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ABSTRACT

RNA-binding proteins (RBPs) and miRNAs are critical gene expression regulators that interact with one another in coop-
erative and antagonistic fashions. We identified Musashi1 (Msi1) and miR-137 as regulators of a molecular switch between
self-renewal and differentiation.Msi1 andmiR-137 have opposite expression patterns and functions, andMsi1 is repressed
by miR-137. Msi1 is a stem–cell protein implicated in self-renewal while miR-137 functions as a proneuronal differentiation
miRNA. In gliomas, miR-137 functions as a tumor suppressor while Msi1 is a prooncogenic factor. We suggest that the bal-
ance between Msi1 and miR-137 is a key determinant in cell fate decisions and disruption of this balance could contribute
to neurodegenerative diseases and glioma development. Genomic analyses revealed thatMsi1 andmiR-137 share 141 tar-
get genes associatedwith differentiation, development, andmorphogenesis. Initial results pointed out that these two reg-
ulators have an opposite impact on the expression of their target genes. Therefore, we propose an antagonistic model in
which this network of shared targets could be either repressed by miR-137 or activated by Msi1, leading to different out-
comes (self-renewal, proliferation, tumorigenesis).
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INTRODUCTION

RNA-binding proteins (RBPs) and miRNAs function in
the same regulatory space and interact in multiple
ways. RBPs participate in the processing of specific pre-
miRNAs (Treiber et al. 2017; Nussbacher and Yeo 2018).
RBPs and miRNAs can bind overlapping or nearby regula-
tory elements and modulate the expression of shared tar-
get transcripts in an antagonistic fashion (Gardiner et al.
2015; Neelamraju et al. 2015; Yano et al. 2015; Banelli
et al. 2017; Lennox et al. 2018; Rajgor 2018). On the other
hand, they can act as partners to repress the expression of
a common target (Ciafrè and Galardi 2013; Zhao et al.
2018). Although most cases described so far involve a sin-
gle transcript, there are examples suggesting that the rela-

tionship between RBPs andmiRNAs can bemore complex.
For instance, seven mammalian microRNAs preferentially
colocalize with Pumilio (PUM) binding sites and have bind-
ing motifs that reverse complements the PUM recognition
site; PUM binding to transcripts enhances miRNA-binding
efficiency and subsequently increases decay of shared
targets (Jiang and Lou 2013). Many more of these types
of complex interactions are predicted to occur (Preusse
et al. 2015). RBP-miRNA interactions are particularly im-
portant in the context of the nervous system; both
regulators play critical roles in neurogenesis and brain
development, and alterations affecting their function or
expression levels contribute to neurological disorders
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and brain tumors (Gardiner et al. 2015; Neelamraju et al.
2015; Yano et al. 2015; Banelli et al. 2017; Lennox et al.
2018; Rajgor 2018).
Musashi1 (Msi1) is an evolutionarily conserved RBP and

stem cell marker that plays a critical role in neurogenesis by
regulating the balance between self-renewal and differen-
tiation (Glazer et al. 2012). Msi1 modulates the expression
of its target genes by binding to (G/A)UnAGU (n=1–3)mo-
tifs locatedmainly in the 3′-UTR of target genes (Toda et al.
2001; Uren et al. 2015; Iwaoka et al. 2017). Msi1 is required
for proper development of the brain as Msi1−/− mice
develop obstructive hydrocephalus and ependymal ab-
normalities (Sakakibara et al. 2002). In experimental mod-
els of hypoxia and ischemic injury, it has been shown that
Msi1-enriched progenitor cells are recruited to the site of
injury to reconstitute neural networks and possibly prevent
neuronal cell death (Yagita et al. 2001, 2002; Takasawa
et al. 2002; Tonchev et al. 2003, 2005; Zhang et al. 2004;
Shimmyo et al. 2007). Similarly, in adult epileptic tissue,
there is an increased expansion of neural progenitor cells
that display high expression of Msi1 (Crespel et al. 2005).
Musashi1 is highly expressed in a variety of tumor types

including brain tumors (medulloblastoma and gliomas)
(Kudinov et al. 2017). Msi1 expression is higher in medul-
loblastoma than in adult cerebellum and is significantly
elevated in high-risk groups 3 and 4. Furthermore, survival
analysis revealed a significant association of Msi1 immuno-
reactivity with poor overall survival (OS) and progression-
free survival (PFS) (Vo et al. 2012b). A similar scenario is
encountered in gliomas, with Msi1 expression being par-
ticularly high and prevalent in the most aggressive type,
glioblastoma multiforme (GBM) (Toda et al. 2001; Ma
et al. 2008; Dahlrot et al. 2013). Supporting its proonco-
genic roles, several groups have shown that Msi1 high ex-
pression is necessary to maintain cancer phenotypes
and influences tumor growth (Kudinov et al. 2017). Msi1
is also implicated in radio- and chemo-resistance (de
Araujo et al. 2016). Moreover, Msi1 target analysis by
cross-linking immunoprecipitation (CLIP) and RNP immu-
noprecipitation (RIP) identified more than 1000 transcripts
whose biological functions support Msi1 involvement in
apoptosis, cell cycle, proliferation, adhesion, invasion, mi-
gration, and DNA-repair (de Sousa Abreu et al. 2009; Vo
et al. 2012b; Uren et al. 2015).
We have previously shown thatMsi1 is regulated by sev-

eral tumor suppressor miRNAs, including miR-137 (Vo
et al. 2011). Contrary to Msi1, miR-137 promotes differen-
tiation and prevents glioblastoma development. We show
here a novel aspect of this antagonistic relationship; our
results indicate that these two regulators share a large
number of interconnected target genes implicated in neu-
rogenesis and glioblastoma growth. We propose a model
in which Msi1 and miR-137 regulate this network of targets
in different directions (activation vs repression); by turning
up or down the expression levels of their components,

Msi1 and miR-137 contribute to cell fate decisions (self-re-
newal, differentiation, or tumorigenesis).

