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Native T1 mapping-based radiomics diagnosis
of kidney function and renal fibrosis
in chronic kidney disease

Chaogang Wei,1,5 Zhicheng Jin,2,5 Qing Ma,1,5 Yilin Xu,3 Ye Zhu,3 Ying Zeng,3 Rui Zhang,4 Yueyue Zhang,1

Linsen Jiang,3,* Kai Song,3,* and Zhen Jiang1,6,*

SUMMARY

Chronic kidney disease (CKD) raises major concerns for global public health as it is characterized by high
prevalence, low awareness, high healthcare costs, and poor prognosis. Therefore, our study prospectively
established and validated native T1 mapping-based radiomics models for the prediction of renal fibrosis
and renal function in patients with CKD. Moreover, the area under the receiver operating characteristic
curve (AUC) and diagnostic sensitivity, specificity, accuracy, positive predictive value, and negative pre-
dictive valuewere used to evaluate its performance. Thus, our results show that radiomics based on native
T1 mapping images can better identify renal function and renal fibrosis in patients with CKD and outper-
form conventional T1mapping parameters ofDT1 and T1%, thus providingmore information for CKDman-
agement and clinical decision-making.

INTRODUCTION

Chronic kidney disease (CKD) refers to a variety of conditions arising from abnormal kidney structure or function that persist for more than

three months and have health implications.1 CKD has become a major global public health problem characterized by high prevalence,

low awareness, high medical costs, and poor prognosis.2 Accurately monitoring of kidney function (KF), disease progression, and response

to treatment can improve outcomes and prognosis of patients with CKD. The estimated glomerular filtration rate (eGFR) is the most

commonly used clinical index to evaluate KF, its decline is considered to be a loss or failure of KF and continues to guide clinical manage-

ment.3 However, the serum creatinine (Scr)-based eGFR has high variability with susceptible to creatinine levels.4 In addition, it cannot accu-

rately reflect split renal function, which is often required for the preoperative evaluation for patients with kidney disease.5

More importantly, renal fibrosis (RF) inevitably develops as CKD progresses. As the hallmark of CKD, the severity of RF tends to be closely

correlated with the prognosis of CKD.6,7 Percutaneous renal biopsy remains the gold standard for the diagnosis of RF. However, the invasive

procedure is associated with biopsy-related sampling errors and an increased risk of complications, such as infection, bleeding, hematuria, or

hematoma.8 As a non-invasive diagnostic tool, magnetic resonance imaging (MRI) plays a positive role in the management of kidney disease,

including CKD.9,10 Continuous researches have focused on the use of functional MRIs in the assessment of CKD, including diffusion-weighted

imaging (DWI),11 magnetic resonance elastography (MRE),12 blood oxygenation level-dependent (BOLD)MRI,13 arterial spin labeling (ASL),14

and quantitative T1, T2, or T2* mapping,15 which have revealed the pathophysiological characteristics of renal interstitial diffusion, elasticity

changes, oxygenation, microvascular perfusion, and tissue inherent relaxation. Native T1 mapping provides the quantification of renal tissue

T1 values on a pixel-by-pixel basis, without the need for gadolinium.16 In previous studies, we have confirmed the value of native T1 mapping

for diagnosis of KF and RF in patients with CKD.17 However, the region of interest (ROI) of the native T1 mapping sequence was delineated at

only a few locations on a single slice image, making it time consuming, subjective, unrepeatable, and difficult to accurately represent the

actual state of the kidney.

Artificial intelligence-driven radiomics for medical imaging analysis may be a good solution. Radiomics provides high-throughput feature

extraction frommedical images for quantitative analysis and prediction of various clinical endpoints.18 Several studies have demonstrated the

potential of radiomics as a non-invasive, personalized medicine tool, with promising performance in tumor diagnosis, treatment response

monitoring, and prognosis.19 Previous studies have confirmed the feasibility of using radiomics based on conventional T2-weighted imaging

(T2WI) or functional MRI sequences (such as DWI and BOLD) to assess KF or RF in patients with CKD.20 Only a limited number of studies have
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investigated the potential of using native T1 mapping-based radiomics in the management of CKD.21,22 However, small sample size and lack

of detailed verification made it difficult to obtain repeatability and reliability of the results. Native T1 mapping images can be used to differ-

entiate the renal cortex and medulla.23 In previous studies, the ROI delineation was based on the whole kidney, not the renal cortex or

medulla. The segmentation of renal cortical tissues was helpful in obtaining more accurate radiomic results because almost all renal biopsy

specimens were taken from the renal cortex and RF has greater effects on the renal cortex.24,25 To our knowledge, we are the first to perform

the renal cortical segmentation based on the native T1 mapping images and then to evaluate the diagnostic value of radiomics based on the

renal cortex in a prospective study with a relatively large sample size.

Hence, the aim of this study was to investigate the diagnostic accuracy of radiomics based on native T1 mapping images to assess KF and

RF in patients with CKD and compare it with the conventional T1 mapping parameters.

