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have developed own pathways of their biosynthesis. Several 
steps of these pathways are catalyzed by enzymes that are 
absent from mammalian cells and unique for the microbial 
cells, that are potential targets for antimicrobial chemother-
apy. Selective inhibitors of enzymes present in biosynthetic 
routes leading to biosynthesis of human-essential amino acids 
may become useful antimicrobials, including the antifungal 
agents. Moreover, the antimetabolite character may be advan-
tageous for them as the drug candidates. Antimetabolites, by 
definition structurally similar to intermediates or end prod-
ucts of primary metabolic pathways, are poor substrates for 
membrane proteins exporting xenobiotics, the presence of 
which determines the fungal multidrug resistance. What is 
more, some antifungal antimetabolites paradoxically show 
increased activity against multidrug-resistant fungal cells, 
compared to the sensitive cells (Milewski et al. 2001).

Antimetabolite, 5-fluorocytosine, a nucleotide analog, 
is used in antifungal chemotherapy in combination with 
amphotericin B (Banerjee et al. 2014). Another compound, 
l-proline analog known as Icofungipen (formerly BAY-
108888 and PLD-118), is a known antifungal agent that 
reached the Phase II clinical studies (Yeates 2005). These 
facts stimulate search for novel antifungals among antime-
tabolites, including inhibitors of amino acid biosynthesis 
pathways. On the other hand, not only biosynthetic path-
ways of essential amino acids are considered molecular 
targets for antifungal agents. Enzymes involved in inter 
alia L-glutamine, L-glutamic acid, l-cysteine, or l-proline 
biosynthesis have been also proposed as targets for several 
compounds with antifungal activity.

In this review, we have summarized the present state 
of knowledge on pathways of amino acids biosynthesis in 
human pathogenic fungi as a source of targets for antifun-
gal chemotherapy and on compounds inhibiting particular 
enzymes of these pathways as potential antifungals.

Abstract  Fungal microorganisms, including the human 
pathogenic yeast and filamentous fungi, are able to syn-
thesize all proteinogenic amino acids, including nine that 
are essential for humans. A number of enzymes catalyzing 
particular steps of human-essential amino acid biosynthesis 
are fungi specific. Numerous studies have shown that auxo-
trophic mutants of human pathogenic fungi impaired in 
biosynthesis of particular amino acids exhibit growth defect 
or at least reduced virulence under in vivo conditions. Sev-
eral chemical compounds inhibiting activity of one of these 
enzymes exhibit good antifungal in vitro activity in mini-
mal growth media, which is not always confirmed under 
in vivo conditions. This article provides a comprehensive 
overview of the present knowledge on pathways of amino 
acids biosynthesis in fungi, with a special emphasis put on 
enzymes catalyzing particular steps of these pathways as 
potential targets for antifungal chemotherapy.
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Target

Introduction

Among 20 proteinogenic amino acids, nine are regarded as 
essential for humans: phenylalanine, valine, threonine, tryp-
tophan, isoleucine, methionine, leucine, lysine, and histidine. 
Mammals acquire them from the diet to guarantee optimal 
growth and development, while bacteria, plants, and fungi 
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Fungal biosynthetic pathways of human‑essential 
amino acids and inhibitors of fungi‑specific enzymes

Fungal biosynthetic pathways of human-essential amino 
acids are in general identical or almost identical to the 
respective pathways operating in bacteria or plants. A nota-
ble exception to this rule is the α-aminoadipate pathway 
of l-lysine biosynthesis which is fungi specific. The other 
pathways include those grouped in three “families”, i.e. the 
aspartate family (threonine and methionine), the branched-
chain amino acids family (leucine, isoleucine, and valine) 
and the aromatic amino acids family (phenylalanine and 
tryptophan), and the histidine biosynthetic pathway.

The aspartate family

l-Threonine, l-isoleucine, and l-methionine are the amino 
acids that belong to the so-called aspartate family. All of 
them derive from aspartate and are synthesized through 
the pathways absent in mammals (Fig. 1). Mutant cells of 
human pathogenic microorganisms, defective in genes 

encoding enzymes involved in these pathways, are usually 
not viable in minimal media or at least exhibit attenuated 
virulence in animal models of microbial infections. There-
fore, these enzymes are considered attractive antimicrobial 
targets (Ejim et  al. 2004b; Kim and Fay 2007; Nazi et  al. 
2007; Umbarger 1987; Yamaguchi et  al. 1988; Yang et  al. 
2002). In both bacteria and fungi, the enzymes which ini-
tiate the aspartate pathway of amino acids biosynthesis are 
threonine- or methionine-specific aspartate kinase Hom3p 
and aspartate semialdehyde dehydrogenase Hom2p (Fig. 1). 
Another enzyme, homoserine dehydrogenase (Hom6p), cat-
alyzes the third step in the aspartate pathway the NAD(P)-
dependent reduction of aspartate δ-semialdehyde to 
homoserine—a branch point in the aspartate pathway lead-
ing to methionine or isoleucine through threonine produc-
tion (Ejim et al. 2004a). Due to the complex interactions in 
these pathways and the role of threonine as an intermediate 
of isoleucine synthesis aspartate pathway, the threonine bio-
synthesis has been studied extensively as a source of poten-
tial antifungal targets (Ejim et  al. 2004a; Kingsbury et  al. 
2006; Kingsbury and McCusker 2008, 2010a).