RESULTS AND DISCUSSION

Gene regulatory networks are well-documented in the
case of transcription factors and miRNAs. The complex in-
teractions between these two regulators and their target
genes take place in different organisms, affect many bio-
logical processes and contribute to diseases and cancer
(Martinez and Walhout 2009; Arora et al. 2013). In the
case ofmiRNA-RBPs, the network aspect has not been fully
explored yet. Although they have been shown to interact
in multiple ways, the large majority of examples described
so far involve a single shared target transcript.
Musashi1 is regulated by a set of “tumor suppressor”

miRNAs that encompass miR-34a, miR-101, miR-128,
miR-137, andmiR-138 (Voet al. 2011). LikeMusashi1, these
miRNAs function in the interesting intersection of neuro-
genesis-brain tumordevelopment. Theypromoteneuronal
differentiation and display dramatic changes in expression
during this process (Chang et al. 2011; Santos et al. 2016;
Rajman and Schratt 2017). In the cancer scenario, these
miRNAsoften show reducedexpression inGBM in compar-
ison to normal brain and mimics transfection affects cancer
relevant phenotypes (Qiu et al. 2013; Rathod et al. 2014;
Tamim et al. 2014; Sun et al. 2015; Liu et al. 2016; Shan
et al. 2016; Shea et al. 2016; Tian et al. 2016; Rooj et al.
2017). We inquired if these miRNAs and Msi1 have a
more complex relationship, meaning if their antagonistic
functions in neurogenesis and glioma development come
as a result, at least in part, via their impact on shared target
transcripts. To test that, we downloaded from Targetscan
(Agarwal et al. 2015) the list of predicted targets for all
five miRNAs, built a Msi1 target list from previous CLIP
and RIP analyses (de Sousa Abreu et al. 2009; Vo et al.
2012b; Uren et al. 2015) and determined the overlap.
Corroborating our expectations, we observed that these
miRNAs potentially share a large number of targets with
Msi1 and also among themselves; in all cases with the
exception of miR-138, the observed overlaps are statisti-
cally significant (Supplemental Fig. S1; Supplemental
Tables S1, S2).
We decided to focus on miR-137–Msi1 association due

to the fact that Musashi regulation by miR-137 is the only
one among the miRNAs we studied to be highly con-
served. In Figure 1A, we show that the miR-137 binding
site inMsi1’s 3′-UTR is not only conserved among all verte-
brates, from zebrafish till humans, but also across the ge-
nus Drosophila. This grade of conservation suggests that
Musashi regulation by miR-137 is a critical component in
the balance between self-renewal and differentiation.
The importance of miR-137 goes beyond neurogenesis.

miR-137 has been implicated in multiple neurological dis-
orders; for instance, single nucleotide polymorphism
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FIGURE 1. Musashi1’s role in neurogenesis. (A) TargetScan predictions show that miR-137 binding site in Msi1’s 3′-UTR is conserved among ver-
tebrates and in the Drosophila genus. Highly conserved nucleotides are shown in blue boxes. (B) Msi1 mRNA expression decreases during NSC
differentiation in vitro (left panel). Western blot analysis shows that Msi1 protein levels are higher in NSCs in comparison to differentiated cells.
β-Tubulin III was used as a neuronal marker (right panel). (C ) Msi1 expression is higher in cells located in subventricular zone (SVZ) in comparison to
the cells in the striatum (STM). (D) Western analysis shows effective siRNA knockdown of Msi1 in NSCs, siMsi1 versus siCtrl (top panel).
Quantification of the percentage of NSCs that incorporated BrdU following transfection with siMsi1 and siRNA control (bottom panel).
(E) NSCs were transfected with siMsi1 or siControl and then transferred to differentiation media. Cells were immunostained with β-Tubulin III
(red) 4 d later (left panel). Nuclei were stained with DAPI1 (blue). qRT-PCR analysis showing Msi1 knockdown levels obtained in NSCs (panel
in themiddle). Quantification of neurons 4 d after transfer to differentiation media (right panel). Experiment was performed using biological trip-
licates. The data are showed as mean± standard deviation. (∗) P-value>0.05, (∗∗) P<0.001, (∗∗∗) P<0.0001.
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(SNP) analysis established miR-137 as a marker for schizo-
phrenia susceptibility (for review, see Yin et al. 2014).
Reduced miR-137 expression has been observed in brain
tissue of patients with depression and suicidal behavior
(Zhao et al. 2013). Moreover, miR-137 has been shown to
be deregulated in a cellular model of Huntington Disease
(Kozlowska et al. 2013) and in Alzheimer’s disease
(Saraiva et al. 2017). In the context of tumorigenesis, miR-
137 has been defined as a tumor suppressor miRNA in nu-
merous cancer types, including gliomas (Gao et al. 2015;
Chang et al. 2016; Dong et al. 2016; Han et al. 2016;
Neault et al. 2016; Sakaguchi et al. 2016; Wu et al. 2016).
In the particular case of gliomas, miR-137 expression levels
predict survival and transfection ofmiR-137mimics into gli-
oma cells decreased proliferation, invasion and growth
(Chen et al. 2012; Li et al. 2013; Tamim et al. 2014).
We have previously shown that miR-137 expression in-

creases as murine neural stem cells (NSCs) differentiate
(Santos et al. 2016). Analysis of Msi1 expression during
neurogenesis showed a profile opposite to the one de-
scribed for miR-137 (Fig. 1B). Msi1 expression levels in
the SVZ, a neural stem cell niche, and in the STM, a differ-
entiated tissue of murine brains, are the inverse of what we
reported for miR-137 (Santos et al. 2016). Msi1 expression
is higher in the SVZ where self-renewing and proliferating
stem cells are located (Fig. 1C). Similarly, analysis of The
Cancer Genome Atlas (TCGA) glioma samples showed
thatMsi1 andmiR-137 display opposite patterns of expres-
sion and these patterns are strongly correlated (R=−0.45;
P-value =2.2×10−26) (Supplemental Fig. S1D). These re-
sults support the hypothesis of miR-137 being a critical
regulator of Msi1 expression.
miR-137 is required for lineage progression and neural

differentiation. We have shown that blockage of miR-137
by antagomiRs disrupts the production of neuronal cells
while miR-137 mimics transfection has the opposite effect
(Santos et al. 2016). Moreover, transfection of miR-137
mimics in NSCs decreased self-renewal and proliferation
(Santos et al. 2016). A similar analysis was conducted
with Msi1, and we observed that in respect to control,
Msi1 knockdown reduced NSCs proliferation (Fig. 1D)
and increased the number of neurons when NSCs were in-
duced to differentiation (Fig. 1E).