RESULTS

Patient characteristics

The baseline characteristics of 120 patients with CKD, including 84 patients in the training cohort and 36 patients in the validation cohort are

shown in Table 1. The flowchart with patient exclusion criteria is shown in Figure 1. These patients were further divided into three subgroups

(KF 1, KF 2, and KF 3) according to CKD stage. In the training cohort, the normal (KF 1), mildly impaired (KF 2), and moderately to severely

impaired (KF 3) kidney function groups included 37, 22, and 25 patients, respectively. In the validation cohort, there were 16 patients with KF 1,

10 patients with KF 2, and 10 patients with KF 3. Patient clinical information, including age, gender, height, weight, BMI, blood pressure, and

blood glucose showed no significant difference between the three groups in the training and validation cohorts (p > 0.05). There were sig-

nificant differences in the levels of eGFR, Scr, and BUN between the three groups in the training and validation cohorts (p < 0.05). The eGFR

gradually decreased, while Scr and BUNgradually increased as the degree of KF increased. In addition, there was also a significant difference

in the degree of RF between the three groups (p < 0.05). The proportion of patients with moderate-to-severe RF increased significantly as the

degree of KF increased. In our study, a total of 11 diseases causing CKD were pathologically confirmed by renal biopsy. The main primary

causes were IgA nephropathy and membranous nephropathy, which together accounted for almost 67% (80/120) of all cases.

Development of radiomics models

The cortical ROI was delineated using the native T1 mapping image thresholding, as illustrated in Figure S1. We constructed four different

radiomics models based on native T1 mapping images to assess KF and RF in patients with CKD, including the persistence (KF 1 vs. KF 2 and

KF 3, RF 1 vs. RF 2 and RF 3) and degree (KF 2 vs. KF 3 and RF 2 vs. RF3). To identify the persistence (KF 1 vs. KF 2 and KF 3) and degree (KF 2 vs.

KF 3) of KF, we excluded these features with ICC less than 0.75 and extracted 798 and 765 features from native T1 mapping images, respec-

tively. Finally, based on the LASSO regression algorithm, 11 and 9 features were extracted (Figure S2). Similarly, to identify the persistence

(RF 1 vs. RF 2 and RF 3) and degree (RF 2 vs. RF 3) of RF in patients with CKD, we finally extracted 7 and 6 features from native T1 mapping

images, respectively. All extracted features and their coefficients are detailed in Figure S3.

For conventional native T1 mapping images analysis, the two radiologists had good reproducibility for all values of four T1 mapping pa-

rameters for both kidneys, with ICCs greater than 0.75 and p values less than 0.001. The results of the interobserver agreement are shown in

Table S1. Analyses were performed using the value from the right (biopsied) kidney, as there were no significant differences in the T1 mapping

parameters between the two kidneys (Figure S4). Among the four T1 mapping parameters, DT1 and T1% were the most useful for identifying

KF and RF in CKD patients, rather than T1-C or T1-M, in overall (Tables 2 and 3) and pairwise (Figures S5 and S6) comparisons in both the

training and validation cohorts. Increased cortical T1 resulted in a gradually reduced T1 corticomedullary difference (DT1) in themild andmod-

erate-to-severe RF (RF 2 and RF 3) when compared with no RF (RF 1), along with gradual increases in the T1% (Figure 2).

To better identify RF in patients with CKD, we constructed the clinical-basedmodel by selecting the optimal clinical indicator through uni-

variate logistic analysis (Table S2) and comparingAUCs.We found that the eGFRwith the highest AUCwas the best for assessing RF, while Scr

and BUN with smaller AUCs were excluded. In addition, we also constructed the combined model by incorporating the radiomics with

the eGFR.

Comparisons of diagnostic performance between models

To identify KF in patients with CKD, we compared the diagnostic performance of three models, including the radiomics model, conventional

T1 mapping parameter-based models (the DT1 and the T1%), as shown in Tables 4, S3, and S4. In the comparison of normal and impaired KF

(KF 1 vs. KF 2 and KF3), the AUCof the radiomicsmodel was 0.933, greater than that ofDT1 (AUC= 0.823,p= 0.021) and T1% (AUC= 0.818, p=

0.012) in the training cohort. The diagnostic sensitivity, specificity, and accuracy of the radiomics model were the highest at 0.809, 0.973, and

0.845. Similarly, the radiomics model achieved the best diagnostic performance with the highest AUC (0.891) and the highest accuracy (0.889)

in the validation cohort. When comparing mildly with moderately to severely impaired KF (KF 2 vs. KF 3), we found that the radiomics model

reached the highest AUC (AUC= 0.916) with the best diagnostic performance (specificity: 0.864; accuracy: 0.830) in the training cohort. Similar

results were obtained in the validation cohort with the highest AUC of the radiomic model (AUC = 0.860).

As shown in Tables 4, S3, and S4, to identify RF in patients with CKD, we also compared five models, including the radiomics model, con-

ventional T1 mapping parameter-based models (the DT1 and the T1%), the clinically based model (the eGFR) and the combined model

(radiomics+ eGFR). In the comparison of no RF and RF (RF 1 vs. RF 2 and RF 3), we found that the radiomic model had the highest AUC
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of 0.929, slightly higher than that of the combined model (AUC = 0.927, p = 0.938), higher than that of DT1 (AUC = 0.868, p = 0.165), T1%

(AUC = 0.886, p = 0.270), and eGFR (AUC = 0.829, p = 0.026) in the training cohort. Similar results were seen in the validation cohort

with the highest AUCs for both the radiomic model and the combined model (both AUCs = 0.936). When comparing mild RF with

Table 1. Baseline characteristics in patients with CKD

Training cohort (n = 84) Validation cohort (n = 36)

KF 1a (n = 37) KF 2b (n = 22) KF 3c (n = 25) Pt KF 1 (n = 16) KF 2 (n = 10) KF 3 (n = 10) Pv

Age (year) 43 G 15 49 G 11 49 G 16 0.201 43 G 14 46 G 11 49 G 14 0.499

Gender (male, %) 16 (43.2%) 14 (63.6%) 11 (44.0%) 0.269 8 (50.0%) 7 (70.0%) 5 (50.0%) 0.549