Fig. 1   Fungal biosynthesis of the amino acids of the aspartate fam-
ily. Aat1p aspartate aminotransferase, Asn1p asparagine synthetase, 
Hom3p aspartate kinase, Hom2p aspartate semialdehyde dehydroge-
nase, Hom6p homoserine dehydrogenase, Thr1p homoserine kinase, 

Thr4p threonine synthase, Met2p homoserine transacetylase, Met15p 
acetylhomoserine aminocarboxypropyltransferasde, Str2p cystathio-
nine γ-synthase, Str3p cystathionine β-lyase; Met6p methionine syn-
thase
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The threonine branch

l-Threonine is biosynthesized in five steps shown in Fig. 1. 
In the first reaction, L-aspartate is converted into L-4-as-
partyl phosphate by the threonine-specific aspartate kinase 
(Hom3p). The next two reactions are catalyzed by aspar-
tate semialdehyde dehydrogenase (Hom2p) and homoser-
ine dehydrogenase (Hom6p). The homoserine intermedi-
ate is converted to threonine in two consecutive reactions 
catalyzed by homoserine kinase (Thr1p) and threonine 
synthase (Thr4p) (Jones and Fink 1982). It was reported 
that the aspartate kinase gene HOM3 is required for S. 
cerevisiae and C. neoformans survival, and growth of the 
C. neoformans hom3Δ and thr1Δ mutant was seriously 
dependent on temperature and nitrogen source (Kingsbury 
et  al. 2006; Kingsbury and McCusker 2008). In addition, 
disruption of the hom3 gene in human pathogenic S. cerevi-
siae strains may influence their virulence (Kingsbury et al. 
2006), although this phenomenon was not observed for 
the C. albicans hom3Δ mutant (Kingsbury and McCusker 
2010a). Interestingly, deletion of hom6 suppressed specific 
phenotypes of thr1Δ and thr4Δ mutants, which was due 
to homoserine accumulation. What is more, the hom6Δ 
mutant of C. albicans exhibited increased salt and tempera-
ture sensitivity, compared with the wild type but was less 
sensitive than thr1Δ (Kingsbury and McCusker 2010a, b). 
Other studies provided evidence that the hom6Δ mutants 
are more sensitive to the growth inhibitory effect of the 
well-known immunosuppressant FK506 than the wild-type 
strain (Arevalo-Rodrigurez et al. 2004).

Threonine auxotrophy of different fungal species due to 
the deletion of specific genes causes a number of phenotypic 
consequences, including increased sensitivity to high tem-
perature, addition of hydrogen peroxide, caffeine or antifun-
gal agents, and defects in basic processes in life cycle, like 
sporulation. Particularly, homoserine kinase (thr1Δ) and/or 
threonine synthase (thr4Δ)-deficient strains are more sensi-
tive to the factors such as high temperature, antifungal agents, 
inhibitors of RNA, and DNA metabolism; S. cerevisiae 
thr1Δ mutants are more than fourfold sensitive to the broad 
spectrum herbicide sulfometuron methyl than the wild-type 
strain. The same phenomenon was observed for the C. albi-
cans thr1Δ mutants, although the increase in sensitivity was 
even higher, particularly 30-fold. Sensitivity of S. cerevisiae 
thr1Δ mutants to 3-amino-1,2,4-triazole is 10 times larger 
than that of hom3Δ and two orders of magnitude higher than 
that of the wild-type strain. In addition, deletions of thr1 and 
thr4 caused at least four times larger sensitivity to 5-fluoro-
cytosine (Kingsbury and McCusker 2010b). Homoserine 
kinase-deficient mutants are hypersensitive to DNA-damag-
ing compounds (Birrell et al. 2001, 2002). It is suggested that 
the strong response of thr1Δ mutants to several agents may 
be exploited in the combined treatment, including possible 

synergism of sulfometuron methyl, an inhibitor of acetolac-
tate synthase or 5-fluorocytosine, an inhibitor of RNA and 
DNA metabolism (Gustavsson and Ronne 2008; Hoskins and 
Butler 2007) with inhibitors of homoserine kinase (Kings-
bury and McCusker 2010a, b). Different phenotypic con-
sequences of aspartate pathway mutants in the presence of 
antifungal agents are probably due to the toxic consequences 
of homoserine accumulation, which was suggested by Kings-
bury for the thr1Δ mutants of S. cerevisiae and C.  albi-
cans  (Kingsbury and McCusker 2010b). For microorganism 
such as Candida albicans and Cryptococcus neoformans, the 
presence of Thr1p is essential. Deletion of thr1 was found to 
attenuate virulence of the former and is lethal for the latter, 
even if the growth media were supplemented with methio-
nine or threonine (Kingsbury and McCusker 2008, 2010a). 
Furthermore, the thr1Δ and thr4Δ mutants of human path-
ogenic S.  cerevisiae strains demonstrate highly attenuated 
virulence and are not able to survive in vivo (Kingsbury and 
McCusker 2010a). The thr4 gene encoding threonine syn-
thase was shown to be essential for growth of C. neoformans 
(Kingsbury and McCusker 2008). Given the fact that threo-
nine kinase and threonine synthase are not present in mam-
mals, results obtained so far seem to be really promising and 
reinforce the need for exploiting both enzymes as antifungal 
targets (Borisova et al. 2010).

Inhibitors of fungal Hom3p were identified by the high-
throughput screening approach (Bareich et al. 2003). Two 
compounds, derivatives of 7-chloro-4([1,3,4]thiadiazol-2-
yl sulfonyl)-quinoline (Fig.  2a, b), inhibited Hom3p from 
S. cerevisiae with Ki values in the micromolar range; how-
ever, they did not affect growth of S. cerevisiae, Candida 
parapsilosis, and Candida albicans in RPMI liquid media 
at concentrations up to 64 μg  mL−1, probably due to the 
poor internalization (Bareich et al. 2003).

More effective antifungal agents were found among 
inhibitors of homoserine dehydrogenase, Hom6p. A natu-
ral compound, (S)-2-amino-4-oxo-5-hydroxypentanoic acid 
(Fig. 2c), known as an antibiotic RI-331 produced by Strep-
tomyces sp. (Yamaguchi et al. 1988), is an enzyme-assisted 
suicide inhibitor of homoserine dehydrogenase (Jacques 
et al. 2003), with Ki in the millimolar range (Yamaki et al. 
1990). This compound is active against medically impor-
tant yeast and some molds but has no effect against Asper-
gillus spp. (Yamaki et  al. 1990). The most sensitive was 
Candida kefyr, with MIC values 6.25–12.5 μg mL−1, then 
Candida albicans, Candida tropicalis, Candida parapsilo-
sis, Candida glabrata, and Cryptoccocus neoformans, with 
MIC values ranging from 25 to ≥400 μg  mL−1. Further-
more RI-331 was effective in the treatment of systemic 
murine candidiasis, being well tolerated in mice (Yamagu-
chi et al. 1988).