Msi1 and miR-137 shared targets are implicated in
development, differentiation, and cell migration

To expand on the potential antagonism betweenMsi1 and
miR-137, we generated a list of identified miR-137 targets
by compiling the results of our previous studies (Tamim
et al. 2014; Santos et al. 2016). Additionally, we incorporat-
ed the validated set of targets described on miRTarBase
(Hsu et al. 2011). A comparison to Msi1 targets list identi-
fied 141 potential shared targets (Supplemental Tables
S3, S4; Supplemental Fig. S1C). To evaluate the signifi-

cance of this overlap, we compared the target sets of three
RBPs (Msi1, hnRNPH1, and IGF2BP3) (Supplemental Table
S1) and miRNAs (conserved families) (Supplemental Table
S5). First, we looked at miRNAs that share a large number
of targets with Msi1, hnRNPH1 and IGF2BP3 (minimum
10%of total identified targets for each RBP). Next, we eval-
uated the nature of these overlaps. More specifically, we
checked the number of miRNA binding sites per transcript
and determined for each RBP-miRNA overlap the number
of transcripts targeted only by a small number of miRNAs
(less than three, and less than five). miR-137 is not only
among the miRNAs sharing the largest number of targets
withMsi1 but also has the largest number of shared targets
with a small number of miRNA sites. This trend was not ob-
served in the analysis with the other two RBPs we analyzed
(Supplemental Table S6).
We analyzed the expression levels of Msi1/miR-137

shared targets in GBM, low-grade glioma (LGG) and
normal brain using samples from TCGA and Genotype-
Tissue Expression (GTEx) project. For the ones we ob-
served consistent expression values across samples sets,
we determined that the large majority of them show in-
creased expression in GBM in comparison to both normal
brain and LGG (Fig. 2A; Supplemental Table S7).
Gene ontology and pathway analyses showed thatMsi1/

miR-137 shared targets are preferentially associated with
differentiation, morphogenesis, development and migra-
tion (Fig. 2B; Supplemental Table S4). Moreover, network
analysis shows that a large number of shared targets are
highly interconnected. Major nodes include SRC, EGFR,
NRAS, PDGFRα, and SP1 (Fig. 2C). These five genes are
known key players in neurogenesis and gliomagenesis.
EGFR and PDGFRα are members of the epidermal growth
factor and receptor tyrosine kinase families, respectively,
and are established drivers of gliomagenesis (Aldape et
al. 2015). SRC is a member of the Src family of kinases
(SFKs), which are nonreceptor tyrosine kinases. SFKs inter-
act with various cell surface receptors including EGFR and
PDGFRα (Han et al. 2014). SRC inhibitors have been ex-
plored to treat glioblastoma (Eom et al. 2016). NRAS, a
member of the RAS family of proto-oncogenes, is a
GTPase that is frequently mutated in tumors and is known
to promote cell proliferation and inhibit apoptosis (Serna-
Blasco et al. 2018). SP1 is a transcription factor that regu-
lates the expression of a large number of target genes
and has been implicated in cell growth, differentiation, ap-
optosis, and tumor development. Its increased expression
is observed in multiple tumor types and SP1 targeting has
been pursued as a therapeutic strategy (Vizcaíno et al.
2015).
To expand on the analysis of shared Msi1/miR-137

targets, we selected a set of genes with little or no informa-
tion regarding their participation in neurogenesis and glio-
blastoma development (FSTL1, PTGRFN, STC1, CDH6,
DCBLD2) and evaluated via siRNA knockdown their impact
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on the proliferation of U251 glioblastoma cells and neuro-
nal differentiation using the neuroblastoma BE-(2)-C as a
model.DCBLD2 and STC1 knockdowndecreased cell pro-
liferation while knockdown of FSTL1 induced neuronal dif-

ferentiation (Supplemental Fig. S4A,B). Discoidin, CUB,
and LCCL domain containing 2 (DCBLD2) is a receptor ty-
rosine kinase that is aberrantly expressed in a variety of tu-
mors and linked to invasiveness and poor prognostic

A

B C

FIGURE 2. Msi1 and miR-137 shared targets are associated with neurogenesis and gliomagenesis. (A) Heatmap showing the expression of
miR-137/Msi1 shared targets in GBM versus LGG samples from the TCGA data repository and GBM versus healthy (frontal) cortex samples
from GTEx. We show only the genes with consistent expression values across sample sets. (B) Gene Ontology (GO) analysis (biological process)
of Msi1/miR-137 shared targets. Associations between most relevant GO terms according to REVIGO (Supek et al. 2011). (C ) Predicted protein
network according to STRING (Szklarczyk et al. 2015) showing the associations between Msi1/miR-137 common targets.
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outcome (Hofsli et al. 2008; Kikuta et al. 2017; Martinez-
Romero et al. 2018; Raman et al. 2018). Stanniocalcin-1
(STC1) is secretory glycoprotein that has been linked to
chemo-resistance, metastasis and increased cell prolifera-
tion in many tumor types including gastric cancer, hepato-
cellular carcinoma, colorectal cancer, and acute myeloid
leukemia (Abaza et al. 2016; Rezapour et al. 2016; Chan
et al. 2017; Wang et al. 2019); in glioblastoma, STC1 func-
tions as a stimulator for stem-like traits of GBMcells (Li et al.
2018). Follistatin-like 1 (FSTL1) is a secreted glycoprotein
implicated in development cardiovascular disease, cancer,
and arthritis (Mattiotti et al. 2018). Analysis of the TCGAgli-
oma data indicated that these three genes show higher
levels of expression in glioblastoma (grade IV) in compari-
son to grades II and III. Moreover, glioblastoma patients
displaying high expression of these genes have a worse
prognosis (Supplemental Fig. S4C,D). Overall, these re-
sults are in line with the hypothesis that Msi1/miR-137
shared targets are “activated” in cancer cells and contrib-
ute to tumorigenesis.