Height (m) 1.65 G 0.09 1.66 G 0.08 1.66 G 0.08 0.639 1.62 G 0.10 1.68 G 0.06 1.66 G 0.09 0.243

Weight (kg) 66.47 G 12.01 69.78 G 14.22 68.44 G 12.77 0.615 64.64 G 12.83 66.95 G 8.41 67.20 G 10.68 0.810

BMI (kg/m2) 24.49 G 3.63 25.01 G 3.53 24.75 G 4.01 0.874 24.54 G 3.09 23.77 G 2.37 24.52 G 3.67 0.805

Blood pressure

(hypertensiond, %)

22 (59.5%) 15 (68.2%) 18 (72.0%) 0.567 9 (56.3%) 4 (40.0%) 6 (60.0%) 0.623

Blood glucose (mmol/L) 4.85 (4.42, 5.11) 4.72 (4.57, 5.07) 4.90 (4.38, 5.97) 0.974 4.78 G 0.74 4.85 G 0.53 4.61 (4.46, 4.71) 0.810

eGFR (mL/min/1.73m2) 110.04 G 14.36 77.37 G 7.85 45.93 G 10.25 <0.001* 114.73 G 15.38 72.58 G 6.47 40.31 G 15.64 <0.001*

Scr (mmol/L) 62.78 G 15.22 91.23 G 16.91 128 (113, 146) <0.001* 55.50 (50.80, 65.00) 99.70 G 14.64 150.70 G 73.74 <0.001*

BUN (mmol/L) 4.87 G 1.62 6.34 G 1.23 8.80 G 2.47 <0.001* 3.85 (3.33, 4.80) 5.91 G 1.72 8.31 G 3.53 0.003*

24h-UPRO (g/24h) 2.86 (1.33, 5.73) 3.71 (2.23, 8.17) 2.30 (1.01, 4.99) 0.237 2.71 (1.57, 5.34) 1.45 (0.71, 2.24) 2.34 (1.12, 6.44) 0.196

RF stage <0.001* 0.012*

1 (no, 0%) 15 (40.5%) 1 (4.5%) 0 (0.0%) 5 (31.2%) 0 (0.0%) 2 (20.0%)

2 (mild, %25%) 20 (54.1%) 15 (68.2%) 5 (20.0%) 9 (56.3%) 4 (40.0%) 2 (20.0%)

3 (moderate to

severe, >25%)

2 (5.4%) 6 (27.3%) 20 (80.0%) 2 (12.5%) 6 (60.0%) 6 (60.0%)

Pathological type

of CKD

N.A. N.A.

IgA nephropathy 10 7 7 5 7 3

Membranous

nephropathy

22 3 3 10 1 2

Minimal change

nephropathy

2 3 0 0 0 2

Focal segmental

glomerulosclerosis

0 2 6 0 1 1

Hypertensive

nephropathy

0 1 2 1 0 1

Lupus nephritis 3 2 0 0 0 0

Diabetic nephropathy 0 1 2 0 1 0

Hepatitis B virus-

related nephropathy

0 1 0 0 0 0

Amyloid nephropathy 0 1 0 0 0 0

Glomerular podocytes 0 0 2 0 0 0

Tubulointerstitial

nephritis

0 1 3 0 0 1

CKD, chronic kidney disease; BMI, bodymass index; eGFR, estimated glomerular filtration rate; Scr, serum creatinine; BUN, blood urea nitrogen; 24h-UPRO, 24-h

urinary protein; RF, renal fibrosis; KF, kidney function.
aKF1: CKD G1 (eGFRR90 mL/min/1.73m2).
bKF2: CKD G2 (eGFR 60-89 mL/min/1.73m2).
cKF3: CKD G3-5 (eGFR<60 mL/min/1.73m2).
dHypertension was defined as systolic/diastolic blood pressureR140/90 mmHg; values are mean with standard deviation or median with lower and upper quar-

tile in parentheses or number with percentage in parentheses. Pt, p values in comparisons in the training cohort; Pv, p values in comparisons in the validation

cohort; N.A., not applicable; *statistically significant.
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moderate-to-severe RF (RF 2 vs. RF 3), we found that the combined model achieved the highest AUC of 0.911, slightly higher than that of the

radiomicmodel (AUC= 0.904, p= 0.671) and higher than that ofDT1 (AUC= 0.854, p= 0.307), T1% (AUC= 0.852, p= 0.229), and eGFR (AUC=

0.801, p = 0.025) in the training cohort. However, in the validation cohort we found that the combined model had the highest AUC of 0.946,

higher than that of eGFR (AUC= 0.912, p= 0.365), the radiomicmodel (AUC= 0.877, p= 0.227),DT1 (AUC= 0.868, p= 0.147), and T1% (AUC=

0.804, p = 0.014). Comparisons of AUCs between different models in the training and validation cohorts were illustrated in Figure 3, Tables S3

and S4.

Clinical application of radiomics models

The calibration and decision curve analysis were validated in the validation cohort, as shown in Figure 4. The calibration of models was inter-

nally performed by a calibration curve with bootstrap sampling. For the calibration curve, the curve of the diagnostic model was close to the

ideal curve, indicating that the model had good fitting and prediction ability. The Brier scores of the radiomics model for KF persistence (KF 1

vs. KF 2 and KF 3) and KF degree (KF 2 vs. KF 3) were 0.106 and 0.108, respectively. The Brier scores of the radiomics model for RF persistence

(RF 1 vs. RF 2 and RF 3) and RF degree (RF 2 vs. RF3) were 0.073 and 0.130, respectively. In terms of the clinical benefits, it is obvious from the

decision curve that the radiomics model had better clinical benefits than conventional T1 mapping parameter-basedmodels (theDT1 and the

T1%) in the evaluation of KF. Both the radiomics model and the combinedmodel achieved similarly satisfactory clinical benefits for RF, better

than conventional T1 mapping parameter-based models (the DT1 and the T1%) and the clinically based model (the eGFR).