Significant antifungal activity was also found for 
some phenolic compounds (Fig.  2d–g) resulting from the 
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high-throughput screen of a library of small molecules 
toward inhibitors of homoserine dehydrogenase. IC50 of 
four compounds of this type shown in Fig. 2 ranged from 
2.1 to 32 μM while their MICs versus Candida spp. and S. 
cerevisiae were between 8 and 32 μg mL−1. Surprisingly 
enough, these compounds demonstrated similar activity 
against the hom6Δ strains, thus suggesting that homoserine 
dehydrogenase is likely not the primary cellular target of 
them (Ejim et al. 2004a).

Pascale et  al. (2011) performed a high-throughput 
screening of three small molecule libraries (2,200 com-
pounds) and identified six inhibitors of homoserine kinase 
(Thr1p) from S. cerevisiae, S. pombe, and C. neoformans. 
Two out of six compounds (Fig.  2h, i) exhibited antifun-
gal activity and their MIC80 values against several fungal 
strains ranged from 0.12 to 128 μg mL−1, but only for one 
of them (Fig. 2i) the MICs were affected by the presence of 
threonine and isoleucine in the medium, which confirmed 
Thr1p as its target. Another candidate, 1-(naphthalen-2-yl)
prop-2-en-1-one (Fig. 2h), was previously described as an 
inhibitor of other kinases (Brown et al. 2000; Formica and 
Regelson 1995; Mahajan et al. 1999), so that it is not sur-
prising that Thr1p is not its primary target.

Activity of threonine synthase, Thr4p, is inhibited by 
L-(Z)-2-amino-5-phosphono-3-pentenoic acid, compo-
nent of the oligopeptide antibiotics known as rhizocticins, 
produced by B.  subtilis ATCC6633 (Kugler et  al. 1990), 
among which the most active Rhizocticin A is shown 
in Fig.  2j. This compound is transported to the micro-
bial cells by the oligopeptide transport system and inside 
cleaved by intracellular peptidases to release an active 
inhibitor of Thr4p, which leads to the growth inhibitory 
effect (Kugler et al. 1990; Laber et al. 1994). Compound is 
active against C. albicans and S. cerevisiae with MIC val-
ues of 0.35 μg mL−1 (Kugler et al. 1990). Interestingly, the 
recently obtained synthetic Rhizocticin A did not show any 
antifungal in vitro activity (Gahungu et al. 2013).

The methionine branch

l-Methionine is another amino acid essential for humans, 
synthesized in lower organisms through the branch of the 
aspartate pathway. Methionine is not only a protein com-
ponent but is also involved in several processes like the 
initiation of translation and synthesis of S-adenosylmethio-
nine, the universal methylating agent. Methionine is also 

Fig. 2   Inhibitors of fungal enzymes of the threonine branch of the aspartate family pathways
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important in the biosynthesis of sulfur compounds and for 
DNA synthesis.

The pathways of methionine biosynthesis have been 
extensively characterized in several plants, fungi, and 
bacteria. There are a few routes to methionine, shown 
in Fig.  1 and characterized in the work of Gophna et  al. 
(2005). The main fungal version of methionine biosynthe-
sis starts from the branch at the homoserine intermediate 
of the threonine pathway. L-Homoserine is first O-acety-
lated in reaction catalyzed by L-homoserine transacety-
lase Met2p. The sulfur atom is then introduced, deriv-
ing from l-cysteine or from inorganic sulfide. In Candida 
albicans, sulfide-deriving sulfur is introduced upon the 
action of O-acetylhomoserine(thiol)-lyase Met15p to give 
L-homocysteine. The sulfide providing sulfur for this reac-
tion is formed from sulfate in a series of steps via the sulfite 
intermediate. In an alternative route operating in Asper-
gillus spp., L-homocysteine is synthesized in two steps. 
Cystathionine γ-synthase Str2p forms cystathionine from 
O-acetyl-L-homoserine and l-cysteine, and then cystathio-
nine is converted to L-homocysteine upon the action of 
cystathionine β-lyase Str3p. Finally, in all fungal microor-
ganisms, L-homocysteine is S-methylated by methionine 
synthase Met6p. The methyl group in this reaction is pro-
vided by 5-methyltetrahydrofolate.

Genes encoding enzymes catalyzing particular steps of 
the methionine pathway are essential for survival of human 
pathogenic fungi in the host during infection. Interference 
in L-Met biosynthesis in fungal cells causes methionine 
auxotrophy but deletion or inhibition of Met6p also leads 
to accumulation of L-homocysteine, a toxic intermedi-
ate that interferes with ergosterol biosynthesis (Hatanaka 
et al. 1974; McCammon and Parks 1981; Parks and Casey 
1995). This effect is especially noteworthy, as ergosterol is 
an important component of the fungal cell membrane and 
inhibition of ergosterol biosynthesis is the mode of action 
of important antifungal drugs. Differences in methionine 
biosynthesis may also occur upon morphological transfor-
mation of fungal cells. For example, the non-pathogenic 
mycelial forms of Blastomyces dermatitidis, Histoplasma 
capsulatum, and Paracoccidioides brasiliensis are cysteine 
prototrophic but in the yeast pathogenic form these fungi 
are auxotrophic for cysteine (Boguslawski and Stetler 
1979; Maresca and Kobayashi 1989; Medoff et  al. 1987). 
Yang et al. (2002) discovered that the deletion of the MET3 
gene, encoding ATP sulfurylase, catalyzing the initial step 
of intracellular sulfate activation in Cryptococcus neofor-
mans causes cysteine and methionine auxotrophy, what 
indicates that methionine and cysteine are interconvert-
ible. The same situation was observed for the S. cerevi-
siae met3Δ mutant (Yang et al. 2002). However, there are 
some differences between these microorganisms in uptake 
of exogenous methionine. C. neoformans met3Δ mutant 