Msi1 and miR-137 regulatory impact
on shared targets

Considering Msi1 and miR-137 opposite roles in neuro-
genesis and tumorigenesis, we expect most of the shared
targets to be regulated in opposite directions. To test that,
we selected initially PDGFRα, one of the major nodes of
the network described above. Msi1 was initially described
to be a repressor of translation (Imai et al. 2001), but sever-
al studies later demonstrated thatMsi1 also functions as an
activator of translation in addition to roles in mRNA decay,
splicing and polyadenylation (Kudinov et al. 2017). We
have previously shown that Msi1 knockdown affects the
profile of PDGFRαmRNA in polysomal gradients, suggest-
ing that Msi1 increases its translation (Uren et al. 2015). In
support, we show thatMsi1 knockdown produces minimal
changes at the mRNA level but drastically affects PDGFRα
protein levels (Fig. 3A). Changes in PDGFRα protein levels
are corroborated in U251Msi1 KO cells (Supplemental Fig.
S2A). Our CLIP analysis (Uren et al. 2015) indicates that
Msi1 has multiple binding sites along PDGFRα 3′-UTR
(Fig. 3B). We prepared four luciferase reporters, the first
one containing the full-length 3′-UTR of PDGFRα and the
other three containing adjacent fragments named R1,
R2, and R3. An increase in luciferase activity was observed
when the full-length 3′-UTR reporter was cotransfected
with a vector expressing Msi1; in the cases of clones R2
and R3, Msi1 transgenic expression produced only a par-
tial increase in reporter activity (Fig. 3B,C). The results sug-
gest that binding ofMsi1 to different sites along the 3′-UTR
is necessary to properly regulate PDGFRα expression.
PDGFRα 3′-UTR also contains predicted binding sites for

a large number of miRNAs. miR-34a inhibits colon cancer
proliferation and metastasis by repressing PDGFRα

(Li et al. 2015). Similarly, overexpression of miR-140-5p
prevented ovarian cancer cell proliferation and induced
apoptosis via PDGFRα regulation (Lan et al. 2015).
Relevant to our study, miR-137 and miR-128, another
Msi1 regulator, have conserved binding sites in PDGFRα
3′-UTR (Fig. 3D). Transfection of GBM cells with miR-128
or miR-137 showed a reduction in PDGFRα mRNA and
protein levels (Fig. 3E; Supplemental Fig. S2B). The regu-
lation of PDGFRα by each miRNAwas validated via lucifer-
ase assays. We used the luciferase reporter described
above and prepared additional constructs by deleting
miR-137 and miR-128 predicted binding sites. Reduction
in luciferase activity was observed when the PDGFRα
3′-UTR luciferase reporter was cotransfected with either
miR-128 or miR-137 mimics. The cotransfections were re-
peated, this time with luciferase reporters with deleted
miRNAbinding sites. miR-128was no longer able to inhibit
the expression of the reporter while the effect was dimin-
ished in the case of miR-137 (Fig. 3F).
It could be argued thatMsi1 positive impact on PDGFRα

expression could take place via repression of miR-128 and
-137 binding to their target sequences. This possibility is
very unlikely since typically miR-128 and -137 display
very low levels of expression in GBM. In any case, we con-
ducted luciferase assays using constructs lacking the bind-
ing sites for miR-128 and -137. Deletion of either miR-128
or miR-137 binding sites did not affect Msi1 positive affect
on the expression of the luciferase reporter vector; values
for luciferase activity were very similar to the ones obtained
with the wild-type 3′-UTR construct (Supplemental Fig.
S2D).
To further test our antagonistic model, we evaluated a

set of shared targets of Msi1/miR-137 by western blot.
Control and U251 GBM cells were transfected with Msi1
siRNA or miR-137 mimics and changes in protein levels
were measured 48 h later. Treatment with Msi1 siRNA or
miR-137mimics decreased protein expression, suggesting
that these target transcripts are repressed by miR-137 and
activated by Msi1 (Fig. 4A–E).
Target repression by miR-137 could depend on Msi1 in-

hibition. To rule out this possibility and show direct repres-
sion of shared targets by miR-137, we conducted
experiments in a U251 Msi1 KO line (de Araujo et al.
2016). U251 wild-type cells and U251Msi1 KO were trans-
fected with either control or miR-137 mimics and later, we
measured by qRT-PCR the impact on mRNA levels of a list
of Msi1/miR-137 shared targets. In all cases analyzed, we
observed a reduction in mRNA levels upon miR-137 mim-
ics transfection and the levels of repression in each case
were similar between U251 Msi1 KO and U251 wild-type
cells (Supplemental Fig. S3). We also measured the dis-
tances between the closest Msi1 and miR-137 binding
sites in shared transcripts to determine if they tend to over-
lap or be in close proximity, what could suggest a direct
competition between these regulators to bind to their
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targets. The median value is 220 nt. Although mRNAs
form secondary structure that potentially could approxi-
mate binding sites, based on our current data, we do not
favor the idea that Msi1 and miR-137 often compete for
binding.