Figure 1. Flowchart with exclusion criteria

Table 2. Values of T1 mapping for assessment of kidney function in CKD patients

T1 mapping

parameters

Training cohort (n = 84) Validation cohort (n = 36)

KF 1a (n = 37) KF 2b (n = 22) KF 3c (n = 25) Pt KF 1 (n = 16) KF 2 (n = 10) KF 3 (n = 10) Pv

T1-C (ms) 1590.83G

106.92

1608.59G

112.09

1649.69 (1608.85,

1728.11)

0.010* 1598.91G

126.19

1619.37G

92.96

1651.53 (1646.95,

1677.09)

0.128

T1-M (ms) 2099.40G

117.67

2054.64G

112.19

2046.14G

142.51

0.197 2121.04G

117.82

2028.38G

105.50

2066.15G

140.51

0.168

DT1 (ms) �508.57G

81.77

�459.20 (�496.67,

�424.52)

�365.50G

87.02

<0.001* �522.14G

58.04

�409.02G

58.85

�388.66G

132.79

0.001*

T1% 0.7580G

0.0352

0.7828G

0.0321

0.8224G

0.0374

<0.001* 0.7533G

0.0291

0.7985G

0.0263

0.7907 (0.7760,

0.8359)

0.001*

aKF1: CKD G1 (eGFRR90 mL/min/1.73m2).
bKF2: CKD G2 (eGFR 60-89 mL/min/1.73m2).
cKF3: CKD G3-5 (eGFR<60 mL/min/1.73m2); T1-C, mean cortical T1 value; T1-M, mean medullary T1 value; DT1, mean corticomedullary difference; T1%, mean

corticomedullary ratio; Pt, p values in comparisons in the training cohort; Pv, p values in comparisons in the validation cohort; *, statistically significant.
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DISCUSSION

In this study, we found that radiomics based on native T1 mapping images could robustly and effectively evaluate KF and RF in patients with

CKD. Previous studies on functional MRI sequences-based radiomics in the evaluation of CKD and RF have rarely been reported. Chen et al.20

retrospectively applied the multimodal MRI texture model based on T2WI, DWI, and BOLD sequences to assess KF and RF in patients with

diabetic nephropathy. However, fibrosis classification and pathological results were not reported in their studies. More importantly, the delin-

eation of ROI was aimed at the whole kidney not the renal cortex. The delineation details were not clearly explained. In addition, the lack of

validation reduced the reliability of their studies. Hua et al.22 concluded that multiparametric MRI combining DWI and T1 mapping could

distinguish patients with CKD from controls and evaluate the severity of RF. However, their ROIs were still sketched by taking points at

Table 3. Values of T1 mapping for assessment of renal fibrosis in CKD patients

T1 mapping

parameters

Training cohort (n = 84) Validation cohort (n = 36)

RF 1a (n = 16) RF 2b (n = 38) RF 3c (n = 30) Pt RF 1 (n = 7) RF 2 (n = 17) RF 3 (n = 12) Pv

T1-C (ms) 1534.74G

82.13

1621.96G

125.17

1650.37 (1601.75,

1678.52)

0.001* 1615.48G

111.89

1630.21G

107.01

1660.11G

146.71

0.709

T1-M (ms) 2077.24G

81.74

2104.85G

113.78

2019.62G

138.30

0.015* 2140.78G

124.62

2101.75G

106.45

2002.36 (1915.29,

2089.90)

0.084

DT1 (ms) �542.50G

50.69

�476.87 (�507.47,

�451.27)

�363.52G

105.25

<0.001* �525.29G

66.71

�471.54G

58.99

�372.51G

81.66

0.001*

T1% 0.7387G

0.0233

0.7701G

0.0319

0.8219G

0.0447

<0.001* 0.7546G

0.0280

0.7832 (0.7432,

0.7984)

0.8167G

0.0369

0.002*

aRF1: no RF (0% renal fibrosis).
bRF2: mild RF (%25% renal fibrosis).
cRF3: moderate to severe RF (>25% renal fibrosis); T1-C, mean cortical T1 value; T1-M, mean medullary T1 value; DT1, mean corticomedullary difference; T1%,

mean corticomedullary ratio; Pt, p values in comparisons in the training cohort; Pv, p values in comparisons in the validation cohort; *, statistically significant.

Figure 2. Comparison of native T1 mapping images among patients with pathologically confirmed by RF 1 (no RF, 0% fibrosis), RF 2 (mild RF, %25%

fibrosis), and RF 3 (moderate RF and severe RF, >25% fibrosis)
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Table 4. Diagnostic performance comparisons of kidney function and renal fibrosis