grows quite slowly in the presence of methionine in mini-
mal medium, while the S. cerevisiae met3Δ mutant growth 
ability is comparable to that of the wild-type strain. In addi-
tion, the C.  neoformans met3Δ mutant is avirulent in the 
murine intranasal inhalation model (Kwon-Chung et  al. 
1982; Kwon-Chung and Rhodes 1986; Rhodes et al. 1982) 
and the production of melanin, a known virulence factor, is 
depleted (Yang et  al. 2002). This effect is observed prob-
ably due to the low level of methionine in mouse serum and 
an impairment of the methionine uptake in C. neoformans 
met3Δ mutant cells. Deletion of the MET2 gene encoding 
homoserine transacetylase in Cryptococcus neoformans 
leads to methionine auxotrophy in Met(-) media that may 
be rescued by >60 μM L-Met (this is above the serum level 
of this amino acid). Furthermore, it was shown that MET2 
is required for virulence in a mouse inhalation model of 
C. neoformans infection (Nazi et  al. 2007). Disruption of 
homoserine transacetylase gene in Fusarium graminearum, 
an important cereal pathogen, caused methionine auxotro-
phy, lack of sexual development, and reduced fungal viru-
lence (Han et al. 2004). Knock-out of the genes encoding 
cystathionine γ-synthase, absent in non-ruminant animals 
(Nazi et al. 2007; Ravanel et al. 1998), in fungal plant path-
ogens F. graminearum and Magnaporthe grisea resulted in 
significant reduction of virulence (Balhadère et al. 1999; Fu 
et al. 2013). Moreover, the F. graminearum mutant lacking 
the FgMETB gene (homolog of S. cerevisiae STR2) demon-
strated reduced secretion of deoxynivalenol, an important 
virulence factor of this fungus and showed hypersensitivity 
to tebuconazole, an inhibitor of lanosterol demethylase, but 
not to other fungicides (Fu et al. 2013). The gene encoding 
O-acetylhomoserine sulfhydrylase (lyase) was identified in 
Aspergillus nidulans (Sieńko and Paszewski 1999) but no 
reports on phenotypic consequences of gene disruption are 
known. Similarly, the gene encoding cystathionine β-lyase 
was cloned and characterized in N. crassa (Reveal and Pai-
etta 2013) but validity of the respective gene for virulence 
was confirmed only in bacteria (Fasman 1976).

To verify whether methionine synthase (Met6p, Fig. 1) 
catalyzing the ultimate step of the methionine biosynthesis 
pathway could be considered an antifungal target, several 
gene disruptions in different fungal cells were performed. 
It is worth mentioning that methionine synthase exists 
in mammals and it is cobalamin dependent. On the other 
hand, the fungal enzyme, including that of C. albicans, is 
cobalamin independent and uses 5-methyl-THF as a methyl 
donor (Banerjee and Matthews 1990; González et al. 1992). 
Differences between the fungal and mammalian versions 
of methionine synthase may be exploited in the search for 
highly selective antifungal compounds. Results obtained 
for the site-directed mutants of Met6 indicate that less than 
30 % residual enzyme activity is not sufficient to support 
growth of mutant strains in Met (-) media. This suggests 
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that even the modest inhibitors of fungal Met6p could seri-
ously retard fungal growth (Prasannan et al. 2009). Results 
obtained for C. albicans cells indicate that a double dele-
tion of met6 in C. albicans is lethal and it is not due to 
methionine starvation (Suliman et  al. 2007). Methionine 
auxotrophic mutants exhibit decreased virulence in mouse 
infection model (Aoki et al. 1995). In addition, the met6Δ 
mutant of C. neoformans is hypersensitive to antifungal 
drugs, like fluconazole and the calcineurin inhibitor tacroli-
mus FK506 (fourfold lower MIC than that of the met3Δ 
mutant) and cyclosporine A (twofold lower MIC than that 
of the met3Δ mutant) in low-methionine medium (Pascon 
et  al. 2004). The met6 deletion in C. neoformans is more 
deleterious than that of met3Δ, due to the homocysteine 
accumulation, which has multiple destructive effects on 
the cell: inhibition of ergosterol biosynthesis (Hatanaka 
et al. 1974; McCammon and Parks 1981; Parks and Casey 
1995) and formation of a reactive homocysteine thiolac-
tone (Jakubowski 1990, 2002, 2004). Moreover, the C. 
neoformans met6Δ mutant was avirulent in the inhalation 
mouse model (Pascon et al. 2004). Kacprzak et al. (2003) 
and Suliman et  al. (2005) reported that methionine syn-
thase gene in S. cerevisiae and A. nidulans was condition-
ally required and the deleterious effect of its deletion may 
be compensated by addition of methionine to the medium. 
Disruption of MET6 in Schizosaccharomyces pombe leads 
to adenine and methionine auxotrophy (Fujita et al. 2006). 
Furthermore, disruption of MET6 in a plant pathogenic 
fungus Fusarium graminearum caused deficiency in aerial 
hyphal growth, even in the presence of methionine (Seong 
et al. 2005).

Poor methionine bioavailability in humans [the level in 
serum is as low as 20 μM (Fasman 1976)] and absence of 
the methionine biosynthesis pathway encourage research 
for the development of novel inhibitors of enzymes of this 
fungal pathway as potential antifungal agents. One of these 
compounds, 6-carbamoyl-3a,4,5,9 b-tetrahydro-3H-cyclo-
penta [c]quinoline-4-carboxylic acid (CTCQC), selected 
in a high-throughput screen of a small (1,000 compounds) 
protein kinase inhibitor library from ChemDiv, appeared 
as an effective inhibitor of homoserine transacetylase (IC50 
4.5 μM) (Nazi et  al. 2007). CTCQC (Fig.  3a), a nucleo-
tide substrate analog, competes with AcCoA for binding 
to the active center and interacts with the purine binding 
site. However, CTCQC had no effect on C. neoformans 
growth in minimal medium, up to 128 μg mL−1. This poor 
antifungal activity may be related to ineffective transport 
and/or intracellular metabolism to an inactive form (Nazi 
et  al. 2007). High inhibitory potential of a natural sub-
stance, Ebelactone A (Fig. 3b) and its synthetic derivatives 
toward bacterial homoserine transacetylase (De Pascale 
et al. 2011), indicates a possibility of exploitation of similar 
compounds as antifungals. Homoserine transacetylase still 
appears to be an especially promising antifungal target.

