflammation. The action of EETs and
EpOMEs has been investigated for decades while EEQs
and EDPs are less-studied. Further studies are suggested
to pay more attention to EEQs and EDPs since increasing
the supplement of EPA and DHA with a focus on the
biological activities of these eicosanoids and underlying
mechanisms.

The additional complexity of the regulation of eicosanoids on
inflammation, pain, angiogenesis, and cancer is the sEH
enzyme, which can rapidly metabolize many CYPs-derived
eicosanoids to corresponding fatty acid diols (Chacos et al.,
1983; Zeldin et al., 1995; Zhang et al., 2014a). sEHs may
modulate tumor angiogenesis by hydrolyzing pro-
angiogenic EETs (Panigrahy et al., 2012). sEH also can
hydrolyze anti-angiogenic epoxides of DHA (Zhang et al.,
2013a). Co-inhibition of sEH resulted in a synergistic anti-
inflammatory effect of the inhibitors of COXs and LOXs
(Schmelzer et al., 2006; Liu et al., 2010; Hwang et al., 2011).
Zhang et al. reported the anti-cancer effects of a dual
inhibitor of sEH and COX (Zhang et al., 2014b). In short,
the roles of CYPs/epoxides/sEH axis in cancer progression is
substrate-dependent. Generally speaking, the CYP-mediated
eicosanoids derived from ω-6 fatty acids (e.g. LA and AA)
exacerbate cancer while the ones from ω-3 fatty acids (e.g.
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EPA and DHA) are beneficial in the prevention and/or
treatment of cancer. Manipulation of the CYPs/sEH
pathway with or without supplement of ω-3 fatty acids to
regulate target eicosanoids levels may be a promising strategy to
prevent and/or treat cancers.
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