AUC (95%CI) SEN SPE ACC PPV NPV

KF 1 vs. KF 2 and KF 3

Training cohort

Radiomics 0.933(0.856–0.976) 0.809 0.973 0.845 0.830 0.865

DT1 0.823(0.725–0.898) 0.660 0.838 0.726 0.766 0.676

T1% 0.818(0.719–0.894) 0.660 0.838 0.738 0.766 0.703

Validation cohort

Radiomics 0.891(0.742–0.970) 0.850 0.937 0.889 0.850 0.938

DT1 0.881(0.730–0.965) 0.850 0.750 0.806 0.850 0.750

T1% 0.859(0.703–0.952) 0.900 0.688 0.750 0.800 0.688

KF 2 vs. KF 3

Training cohort

Radiomics 0.916(0.798–0.977) 0.840 0.864 0.830 0.840 0.818

DT1 0.798(0.656–0.901) 0.800 0.818 0.766 0.800 0.727

T1% 0.809(0.668–0.909) 0.880 0.727 0.787 0.800 0.773

Validation cohort

Radiomics 0.860(0.633–0.972) 0.800 0.900 0.800 0.800 0.800

DT1 0.520(0.289–0.745) 0.400 0.900 0.550 0.400 0.700

T1% 0.510(0.280–0.736) 0.700 0.000 0.500 0.400 0.600

RF 1 vs. RF 2 and RF 3

Training cohort

Radiomics 0.929(0.854–0.974) 0.818 0.912 0.905 0.971 0.625

DT1 0.868(0.776–0.932) 0.721 0.938 0.833 0.956 0.313

T1% 0.886(0.798–0.945) 0.735 0.938 0.845 0.956 0.375

eGFR 0.829(0.731–0.902) 0.938 0.735 0.810 0.926 0.313

Combined Model (Radiomics + eGFR) 0.927(0.849–0.973) 0.938 0.838 0.940 0.985 0.750

Validation cohort

Radiomics 0.936(0.801–0.990) 1.000 0.857 0.972 1.000 0.857

DT1 0.837(0.677–0.939) 0.759 0.857 0.833 0.966 0.286

T1% 0.818(0.654–0.926) 0.552 1.000 0.889 1.000 0.429

eGFR 0.601(0.425–0.760) 0.857 0.413 1.000 1.000 1.000

Combined Model (Radiomics + eGFR) 0.936(0.801–0.990) 0.857 1.000 0.972 1.000 0.857

RF 2 vs. RF 3

Training cohort

Radiomics 0.904(0.808–0.962) 0.967 0.711 0.824 0.733 0.895

DT1 0.854(0.748–0.928) 0.767 0.921 0.824 0.700 0.921

T1% 0.852(0.745–0.926) 0.833 0.763 0.765 0.667 0.842

eGFR 0.801(0.686–0.888) 0.816 0.767 0.779 0.700 0.842

Combined Model (Radiomics + eGFR) 0.911(0.817–0.967) 0.763 0.967 0.809 0.733 0.868

Validation cohort

Radiomics 0.877(0.702–0.969) 0.667 1.000 0.724 0.667 0.765

DT1 0.868(0.690–0.964) 0.750 0.941 0.828 0.750 0.882

T1% 0.804(0.615–0.927) 0.583 0.941 0.724 0.667 0.765

eGFR 0.912(0.746–0.985) 0.824 0.833 0.793 0.750 0.824

Combined Model (Radiomics + eGFR) 0.946(0.794–0.996) 0.824 1.000 0.862 0.833 0.882

AUC, area under the receiver operating characteristic curve; SEN, sensitivity; SPE, specificity; ACC, accuracy; PPV, positive predictive value; NPV, negative predic-

tive value; KF, kidney function; KF 1, CKDG1 (eGFRR90 mL/min/1.73m2); KF 2, CKDG2 (eGFR 60-89 mL/min/1.73m2); KF 3, CKDG3-5 (eGFR<60 mL/min/1.73m2);

RF, renal fibrosis; RF 1, no RF (0% renal fibrosis); RF 2, mild RF (%25% renal fibrosis); RF3, moderate-to-severe RF (>25% renal fibrosis); DT1, mean corticomedullary

difference; T1%, mean corticomedullary ratio; eGFR, estimated glomerular filtration rate; the combined model, the combination of the radiomics and the eGFR;

CI, confidence interval.
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different locations, instead of the entire cortex or medulla, which was easily susceptible to the operator’s subjectivity. In addition, it had only

43 patients with pathological confirmation of CKD by renal biopsy in their studies, which is much smaller than the sample size (n = 120) in our

study. Too small sample size and lack of validation make their results less accurate and reliable. Compared to previous studies, we sketched

the cortical ROIs due to the facts that the vast majority of renal biopsies were taken from the renal cortex, which was more affected by RF. In

our study, the native T1 mapping images were generated based on the MOLLI sequence.16 The good image quality allowed for clear iden-

tification of the renal cortex and medulla, which was a prerequisite for kidney segmentation and cortical ROI delineation. The imaging inten-

sity (I) threshold was set within a specific range (1150 < I < 1850) and the entire cortical areas were then sketched slice by slice to ensure con-

sistency among radiologists, making the ROI delineation more objective and less susceptible to operator subjectivity. Furthermore, our

prospective study utilized a relatively large sample to analyze KF and RF in patients with CKD. Accurate ROI delineation and appropriate sam-

ple size were instrumental in producing more reliable research findings.