Another compound strongly affecting methionine bio-
synthesis was an antibiotic azoxybacillin (Fig. 3c) isolated 
from B. cereus (Aoki et al. 1994, 1996; Fujiu et al. 1994) 
that exhibited a broad antifungal spectrum. It was espe-
cially active against mycelial fungi such as Absidia (A. cor-
ymbifera IC80 5.7 μg mL−1), Aspergillus (A. fumigatus IC80 
0.72 μg mL−1), Microsporum (M. canis 0.055 μg mL−1), 
and Trichophyton (T. mentagrophytes 0.24  μg  mL−1) but 

Fig. 3   Inhibitors of fungal 
enzymes of the methionine 
branch
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not inhibitory against C. neoformans (Aoki et  al. 1994). 
Antifungal activity of azoxybacillin is due to the interfer-
ence with gene expression. It inhibits an induction of five 
sulfate assimilation enzymes inter alia ATP sulfurylase 
(IC50, 42 μg  mL−1) and homoserine transacetylase (IC50, 
100 μg mL−1). The most strongly affected was induction 
of sulfite reductase (IC50 3.2 μg mL−1) (Aoki et al. 1996). 
On the other hand, azoxybacillin exhibited very low anti-
fungal activity in an animal infection model (Aoki et  al. 
1996). Despite these properties observed in vivo, it is still 
considered as a promising antifungal compound and it is 
assumed that a proper chemical modification of azoxyba-
cillin may improve its bioavailability (Aoki et  al. 1996). 
The benzyl and tert-butyl esters of azoxybacillin were 
fungistatic in vitro for S. cerevisiae (IC50 values of 0.98 and 
0.63  μg  mL−1, respectively); however, these derivatives 
were hydrolyzed by esterases in mouse serum (Aoki et al. 
1995), so that there is a need to synthesize analogs stable in 
serum but cleavable in fungal cells.

Methionine biosynthesis pathway may also be affected 
by inhibition of cystathionine β-lyase (Str3p). Ejim et  al. 
(2007) tested several compounds which inhibited cysta-
thionine β-lyase from C. albicans, but only one compound 
(Fig. 3d) influenced the fungal growth in the presence and 
absence of methionine (MIC 16 μg mL−1). Unfortunately, 
there was no correlation between enzyme inhibition and 
growth inhibitory activity, thus raising doubts whether 
Str3p was the actual target of this compound.

Baldwin et  al. (1994) and Fritz et  al. (2003) reported 
another compound with antifungal properties, possibly 
targeting cystathionine β-lyase (Str3p) and cystathionine 
γ-synthase (Str2p) activity, namely an anilide fungicide 
SC-0858 (pyrimethanil) (Fig. 3e). However, several studies 
on N. crassa mutants resistant to SC-0858 did not confirm 
these assumptions (Leroux 1996; Whittington-Smith et al. 
1994). Fu et  al. (2013) showed that the F. graminearum 
mutant strain with cystathionine γ-synthase encoding gene 
disrupted did not exhibit any significant difference from the 
wild-type cells in its sensitivity to the pyrimethanil. Fur-
thermore, the addition of methionine was not effective in 
reducing the toxicity of the fungicide against F. gramine-
arum. These results indicate that cystathionine γ-synthase 
may not be a primary target of anilinopyrimidine fungi-
cides, at least, in F. graminearum (Fu et al. 2013). On the 
other hand, there are some genetic and pharmacological 
evidence suggesting that anilinopyrimidine fungicides may 
target cystathionine γ-synthase (Fritz et  al. 2003; Leroux 
et al. 2002; Sierotzki et al. 2002). Despite these ambiguous 
results, cystathionine γ-synthase should be undoubtedly 
regarded as a significant antifungal target.

Another amino acid synthesized through the aspar-
tate pathway is l-asparagine. The reaction is catalyzed by 
asparagine synthase Asn1p, which is not unique for fungi. 

Some inhibitors of Asn1p are known which influence path-
ogenicity of Magnaporthe grisea (Lo et al. 2011).

The fungal α‑ketoadipate pathway of lysine biosynthesis

l-Lysine biosynthesis is unusual in nature because of two 
diverse pathways evolved. L-Lys is an essential amino acid 
for mammals, but in bacteria, lower eukaryotes, and some 
plants it is de novo synthesized by L,L-diaminopimelate 
or α-aminoadipate pathway (Zabriskie and Jackson 2000). 
Euglenoids and higher fungi (Ascomycetes and Basidomy-
cetes) biosynthesize l-lysine through the α-aminoadipate 
pathway. This pathway is considered to be a promising 
target for antifungal chemotherapy (Zabriskie and Jackson 
2000). Furthermore, inhibitors of enzymes of that pathway 
could be possibly used as fungicides in agriculture.

The α-aminoadipate pathway consists of eight stages 
catalyzed by seven enzymes (Fig.  4) and can be divided 
into two phases. First three reactions are similar to those of 
the Krebs cycle (starting from the condensation of oxaloac-
etate with acetyl-CoA and finishing with α-ketoglutarate 
formation). Despite some analogies, the first three reac-
tions are unique for the α-aminoadipate pathway and very 
specific for higher fungi. Homocitrate synthase catalyzes 
condensation of α-ketoglutarate with AcCoA, the first 
and committed step in the pathway is highly regulated to 
economize the use of resources, and its reaction is thought 
to be the rate-limiting step in the pathway. Homocitrate is 
isomerized to homoisocitrate upon the action of homoaco-
nitase and then homoisocitrate dehydrogenase oxidation of 
homoisocitrate to α-ketoadipate. The second phase starts 
from the transamination leading to the creation of L-α-
aminoadipate, followed by reduction of the δ-carboxyl 
function affording L-α-aminoadipic-δ-aldehyde which is 
subsequently condensed with L-Glu to form saccharopine, 
finally split into L-Lys and α-ketoglutarate. Steps of the 
second phase are considered to be reversals of respective 
reactions of the l-lysine biodegradation pathway, although 
at least some of the enzymes catalyzing biosynthetic reac-
tions are different from their catabolic counterparts.