Amodel of RBP-miRNA antagonism and its potential
implication in neurogenesis and gliomagenesis

Ectopic expression of miR-137 in GBM cells disrupts sever-
al cancer related phenotypes (Tamim et al. 2014; Sun et al.
2015). Similar results were observed upon Msi1 knock-
down (Uren et al. 2015). To support the model of antago-
nism between Msi1 and miR-137, we determined if Msi1 is
able to counteract or decrease miR-137 effect on cell pro-
liferation and differentiation. Transfection of U251 cells

with miR-137 mimics strongly reduced cell proliferation.
However, when cells were also infected with a lentiviral
construct containing Msi1 ORF, the negative effect of
miR-137 mimics on cell proliferation was almost entirely
neutralized by Msi1 (Fig. 4F). Similarly, we used the neuro-
blastoma BE-(2)-C line as amodel to evaluate the impact of
miR-137 versus Msi1 on neuronal differentiation. Cells
were transfected/infected with miR-137 or control mimics
in combination with Msi1 expressing lentivirus or control.
After 5 d, we used the Incucyte system to measure neurite
outgrowth as an indicator of differentiation. miR-137 effec-
tively induced neurite formation but the effect was dimin-
ished in the presence of Msi1 (Fig. 4G).

Down-regulation of miR-137 is observed inmultiple can-
cer types and in many cases, including glioblastoma, often
as a result of hypermethylation of its promoter (Chen et al.

DA
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FIGURE3. PDGFRα is regulated byMsi1,miR-128, andmiR-137. (A) U251 cells were transfectedwith siCtrl or siMsi1 for 72 h.Msi1 (left panel) and
PDGFRα (middle panel) mRNA expression levels were determined by qRT-PCR. Protein levels of Msi1 and PDGFRα were evaluated by western
blot, using α-Tubulin as loading control (right panel). Experiment was performed with biological and technical triplicates. (B) UCSC Genome
Browser plots of three experimental replicas of Msi1 iCLIP analysis. Light blue arrows show Msi1 binding sites (iCLIP sites) in the 3′-UTR of
PDGFRα. In the middle section, we show a diagram representing the inserts cloned into a luciferase reporter; full-length (FL) contains the entire
3′-UTR of PDGFRα, R1 (from nucleotides 1 to 715), R2 (from nucleotides 716 to 1936), and R3 (from nucleotides 1937 to 2987). (C ) Results of
luciferase assays. Cells were transfected with combinations of the luciferase reporter constructs shown in B and Msi1 or GST expressing vectors.
Figure on the right showsMsi1 expression levels measured by qRT-PCR in each transfection. Experiment was performedwith biological and tech-
nical triplicates. (D) Diagram shows predicted miR-128 and miR-137 binding sites in the 3′-UTR of PDGFRα according to TargetScan and main
Msi1 binding sites identified by CLIP. Base pair interactions between the mRNA and the miRNA seed region are displayed as vertical lines.
(E) PDGFRα mRNA levels measured by qRT-PCR of U251 cells transfected with miRNA mimics (control, miR-128, or miR-137) (left panel).
Western blot analysis of PDGFRα levels in U251 cells transfected with miRNA mimics (control, miR-128, or miR-137). α-Tubulin was using like
a loading control. The two PDGFRα bands detected in all western blots are likely due to differences in glycosylation (Ip et al. 2018).
(F ) Regulation of PDGFRα by miR-128 and miR-137 was validated using luciferase assays. Three luciferase constructs were used. The first one
contains the wild-type sequence of PDGFRα 3′-UTR. In the other two, the predicted binding motifs for miR-137 or miR-128 were deleted.
Experiment was performedwith biological and technical triplicates. Datawas analyzed with Student’s t-test and are presented as themean±devi-
ation standard. (∗) P<0.05, (∗∗) P<0.001, (∗∗∗) P<0.0001.
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FIGURE 4. Msi1 and miR-137 have opposite regulatory effects on the expression of shared target genes. (A–E) Western blot analysis showing
EGFR, NEFL1, NRAS, ECT2, and CDC6 expression in U251 cells transfected with Msi1 siRNA (siMsi1) or control siRNA (upper panel) and
miR-137 or control mimics (Ctrl) (bottom panel). α-Tubulin was included as a loading control. (F ) Graph shows proliferation curves obtained
with the IncuCyte live imaging system of U251 cells transfected/infected with control mimics and control vector, miR-137mimics and control vec-
tor, miR-137mimics andMsi1 expressing vector. Experiment was performed using biological and technical triplicates. (G) BE(2)C cells were trans-
fected with combinations of miRNAmimics and expression vectors, and impact on differentiation (neurite outgrowth) wasmeasured 5 d later with
Incucyte. Pictures on the left show aspect of transfected cells. Graphs on the right show relative neurite length in each condition. Experiment was
performed using biological duplicates and technical quadruplicates. Data was analyzed using Student’s t-test and are presented as the mean±
standard deviation t-test. (∗) P<0.05, (∗∗) P<0.001, (∗∗∗) P<0.0001. (H) Msi1 and miR-137 and their opposite impact on cell fate decisions. In our
antagonistic model, miR-137 drives differentiation (tumor suppression) using a double negative switch: first, by direct inhibition of Msi1 and sec-
ond, by repressing the expression of their shared targets. On the other hand, Msi1 positive impact on the expression of shared targets is central in
its function in self-renewal, proliferation, and tumorigenesis.
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2011; Bier et al. 2013; Kang et al. 2015; Zhang et al. 2018).
We suggest that down-regulation of miR-137 could func-
tion as an important event that will enhance the expression
ofMsi1 and their shared targets in glioma cells, promoting
“stemness” and oncogenic activation (Fig. 4H).