We also found that the radiomic model based on the native T1 mapping images achieved robust and effective diagnostic performance in

classifying KF and RF in patients with CKD. In the training and validation cohorts, the radiomicsmodel reached the highest AUC anddiagnostic

accuracy for the identification of normal and impaired kidney function (KF 1 vs. KF 2 andKF 3). Similarly, with the highest AUC and accuracy, the

radiomicmodel was effective in identifyingmildly andmoderately to severely impaired kidney function (KF 2 vs. KF 3). In the identification of no

RF andRF (RF 1 vs. RF 2 andRF 3), we found that the radiomicsmodel had the highest AUC, indicating that the radiomicsmodel can identify the

persistence of RF in patients with CKD. In identifying mild RF and moderate-to-severe RF (RF 2 vs. RF 3), the radiomics model achieved good

diagnostic performance with high AUC, sensitivity, and accuracy in the training cohort. However, in the validation cohort, the radiomics model

did not perform unsatisfactorily. This may be due to the selection bias caused by the small sample size in the validation cohort leading to a

higher AUC value of the eGFR and the combined model, making the radiomics model not as good in comparison. In the evaluation of RF,

we also observed that the combined model integrating radiomics and eGFR did not significantly improve diagnostic performance over the

radiomics model, suggesting that the radiomics model alone has diagnostic advantages for KF and RF in patients with CKD. The diagnostic

superiority of the radiomics for the assessment of KF or RF in patients with CKD was similarly shown in previous studies.20,22

In our study, among the four conventional native T1 mapping parameters, the mean corticomedullary difference (DT1) and the mean cor-

ticomedullary ratio (T1%) showed better diagnostic performance than the mean cortical T1 value (T1-C) and the mean medullary T1 value (T1-

M), which was similar to the study reported by Berchtold et al.26 Although RF typically affects the renal cortex, the T1-C value varied widely

among individuals, the DT1 and T1% values generated by comparing the cortex with the medulla may reduce the difference. However, these

values were obtained by manually delineating ROIs at only a few locations on a single slice image, making it time consuming, subjective, un-

repeatable, and inaccurate. By setting image thresholds and sketching the ROI layer by layer, the ROI delineation of the radiomics model

became simpler, more objective and more reliable, which was incomparable to conventional T1 mapping parameters.21 Our results showed

that the radiomic model outperformed the DT1 and the T1% models in terms of diagnostic accuracy, as evidenced by a higher AUC. This

Figure 3. Diagnostic performance comparisons among different models for kidney function and renal fibrosis

(A–H) Receiver operating characteristic curve analyses for identifying the persistence (KF 1 vs. KF 2 and KF 3) and degree (KF 2 vs. KF 3) of kidney function in the

training and validation cohorts (A–D), as well as the persistence (RF 1 vs. RF 2 and RF 3) and degree (RF 2 vs. RF 3) of kidney function in the training and validation

cohorts (E–H).

ll
OPEN ACCESS

iScience 27, 110493, August 16, 2024 7

iScience
Article



suggests that radiomics could improve the assessment of KF and RF in patients with CKD. In addition, we internally validated the radiomic

model in the validation cohort of our study. We found that the radiomics model based on the native T1 mapping images performed well and

provided satisfactory clinical benefits in the calibration and decision curve analysis. This further demonstrates the reliability of radiomics in

evaluating KF and RF in patients with CKD.

In addition toMRI, other non-invasive diagnostic tools, such as ultrasound, can also be used to assess renal structure, renal function, or renal

fibrosis. However, ultrasound is a highly subjective examination that is influenced by the experience and perspective of the examiner.

Compared with other ultrasound techniques, ultrasound elastography was employed to investigate kidney fibrosis by quantitative measure-

ment of tissue stiffness. Nevertheless, the results relating to the applicability of ultrasound elastography in the measurement of kidney fibrosis

were found to be inconsistent due to technical and anatomic limitations.27 Studies have found that renal stiffness was only associatedwithmed-

ullary fibrosis, not with cortical fibrosis.28 In recent years, ultrasound-based radiomics have been applied for the detection of fibrosis in patients

with CKD. Ge et al.29 incorporated radiomics feature derived from two-dimensional ultrasound and sound touch elastography with clinical fea-

tures (age and eGFR) to improve the prediction of the severities of kidney fibrosis. In their studies, the ROI delineation was also limited to the

renal cortex. In comparison to ultrasonic images, the native T1 mapping images in our study demonstrated enhanced ability to distinguish be-

tween the cortex andmedulla, which was crucial for accurate imaging segmentation and ROI delineation. Bandara et al.30 employed radiomics

features derived from ultrasound images to successfully identify CKD and healthy subjects. In their study, only 75 patients with CKD were re-

cruited and 465 radiomics features were extracted, whereas in our study, a larger sample size (n = 120) and 851 features were performed.

In conclusion, the radiomics model based on native T1 mapping images exhibited robust and satisfactory diagnostic performance for the

assessment of kidney function and renal fibrosis in patients with CKD, which was superior to conventional T1 mapping parameters of DT1
and T1%.

Limitations of the study

There are several limitations to our study. First, this is a prospective study conducted in a single center. Although the sample size in our study

was relatively large compared to other relevant studies, a larger sample size from multi-centers will be recruited to validate our results in

further studies. Second, we extracted only partial data from this group to internally validate the model. An external validation cohort should

be included in the future to test the robustness of our model. Third, we constructed the radiomicsmodel based only on the native T1mapping

sequence, without the inclusion of the combinedmodel of multiple MRI sequences. In this study, we only perform in-depth analysis for radio-

mics based on the native T1 mapping sequence and compare it with conventional T1 mapping parameters. Multi-sequence analysis in com-

bination with other MRI sequences (DWI, T2* mapping) is under investigation in future studies.
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Zhen Jiang

(jiangzhen0416@suda.edu.cn).

Materials availability

This study did not generate new unique reagents.

Data and code availability

� The radiological images and clinical data are available from the lead contact upon reasonable request.

� All original code has been deposited at the Github and is publicly available as of the date of publication. DOI is listed in the key re-

sources table.
� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Ethics statement

This prospective, single-center study was approved by the Ethics Committee of our tertiary care institution (No. JD-LK-2022-060-01). Informed

consent was obtained from all patients.