Potential utility of enzymes of the α-aminoadipate path-
way as targets for antifungal chemotherapy was verified 
by investigation of phenotypes and virulence of mutants 
defective in lysine biosynthesis. In 1985 Shepherd provided 
some evidence that lysine auxotrophic mutants of Candida 
albicans were not capable of causing disseminated candidi-
asis (Shepherd 1985). However, the mutants described in 
that work were obtained by random mutagenesis, so that 
their lysine auxotrophy might be not the only metabolic 
defect. More recent studies indicated that the mutant cells 
of Aspergillus fumigatus with deletion of the lysF gene, 
encoding homoaconitase, exhibited attenuated virulence in 
a lung tissue of mice infected intranasally with A. fumigatus 
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cells (Liebmann et  al. 2004). Mixed-inoculum infection 
experiments revealed that the growth of lysine auxotrophic 
A. nidulans LYSA strains deficient in saccharopine dehy-
drogenase catalyzing the last step in the lysine biosynthesis 
pathway was significantly slower than that of the prototro-
phic strain in the lungs of neutropenic mice. However, no 
effect was observed in the survival of mice inoculated with 

the auxotrophic mutant strain alone (Tang et al. 1994). On 
the other hand, disruption of the genes encoding enzymes 
of the α-aminoadipate pathway in C. albicans did not result 
in attenuated virulence in disseminated fungal infection 
models. The double null lys21Δ/lys22Δ mutant lacking 
homocitrate synthase activity exhibited lysine auxotrophy 
in minimal media but its virulence in vivo in the model of 

Fig. 4   Fungal enzymes 
involved in the α-aminoadipate 
pathway of l-lysine bio-
synthesis: Lys21p, Lys22p 
homocitrate synthase; Lys4p, 
homoaconitase; Lys12p, 
homoisocitrate dehydrogenase; 
Aro8p?, Yer152Cp? putative 
α-aminoadipate aminotrans-
ferase; Lys2p, α-aminoadipate 
reductase; Lys9p, saccharopine 
reductase; Lys1p, saccharopine 
dehydrogenase
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disseminated murine candidiasis appeared identical to that 
of the mother, wild-type strain (Kur et al. 2010). Very simi-
lar phenotype was reported for the homoisocitrate dehydro-
genase-deficient C. albicans mutant (Gabriel et  al. 2013). 
Interestingly, the same phenomenon was demonstrated for 
Cryptococcus neoformans cells auxotrophic for l-methio-
nine due to the targeted disruption of homoserine transa-
cetylase, in the mouse inhalation model (Nazi et al. 2007). 
It seems likely therefore that the avirulence of mutant 
fungal pathogens auxotrophic for a particular amino acid, 
demonstrated previously by other authors in the models 
of pulmonary fungal infections, might be due to the pos-
sible low content of that amino acid in respiratory track 
tissues, lower than that present in the bloodstream. It may 
be especially low at the surface of lung air vesicles, where 
the inhaled fungal spores or vegetative cells must adhere 
at the onset of pulmonary infection. Schöbel et al. (2010) 
also obtained very similar results for Aspergillus fumiga-
tus mutant cells lacking homocitrate synthase activity. The 
mutant was virulent when injected intravenously, but its 
virulence was strongly attenuated in the murine model of 
bronchopulmonary aspergillosis.

Despite those ambiguous results of gene disruption stud-
ies, homocitric synthase (Lys21p and Lys22p isoforms 
from C. albicans, Lys20p and Lys21p isoforms from S. 
cerevisiae), homoaconitase (Lys4p), and homoisocitric 
dehydrogenase (Lys12p) catalyzing biosynthetic reac-
tions present only in fungal cells, and having no counter-
parts in mammalian cells, are the most obvious candidates 
for molecular targets. It is also possible that the enzymes 
catalyzing the last four biosynthetic reactions are different 
enough from the enzymes catalyzing the reverse catabolic 
reactions present in mammalian cells and thus may be also 
considered target candidates (Bhattacharjee 1985).

Regardless of the controversies associated with the 
virulence/avirulence of lysine auxotrophic strains, several 
specific inhibitors of enzymes of the α-aminoadipate path-
way were designed and tested for their antifungal activity. 
Particularly, the homoisocitrate dehydrogenase was espe-
cially exploited as a possible target. It catalyzes oxidation 
of homoisocitric acid to oxoglutarate followed by the loss 
of carbon dioxide to yield the α-ketoadipic acid. Yamamoto 
et  al. (2007) based on the knowledge of two-step mecha-
nism of the homoisocitrate dehydrogenase-catalyzed reac-
tion claimed that a properly designed dead-end inhibitor, 
which cannot be decarboxylated, may remain bound at the 
enzyme active site and thus block it. Another possibility 
is to form a covalent bond between nucleophilic residues 
present at the active site and analogs of the intermediary 
enolate (Yamamoto et al. 2007). According to the results of 
substrate recognition experiments, two potential inhibitors, 
namely 3-hydroxypropylidenemalate and 3-carboxypro-
pylidenemalate (Fig. 5a, b), were designed and synthesized 

(E and Z isomers) as potent antifungal agents. These com-
pounds appeared as moderate competitive inhibitors of 
homoisocitrate dehydrogenase from S. cerevisiae; however, 
there was no time-dependent inactivation of the enzyme. 
Moreover, it should be noted that there was a major differ-
ence in activity between geometric isomers of these com-
pounds. The Z isomers were remarkably more active. The 
Ki value determined for (R,Z)-3-carboxypropylidenemalate 
was 72  µM against homoisocitrate dehydrogenase from 
S. cerevisiae, while that of the (S,E)-3-carboxypropylidene-
malate was 790 µM (Yamamoto et al. 2007). To increase the 
stability of the intermediary enolate form, another group of 
homoisocitrate dehydrogenase substrate analogs contain-
ing a heteroatom such as sulfur or oxygen at the α-position 
were synthesized (Yamamoto and Eguchi 2008). Among 
them, the thiahomoisocitrate (Fig.  5c) showed a strong 
competitive inhibitory effect, with Ki as low as 97  nM 
toward the homoisocitrate dehydrogenase from S.  cerevi-
siae. This was the first successful example of design and 
synthesis of a highly active inhibitor of homoisocitrate 
dehydrogenase. Unfortunately in preliminary tests, the thia-
analog did not affect growth of S. cerevisiae, probably due 
to its low permeability into cells.