Dramatic changes in gene expression take place during
neurogenesis and gliomagenesis. The regulatory network
modulated by Msi1 and miR-137 is likely part of a larger
one involving other miRNAs and RBPs. In fact, we have al-
ready shown that miR-137 share a large number of targets
with miR-124 and -128 and these three miRNAs work syn-
ergistically to regulate neurogenesis (Santos et al. 2016).
miR-128 is also a regulator of Msi1 (Vo et al. 2011) and
they potentially share several targets (Supplemental
Table S1). Based on expression and distribution of binding
sites, HafezQorani et al. (2016) predicted potential interac-
tions involving miRNAs and RBPs. In particular, they show
that HuR andMsi1 binding sites co-occur in a large number
of transcripts. Cooperative interactions between these
RBPs were suggested based on the fact that transcripts
containing Msi1 sites within 200 nucleotides (nt) of the
HuR sites are more destabilized upon HuR depletion
(HafezQorani et al. 2016). Interestingly, we have shown
previously that HuR positively regulates the expression of
Msi1 and they show strong expression correlation in
GBM samples (Vo et al. 2012a).

Conclusion

In summary, we propose that Msi1 and miR-137 modulate
cell fate decisions by acting primarily on a shared network
of target genes. In our antagonistic model, miR-137 drives
differentiation (tumor suppression) using a double nega-
tive switch: first, by direct inhibition of Msi1 and second,
by repressing the expression of their shared targets. On
the other hand, Msi1 positive impact on the expression
of shared targets is central for its function in self-renewal
and proliferation (oncogenic activation) (Fig. 4H).
Functional studies are required to identify Msi1/miR-137
main mediators of their roles in neurogenesis, self-renewal
and brain tumor development.

MATERIALS AND METHODS

Cell culture

U251 and T98G glioblastoma cells, neuroblastoma BE-(2)-C and
HT1080 fibrosarcoma cells were maintained in Dulbecco’s modi-
fied Eagle’s medium (DMEM), supplemented with 10% fetal bo-
vine serum (Thermo Fisher), 100 units/mL penicillin, 100 µg/mL
streptomycin and 1 mM sodium pyruvate at 37°C in a 5% CO2 in-
cubator. U251 Musashi1 Knockout line was described in de
Araujo et al. (2016).

To prepare a U251 line stably expressing Musashi1, we trans-
duced cells with a lentiviral vector containing Msi1 ORF

(pReceiver-Lv242) (GeneCopoeia). A control line containing the
empty vector was also prepared. A total of 2000 cells were seed-
ed in 96-well cell plates and later transducedwith lentivirus; amul-
tiplicity of infection (MOI) of 10 per cell was used. After 24 h, cells
were selected with 0.5 µg/mL puromycin. The transduction effi-
ciency was determined daily with an inverted fluorescent micro-
scope and was quantified by measuring the GFP-expressing
cells as a percentage of the total number of visible cells.

NSC culture

All animal care and experimental procedures were approved by
the UTHSCSA Institutional Animal Care and Use Committee
(Protocol #13091X). SVZs were dissected under a stereoscope
from 2-mo-old Swiss-Webster mice (Charles River Laboratories)
and dissociated into single-cell suspension with 0.25% papain
(Worthington Biochemical Corporation) and 12 mg/mL DNase
(Sigma) in DMEM at 37°C for 45 min. Cells were washed 2× in
DMEM by centrifugation and plated in a six-well plate (Corning)
in the presence of N5medium (DMEM/F-12/N-2), 5% fetal bovine
serum (FBS, Thermo Fisher), 20 ng/mL epidermal growth factor
(EGF, Thermo Fisher), 20 ng/mL basic fibroblast growth factor
(bFGF, Peprotech), and 35 mg/mL bovine pituitary extract
(Thermo Fisher). Media were changed every 2 d. After cells were
confluent, they were transfected as described below.
Differentiation of NSCs was induced by removing EGF, FGF,
and FBS from the media.

siRNA transfection

Cells were transiently transfectedwith 25 nMof nontargeting con-
trol or Msi1 siRNA, using Lipofectamine RNAiMAX (Invitrogen).
Cells were harvested after 72 h and subsequently used in assays
described below. The following siRNAs were obtained from
the Invitrogen Stealth RNAi collection: MSI1HSS106732,
MSI1HSS106733, and MSI1HSS106734. Invitrogen siRNA nega-
tive control was # Cat. 12935-300. The following siRNAs are a
part from the collection ThermoFisher Silencer Select: FSTL1
(s22034) cat# 4427037, PTGRFN (s11462) cat# 4427037, STC1
(s13549) cat# 4427037, CDH6 (s2784) cat# 4427037, DCBLD2
(s43617) cat# 4427037.

NSCs transfections were performed as described previously
(Santos et al. 2016). Briefly, 105 cells were plated into a 24-well
plate coated with poly-L-Ornithine (Sigma) and Laminin (Thermo
Fisher). Cells were transiently transfected with control siRNA or
Msi1 siRNA (MSI1HSS106732, MSI1HSS106733, MSI1HSS106
734; Life Technologies, Thermo Fisher) using X-Treme siRNA
transfection reagent (Roche). Experiments were performed using
biological and technical replicates.

microRNAs mimics transfection

Cells were transfected with 5–25 nM of miR-128 (cat. no. MSY0
000424, QIAGEN), miR-137 (cat. no. MSY0000429, QIAGEN),
or miR-control mimics (cat. no. 1027280, QIAGEN), using
Lipofectamine RNAiMax (Invitrogen) according to the manufac-
turer’s instructions. Transfected cells were used in different assays
described below.

Velasco et al.

776 RNA (2019) Vol. 25, No. 7

http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.069211.118/-/DC1
http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.069211.118/-/DC1


RNA extraction, cDNA synthesis, and qRT-PCR

Total RNA from cells was isolated using TRIzol Reagent
(Invitrogen). In the case of NSCs, total RNA was extracted from
cells using themirVana RNA Isolation System (Ambion), according
to the manufacturer’s instructions. cDNA was synthesized using
the High Capacity cDNA Reverse Transcription Kit (Applied
Biosystems) according to the manufacturer’s protocol.
Quantitative RT-PCR (qRT-PCR) was performed using a 7500
Real-Time PCR System (Applied Biosystems). TaqMan Universal
PCR Master Mix (Applied Biosystems) and the following probes:
Msi1 Hs01045894; PDGFRα Hs00998018; EGFR Hs01076078;
ECT2, 00978168; NEFL1 Hs0019624; CDC6 Hs00154374; NRAS
Hs00180035; GAPDH Hs99999905, FSTL1 Hs00907496_m1,
PTGRFN Hs01385989_m1, STC1 Hs00174970_m1, CDH6 Hs0
0191832_m1, DCBLD2 Hs00294635_m1 were used. Data were
acquired using the SDS 2.0.1 software package (Applied
Biosystems) and analyzed with the 2−ΔΔCT method with GAPDH
as a normalization control. For all comparisons, biological and
technical triplicates were used.