Patients

In the primary cohort, 137 consecutive patients who were clinically diagnosed with CKD in the nephrology department of our institution be-

tween October 2021 and August 2023 were recruited into the study, and ruled out other diseases including acute kidney injury (AKI), auto-

somal dominant polycystic kidney disease (ADPKD), etc. Patients with clinical diagnosis of CKD underwent renal MRI examination within

5 days (2.9G 1.0). Renal biopsy was performed within 3 days (2.1G 0.6) after MRI examination. The patient inclusion criteria were as follows:

(1) age greater than 18 years, regardless of ethnicity and compliance with a clinical diagnosis of CKD based on the KDIGO 2012 guidelines,31

mainly including albuminuria and/or urinary sediment abnormalities and/or decreased eGFR levels over three months. (2) Patients were pre-

pared for renal biopsy. (3) MRI examination was performed within three days prior to renal biopsy. (4) There were no contraindications to the

MRI scan. However, 17 patients were excluded in the following conditions: (1) inability to complete MRI examination due to claustrophobia

(n = 3); (2) unsatisfactory quality of the MR images available for analysis (n = 6); (3) renal biopsy not finally performed (n = 8). Finally, a total of

120 patients with CKD were enrolled in the study and were analyzed from the KF and RF. These patients were then randomly assigned to the

training cohort (n = 84) and the validation cohort (n = 36) in a 7:3 ratio.

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

clinical data of patients Department of Nephrology, The Second

Affiliated Hospital of Soochow University

N/A

Magnetic Resonance Imaging Department of Radiology, The Second

Affiliated Hospital of Soochow University

N/A

Code for models This paper https://github.com/jzc0307/Renal-fibrosis.git

Software and algorithms

R 4.1.1 R Development Core Team https://cran.r-project.org/

Python 3.9.1 Python Development Core Team https://www.python.org/

3D Slicer 5.0.3 3D Slicer Development Core Team https://www.slicer.org/

SPSS 22.0 Stanford University https://www.ibm.com/products/spss-statistics

MedCalc 15.2.2 AcadTechs company https://medcalc.acadtechs.com/

GraphPad Prism 8 GraphPad company http://www.graphpad-prism.cn
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METHOD DETAILS

Magnetic resonance imaging protocol

MRI was performed on both kidneys using a Prisma 3.0 Tesla MRI scanner (Siemens AG, Erlangen, Germany) with an 18-channel total imaging

matrix body coil. Native T1 mapping was acquired using an end-expiratory, electrocardiographically (ECG)-gated modified look-locker inver-

sion recovery (MOLLI) sequence 5(3)3.16 Breath holds were used to compensate for respiratory motion. The MOLLI images of both kidneys

were acquired in the coronal plane. The parameters of the native T1 mapping MRI protocol were as follows: repetition time (TR), 546.64 ms;

echo time (TE), 1.1 ms; slice thickness, 5 mm; number of slices, 5; field of view (FOV), 290 mm3 290mm;matrix, 144 mm3 144mm; flip angle,

35�; spatial resolution, 2 3 23 5 mm3; initial inversion time (TI), 284 ms; TI increment, 80 ms; 10-s breath hold per time. The scan time of the

native T1 mapping MRI sequence was approximately 2 min 47 s.

Kidney segmentation and ROI delineation

For the radiomics analysis, kidney segmentation and ROI delineation weremanually performed slice by slice on native T1 mapping images by

the two radiologists (J.Z.C. with 6 years of experience and M.Q. with 8 years of experience in the genitourinary system). For better separation

from the renal medulla, the cortical ROI was delineated using the T1 mapping image thresholding.32 The renal cortex was extracted in the T1
mapping-thresholded image ranging from the intensity I > 1150 and I < 1850 and it turned down to zero when the intensity I% 1150 and IR

1850, the two radiologists were permitted to make minor modifications within the above threshold range in certain circumstances. In this

study, the ROI delineation of radiomics was only obtained from the renal cortex due to the fact that RF occurs predominantly in the renal

cortex, and has a greater effect on the cortex than on the medulla. All radiomics features were extracted with an open-resource 3D Slicer

software (version 5.0.3). The two radiologists draw the outlines of all ROIs strictly according to the same criteria. All delineated ROIs should

include only areas of the renal cortex that lie on the outer contour of the kidney, avoiding renal cystic tissue, artifacts and major vessels. Any

discrepancy between the two radiologists was resolved by consensus, any continuous disagreement was resolved by a third senior radiolo-

gists (J.Z. with 20 years of experience) who made the final determination of the cortical ROIs. There were no significant differences in T1 map-

ping parameters between the left and right kidneys,17 and ROI delineation was performed only in the right (biopsied) kidney. Finally, 120

cortical ROIs in the right kidney were identified.

Conventional native T1 mapping imaging analysis

All native T1 mapping images were performed in the reconstruction software of the Siemens post-processing workstation (Syngo.via). For

conventional native T1 mapping image analysis, each image was independently analyzed by two other radiologists with 8 and 10 years of

experience in renal MRI (Z.R. and Z.Y.Y.), who were blinded to pathological results and clinical information. Cortical and medullary ROI de-

lineations were determined,17 and corticomedullary differences and ratios were calculated. Conventional T1 mapping parameters included

themean cortical T1 value (T1-C), themeanmedullary T1 value (T1-M), themean corticomedullary difference [DT1, (T1-C) - (T1-M)] and themean

corticomedullary ratio [T1%, (T1-C)/(T1-M)].