A variety of carboxyalkyl- and carboxyaryl-substituted 
D-malic acid derivatives and their corresponding methyl 
esters were also designed as analogs of (R)-homocitrate 
and (2R,3S)-homoisocitrate. These compounds were tested 
for their ability to impair the growth of Aspergillus nidu-
lans A28 in minimal media and in rich media supplemented 
with excess lysine. Three compounds, namely (R)-(2-p-car-
boxybenzyl)malate trimethyl ester, (2R,3S)-3-(p-carboxy-
benzyl)malate trimethyl ester, and (2R,3S)-3-(m-carboxy-
benzyl)malate trimethyl ester (Fig. 5d–f), showed moderate 
inhibition of fungal growth, which can be partially restored 
by the presence of lysine in the growth medium. Esteri-
fication was necessary for efficient drug uptake since the 
above-mentioned compounds were not active as free acids 
(Palmer et al. 2004).

(2R,3S)-3-(p-carboxybenzyl)malate was also analyzed 
in respect of its inhibitory potential against homoisoci-
trate dehydrogenase from C. albicans. This compound 
inhibited the enzyme activity with IC50  =  3.78  mM. 
Kinetic analysis showed that the compound was a non-
competitive inhibitor of this enzyme with respect to 
NAD+ and competitive with respect to homoisocitrate, 
with Ki  =  2.91  mM. Comparing with other described 
compounds it can be classified as a weak inhibi-
tor (Gabriel et  al. 2013). Antifungal in vitro activity of 
(2R,3S)-3-(p-carboxybenzyl)malate and its trimethyl 
ester was determined against some human pathogenic 
fungi from the Candida genus and S. cerevisiae. As in the 
case of research carried out on A. fumigatus (Yamamoto 
et al. 2007), the analyzed compound demonstrated almost 
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no antifungal activity as a free acid. On the other hand, 
the ester derivative in RPMI medium inhibited growth 
of all microorganisms tested (except Candida glabrata) 
with MIC values in the 0.5–2  mg  mL−1 range. A very 
similar pattern of activity was found in the minimal YNB 

medium. Growth inhibitory effect of TMCBMA in YNB 
was abolished when the medium was supplemented with 
5  mM  l-lysine, thus confirming that growth inhibition 
was due to the inhibition of α-aminoadipate pathway 
(Gabriel et al. 2013).

Fig. 5   Inhibitors of fungal enzymes of the α-aminoadipate pathway
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Poor but defined growth inhibitory effect was also 
observed in the recent study for rationally designed analogs 
of homoaconitate and homoisocitrate (Fig. 5g–j) (Milewska 
et  al. 2012). Trans-homoaconitate and trans-1,2-epoxy-
propane-1,2,3-carboxylate inhibited C. albicans homoaco-
nitase, (2R,3S)-2-fluoro-3-allylsuccinate and (1R,2S)-
1-fluorobutane-1,2,4-tricarboxylate, and the methyl esters 
of these four compounds inhibited homoisocitrate dehy-
drogenase-exhibited antifungal in vitro activity (Milewska 
et al. 2012).

To this day there is no information about saccharopine 
dehydrogenase inhibitors which might affect fungal growth. 
Zabriskie and Jackson (2000) prepared saccharopine ana-
logs (Fig.  5k) and described their influence of commer-
cially available S. cerevisiae enzyme. Compound k1 dem-
onstrated good inhibitory properties (Ki = 0.12 mM), while 
the α-aminopimelate analog k2 showed a modest inhibitory 
effect. Neither of those compounds affected S. cerevisiae or 
C. albicans growth in solid medium.

Some antifungal activity was demonstrated for L-thialy-
sine and DL-hydroxylysine (Fig. 5l, m). Those compounds 
at milimolar concentrations inhibited growth of S. cerevi-
siae in minimal medium (Gray and Bhattacharjee 1976). 
The authors suggested that their lysine analogs influenced 
the activity of homocitrate synthase but no evidence was 
given.

Biosynthesis of branched‑chain amino acids

Amino acids containing branched aliphatic side chains, i.e. 
leucine, valine, and isoleucine are essential for humans, 
while fungi possess pathways of their biosynthesis. l-Iso-
leucine derives from l-threonine, so that only the last four 
steps of L-Ile pathway are unique. These last four steps 
of isoleucine biosynthesis and the initial steps of valine 
and leucine biosynthesis are catalyzed by a common set 
of enzymes, which act on alternative substrates. l-Valine 
is formed starting with two pyruvate molecules as the 
initial substrates and l-isoleucine is synthesized start-
ing with 2-ketobutyrate and pyruvate as initial substrates. 
l-Threonine is initially deaminated to 2-ketobutyrate by 
threonine deaminase Ilv1p (Kohlhaw 2003). Branch start-
ing at 2-oxoisovalerate in the L-Val version of the pathway 
leads to L-Leu. Summary of the biosynthetic steps lead-
ing to L-Val and L-Leu biosynthesis is shown in Fig.  6. 
The first common step in the biosynthesis of all three 
branched-chain amino acids is catalyzed by acetolactate 
(also acetohydroxyacid) synthase. The reaction involves 
the condensation either of two pyruvate molecules to form 
2-acetolactate (a precursor for valine, leucine, and panto-
thenate biosynthesis) or of pyruvate with 2-ketobutyrate to 
yield 2-acetohydroxybutyrate (a precursor for isoleucine 
biosynthesis). This enzyme is composed of catalytic and 