Reverse transcription of miRNAs was performed with the High
Capacity cDNA Reverse Transcription Kit (Thermo Fischer
Scientific) and the miRNA-specific reverse primer. qRT-PCR was
done using the TaqMan probes Hsa-miR-128 TR002216; hsa-
miR-137, RT001129 and RNU48, TM 001006, from the TaqMan
MicroRNA Assay (Applied Biosystems).

Luciferase reporter constructs

Luciferase reporter constructs containing the full-length 3′-UTR of
PDGFRα or regions (nucleotides 1 to 715, R1), (nucleotides 716 to
1936, R2), and (nucleotides 1937 to 2987, R3) were cloned into the
pmirGLO vector (Promega) upstream of the Firefly luciferaseORF.

Deletion of miR-128 and miR-137 sites in PDGFRα 3′-UTR was
performed using the Quick Change Mutagenesis Kit (Agilent
Technologies). The following primers were used: miR-128 poor
conserved site, forward (GAAACATGGGCTGTGGCAGATGATG
CTTTGG), reverse (CCAAAGCATCATCTGCCACAGCCCATGT
TTC); miR-128 conserved site forward (GTATCACTGCCTTCG
CCACAGGCACATTAAC), reverse (GTTAATGTGCCT GTGGCG
AAGGCAGTGATAC); miR-137 forward (GCAGATGATGCTTTG
GAAGACTACCTACTGGTGTAATC), reverse (GTAGGTAGTCAA
GTACTTTAGCATCATCTGCCGATAGCAC).

Luciferase assay

HT1080 cells were transiently cotransfected in 96 well-plates with
45 ng of luciferase reporter plasmids described above and 15 ng
of pcDNA3 (Invitrogen) constructs expressing either Msi1 or GST
(control) using GeneJammer (Agilent Technologies). Forty-eight
hours after transfection, cells were harvested and assayed for lu-
ciferases activity using the Dual Luciferase Assay System
(Promega). Firefly luminescence activity was normalized using
Renilla luminescence activity as an internal loading control.
Biological and technical triplicates were used.

A similar experiment was performed to measure the impact of
microRNAs on PDGFRα expression. HT1080 cells were cotrans-
fected with 50 ng/µL of the PDGFRα-3′-UTR luciferase reporter
vector (wild-type or miRNA site deletions) and 10 nmol of the per-

tinent miRNA or control mimic, using Lipofectamine 3000
(Invitrogen). Forty-eight hours after transfection, cells were har-
vested and assayed for luciferases activity as above. Firefly lumi-
nescence activity was normalized using Renilla luminescence
activity as an internal loading control. Biological and technical
triplicates were used.

Immunoblot analysis

Analysis of GBM cells

Cells were harvested in RIPA buffer (1%Nonidet P-40, 0.5% deox-
ycholate, and 0.1% sodium dodecylsulfate [SDS] in phosphate-
buffered saline [PBS]) containing a protease inhibitor cocktail
Complete Mini, EDTA Free (Roche) and subsequently sonicated
(Branson model W-350). Extracts were centrifuged at 12,000
rpm for 10 min at 4°C and supernatant was recovered. Lysates
(30 µg) were denatured in 2% SDS, 10 mM dithiothreitol,
60 mMTris-hydrochloric acid (Tris-HCl, pH 6.8), and 0.1% bromo-
phenol blue and loaded onto a 15% polyacrylamide/SDS gel. Gel
was transferred to a PVDF membrane that was latter blocked for
1 h at room temperature in PBS containing 5% nonfat dry milk.
Next, the membrane was incubated overnight at 4°C in PBS-T con-
taining the primary antibody. Themembranewaswashed in PBS-T,
incubated with the secondary antibody conjugated to horseradish
peroxidase for 1 h at room temperature, and thenwashed in PBS-T.

Antibodies

Anti-Msi1 (EP1302) (Abcam, ab52865; 1:2000 in 5% milk-TBST);
anti-PDGF Receptor α (D13C6) XP (Cell Signaling, #5241;
1:1000 in 5% BSA-TBST); anti-EGF Receptor (C74B9) (Cell signal-
ing #2646; 1:2000 in 5%BSA-TBST); anti-ECT2 (G-4) (Santa Cruz,
sc-514750; 1:1000 5% milk-TBST); anti-NEFL1 (Cell signaling,
#2835; 1:1000 in 5% milk-TBST), Anti-CDC6 (C42F7) (Cell signal-
ing, #3387; 1:500 in 5%BSA-TBST); Anti-NRAS (27H5) (Cell signal-
ing, #3339; 1:1000 in 5% BSA-TBST); anti-α Tubulin (GeneTex,
GTX102078); Anti-GST (B-14) HRP (Santa Cruz, sc-138; 1:5000 in
5% milk-TBST).

Analysis of mouse samples

Cells were lysed in RIPA buffer and proteins were resolved on
SDS-PAGE, and transferred to poly(vinylidene) difluoride mem-
branes (GE Healthcare), which were blocked and incubated with
anti-Msi1 antibody (1:1000; EMD Millipore) or anti-ß-Tubulin III
(Tuj1, 1:500, Covance Inc.) followed by incubation with an
anti-rabbit horseradish peroxide (HRP)-conjugated secondary an-
tibody. As endogenous control, membranes were incubated with
anti-β-Actin (Abcam).
The immunoblots were developed using the Immobilon

Western Chemiluminescent HRP Substrate (Millipore).