Radiomics feature extraction

The radiomics features were extracted from the cortical ROIs on the native T1 mapping images by using an open-resource Python package

(Pyradiomics, version 3.9.1), and all extracted radiomics features conformed to the Image Biomarker Standardization Initiative (IBSI) stan-

dards. Four types of features (14 shape features, 18 first-order features, 75 original texture features and 744 wavelet features) were extracted

for a total of 851 features. First, to ensure the consistency of the ROIs outlined by the two radiologists and to maintain the stability and repro-

ducibility of the features, 30 lesions were randomly selected for secondary delineation, the extracted texture features were tested for reli-

ability, and features with an intraclass correlation coefficient greater than 0.75 were considered reliable and reproducible and subsequently

used for feature selection and model construction.

Radiomics feature selection and model construction

All features were normalized using the Z score (mean minus standard deviation) method before selection, which improved the stability of the

data. After the reliability test, the least absolute shrinkage and selection operator (LASSO) regression was performed on the radiomics fea-

tures of the training group for further data selection. For linear models, complexity was directly related to the number of variables in the

model. The greater the number of variables, the more complex the model. More variables may give a seemingly better model when fitted,

but at the same time there was a danger of overfitting. The LASSO regression algorithm performed a continuous penalized screening of all

variables bymeans of a continuously imposed penalty term l value. The larger l penalized a linearmodel withmore variables the stronger the

penalty, thus ending up with a model with fewer variables in order to avoid covariance and overfitting. Therefore, LASSO regression was an

effective method for identifying a larger number of variables with a smaller sample size. The LASSO regression algorithm performed a contin-

uous penalized screening of all variables by means of a continuously imposed penalty term l value, and a process whereby all characteristic

variables continuously converge to zero. The features were then selected using 10-fold cross-validation method according to the criterion of

least binomial deviance. For the final selection of non-zero features, multivariate logistic regression method was used to build classification

and diagnosis model. To further illustrate the predictive value of the radiomicsmodel in the classification and diagnosis of RF, we constructed
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a combined model by integrating radiomics with clinical features. All processes involving the selection of texture features, construction and

evaluation of diagnostic efficacy for the radiomicsmodels were carried out using R software (version 4.1.1) and Python software (version 3.9.1).

Models comparison and validation

The diagnostic efficacy of all models was evaluated in terms of the area under the curve (AUC) of receiver operating characteristic (ROC). The

accuracy of themodels was calculated bymeans of confusionmatrices, as well as sensitivity, specificity, positive predictive value and negative

predictive value of each model. The calibration curve and Brier score were used to evaluate the calibration effect and goodness of fit of the

radiomics model. The smaller the Brier score, the better the model fit and the closer the model was to the ideal model, the better the pre-

diction performance of the model achieved. In addition, decision curve analysis (DCA) was used to evaluate the clinical effectiveness of

models.

Clinical and laboratory parameters

Clinical characteristics, including age, gender, height, weight, body mass index (BMI), blood pressure, and blood glucose were collected for

all patients. Laboratory parameters related to the kidney, including Scr, BUN and 24-h urinary protein (24h-UPRO) were also collected. The

eGFR level was calculated based on Scr using the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation.3 CKD stages

(G1-G5) were determined according to the Kidney Disease Outcomes Quality Initiative (K/DOQI) guidelines. In this study, patients were

divided into three subgroups according to the values of eGFR: normal kidney function (abbreviated as KF 1) with CKD G1 (eGFR

R90 mL/min/1.73m2), mildly abnormal kidney function (abbreviated as KF 2) with CKD G2 (eGFR 60–89 mL/min/1.73m2), and moderately

to severely abnormal kidney function (abbreviated as KF 3) with CKD G3-5 (eGFR <60 mL/min/1.73m2).

Renal histopathological evaluation

Ultrasound-guided renal biopsy was performed within 3 days post-MRI diagnosis. Renal biopsies were performed by two experienced ne-

phrologists (X.Y. and Z.Y.), whowere blinded to theMRI examination results. The patients were kept in the prone position, and a hard sandbag

was placed under the abdomen to reduce themovement of the kidney during the puncture. In most cases, the bottom of the right kidney was

the puncture site, and 16-gauge needles were used in this study.33 Standard histopathological processing was performed on the renal biopsy

tissue samples. RF was quantitatively assessed from the renal biopsy tissue sections byMasson’s trichrome staining. RF was categorized as no

RF (0% fibrosis), mild RF (%25% fibrosis), moderate RF (26%–50% fibrosis) and severe RF (>50% fibrosis).34 In our study, patients with CKDwere

also divided into three subgroups: RF 1 (no RF), RF 2 (mild RF) and RF 3 (moderate RF and severe RF).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were performed using R software version 4.1.1 (https://cran.r-project.org/), SPSS version 22.0 (https://www.ibm.com/

products/spss-statistics) and MedCalc version 15.2.2 (https://medcalc.acadtechs.com/). Graphs were generated using GraphPad Prism 8

(http://www.graphpad-prism.cn). The Kolmogorov-Smirnov test or the Shapiro-Wilk test was used for normal distribution. Continuous vari-

ables with normal distribution were analyzed by paired or independent samples t-test and one-way analysis of variance (ANOVA) with Bon-

ferroni correction, expressed asmeanG standarddeviation. Categorical variables (frequencies and percentages) or continuous variables with

nonnormal distribution [median (lower quartile, upper quartile)] were analyzed using Manni-Whitney U test, Wilcoxon signed-rank test or

Kruskal-Wallis test. The intraclass correlation coefficient (ICC) was used to assess the inter-reader reproducibility between two radiologists

with different experience. The ICC value ranges from 0 to 1 and is greater than 0.75, indicating good reliability. The Delong test was used

to compare the diagnostic efficiency between the models. A two-tailed p value of less than 0.05 indicated statistical significance.
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