Cell proliferation assay

U251 cells were transduced with either a lentiviral vector express-
ing Msi1 or control vector. Subsequently, cells were transfected
with 10 nM of miRNA-137 or control mimics and transferred to
an Essen ImageLock cell culture plate (Essen BioScience).
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Percentage confluence was monitored for 5 d using the high
definition automated imaging system from IncuCyte (Essen
BioScience) following the manufacturer’s direction. Experiments
were performed using biological and technical triplicates.
Statistical analyses were carried out using GraphPad software
and data are presented as mean± standard deviation.

Immunocytochemistry

NSC cultures were fixed with 4% Paraformaldehyde (PFA) for
20 min, washed and blocked with 10% Normal Donkey Serum
(NDS) in PBS-T for an hour prior to overnight incubation with pri-
mary antibody anti-β-Tubulin III (Tuj1, 1:500, Covance, Inc.). Cells
were then stained with Alexa 488- or Alexa 546-conjugated sec-
ondary antibodies (Invitrogen, Inc., Thermo Fisher) and the nuclei
were stained with 40,6-diamidino-2-phenylindole (DAPI) (Sigma).

Quantification of neurite outgrowth

Ninety-six hours after transfection, cells were imaged by an
IncuCyte at 10× or 20× magnification. Neurite outgrowth was
quantified on an IncuCyte ZOOM Imaging System (Essen
BioScience). A neurite definition specific to BE-(2)-C cells was cre-
ated using the NeuroTrack software module (Essen BioScience).
Experiments were performed using biological duplicates and
technical quadruplicates.

Cell counting

The experiments were done with three biological replicates.
DAPI1 nuclei were identified, and then each nucleus was checked
for Tuj1. For each triplicate, a minimum of five fields were as-
sessed for DAPI-positive nuclei and anti-Tuj1. The proportion of
Tuj1+ was determined for all 15 fields (five fields for each tripli-
cate). Some samples were counted several times to assess the re-
liability of counts.

Musashi1, miR-137 expression correlation

To evaluate if Musashi1 and miR-137 expression profiles in glio-
mas are anticorrelated, mRNA and miRNA expression data was
downloaded from The Cancer Genome Atlas (TCGA). mRNA ex-
pression data was normalized using Upper Quartile normalized
FPKM, as provided in the Genomics Data Commons (GDC) data
portal. miRNA expression data was normalized using reads per
millionmiRNAmapped, as provided in theGDCdata portal. In to-
tal, 508 subjects had both mRNA and miRNA expression data. A
square root transformation was applied to both Musashi1 and
miR-137 expression for variance stabilization. The Pearson corre-
lation coefficient and P-value were computed between the trans-
formed expression of Musashi1 and miR-137.

miRNA and RBP target identification and comparison

miRNA targets

Target predictions for broadly conserved miRNA families were
obtained from Targetscan (Agarwal et al. 2015). An expanded

list of miR-137 targets was generated using data sets published
in (Tamim et al. 2014; Santos et al. 2016) and validated targets
from miRTarBase (Hsu et al. 2011). A list of miRNA target sites
per transcript was generated and the number of miRNAs regu-
lating each transcript was calculated and used in further
analyses.

RBP targets

A list ofMusashi1 targets identified by RIP or CLIP were generated
using data sets described in de Sousa Abreu et al. (2009), Vo et al.
(2012b), and Uren et al. (2015). Target lists for hnRNPH1 and
IGF2BP3 were obtained from Ennajdaoui et al. (2016) and Uren
et al. (2016).

miRNA-RBP target overlap

We compared miRNAs and RBPs target sets to identify miRNAs
sharing a large number of targets with each RBP (10% or more
of the total number of identified targets). Next, we evaluate
each RBP-miRNA overlap to determine the number of transcripts
containing just a small number of miRNA binding sites (less than 3
or less than 5 miRNA binding sites for conservedmiRNA families).
Significance of each overlap was calculated using Fisher’s exact
test (P-value <0.01).

miR-137 and Msi1 shared target analysis

Gene Ontology (GO) Enrichment Analysis was carried out using
PANTHER (Thomas et al. 2003). REVIGO (Supek et al. 2011) was
used to compile and link similar GO terms. Network analysis
was performed using STRING (version 10.5) (Szklarczyk et al.
2015).

To compare the expression profile ofMsi1 and miR-137 shared
target genes in cortex, LGG andGBM, we used the following pro-
cedure. Gene read counts from 156 glioblastoma (GBM) and 511
low-grade glioma (LGG) primary tumors were directly obtained
from the TCGA data repository (https://portal.gdc.cancer.gov/),
while gene read counts from 287 healthy (frontal) cortex samples
were obtained from GTEx release V7 (https://www.gtexportal
.org/home/). To process expression data, read counts were first
normalized using the RLE method of DESeq2 (Love et al. 2014).
Then, we separately performed differential expression analyses
to compare GBM with (frontal) cortex and LGG samples. All com-
parisons were performed using DESeq2 and only genes present-
ing |log2fold change|≥1 and FDR<0.05 were considered to be
differentially expressed. Next, we analyzed a list of 141 genes tar-
geted by both miR-137 and Msi1. Finally, after log-transforming
normalized data, heatmaps of differentially expressed targets
were created using R scripts.

Survival and expression analyses of Msi1/miR-137 shared tar-
gets using TCGA glioma data were performed using resources
in Gliovis (Bowman et al. 2017).

To analyze the distances between miR-137 and Msi1 target
sites, we obtained the coordinates of miR-137 sites from
TargetScan. Msi1 sites were selected by filtering only iCLIP sites
at 3′-UTR regions and corresponding to targets shared between
MsI1 and miR-137. Distances were calculated between each
miR-137 site and the closest Msi1 site.
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