Fig. 6   Biosynthesis of branched amino acids in fungi. Enzymes 
involved: Ilv2p, Ilv6p acetohydroxyacid synthase; Ilv5p ketol-acid 
reductoisomerase; Ilv3p dihydroxyacid dehydratase; Leu4p 2-iso-

propylmalate synthase; Leu1p 3-isopropylmalate isomerase; Leu2p 
3-isopropylmalate dehydrogenase; Bat1p, Bat2p branched-chain 
amino acid transaminase
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regulatory subunits that are encoded in S.  cerevisiae and 
C. albicans by the ILV2 and ILV6 genes, respectively. The 
acetohydroxyacid acids formed upon the action of Ilv2p 
are subsequently reduced and isomerised to 2,3-dihydroxy 
branched acids by ketol-acid reductoisomerase Ilv5p. 
Dehydration catalyzed by dihydroxyacid dehydratase 
Ilv3p affords α-ketoacids, 2-ketoisovalerate, or 2-keto-
3-methyl-valerate, that are finally converted into l-valine 
or l-isoleucine, respectively, by the branched-chain 
transaminase(s) Bat1p and Bat2p; 2-ketoisovalerate serves 
as a substrate for the l-leucine directed branch composed 
of four further reactions, catalyzed by 2-isopropylmalate 
synthase Leu4p, 3-isopropylmalate isomerase Leu1p, 
3-isopropylmalate dehydrogenase Leu2p, and finally, the 
branched-chain transaminase(s) Bat1p and Bat2p. Since 
the initial steps of the branched-chain amino acids biosyn-
thesis are the same and there is also an obvious connec-
tion with the L-Thr biosynthesis, deletion of the respec-
tive genes leads to the multiple amino acids auxotrophy in 
minimal media. Several inhibitors of some of the enzymes 
of this pathway are known and especially acetolactate 
synthase was shown to be a target of several structurally 
different classes of inhibitors widely used as herbicides, 
particularly the sulfonylureas, imidazolinones, and sulfo-
nanilides (Grandoni et  al. 1998). On the other hand, it is 
still unclear whether targeting the branched-chain amino 
acid biosynthesis in vivo could be efficacious in context of 
an antifungal chemotherapy (Richie et al. 2013). Deletion 
of the ilv1 gene encoding for threonine deaminase and of 
the ilv2 gene encoding acetohydroxyacid synthase resulted 
in attenuated virulence of C. albicans in a murine model of 
infection (Kingsbury and McCusker 2010c). The C.  neo-
formans ilv2Δ mutant was unable to survive in vivo in the 
murine nasal inhalation model (Pascon et al. 2004). On the 
other hand, Becker et  al. (2010) provided evidence that 
ilv5 (a gene encoding enzyme catalyzing the second step 
in the common part of the branched-chain amino acid bio-
synthesis) was non-essential for C. albicans virulence in a 
murine infection model. Interestingly, C. neoformans was 
completely resistant to the known herbicide, sulfometuron 
methyl (that targets plant acetolactate synthase), probably 
due to the intrinsic resistance of C. neoformans Ilv2p to 
inhibition by this compound (Kingsbury 2004). Activity of 
dihydroxyacid dehydratase Ilv3p was shown to be essen-
tial for the full virulence of the human pathogenic fila-
mentous fungus A. fumigatus (Oliver et al. 2012). Finally, 
disruption of the leu1 gene coding for isopropylmalate 
dehydratase in Magnaporthe grisea decreased pathogenic-
ity of this plant pathogenic fungus (Hamer et  al. 2001). 
Inhibitors of isopropylmalate dehydratase Leu1p affected 
this strain growth, but have not been tested so far in terms 
of their activity against human pathogenic fungi (Hamer 
et al. 2001).

Search for antifungal compounds within inhibitors of 
valine and leucine biosynthesis has been concentrated so 
far on compounds showed before as effective growth inhib-
itors of plant pathogenic fungi or herbicides. Since aceto-
hydroxyacid synthase (Ilv2p) catalyzes the first committed 
step specific for valine and leucine biosynthesis, inhibitors 
of this enzyme could be effective antifungals, as inhibitors 
of the plant enzyme are effective herbicides. One of them 
could be the sulfonylurea compounds presented by Dug-
gleby et al. (2003) (Fig. 7a–f). Due to their low cytotoxic-
ity (Lee et al. 2013) and high affinity to acetohydroxyacid 
synthase, the sulfonylureas seem to be an excellent starting 
point for the development of new antifungal drugs. Many 
compounds of this type were tested for their ability to 
inhibit the growth of C. albicans in cell culture media and 
by disk diffusion method. The most potent inhibitors are 
sulfonylurea derivatives (Fig.  7a–d) with MIC90 values in 
the range of 0.72–2.0 μg mL−1. Other inhibitors are ethox-
ysulfuron (ES) and chlorimuron ethyl (CE) (Fig. 8e, f) with 
MIC50 values of 2 μM. Interestingly, the Ki value of ES in 
regard to C. albicans Ilv2p is about 3 times higher than that 
of CE. This disproportion is probably caused by differences 
in cell permeability or in hydrolysis of the compounds dur-
ing the course of the assay (Lee et al. 2013).

Significant antifungal activity against C. albicans exhib-
ited some other inhibitors of acetohydroxyacid synthase, 
namely triazolo-pyrimidine-sulfonamides (Fig.  7g, h). 
These agents showed a broad spectrum of antifungal activ-
ity and minimal cytotoxicity. The most versatile agent of 
triazolo-pyrimidine-sulfonamides tested was compound 
which caused complete suppression of visible growth of 
S. cerevisiae, C. albicans, A. fumigatus, R. oryzae, and C. 
neoformans at the range of 1–8 μg  mL−1. However, fun-
gal growth inhibition by triazolo-pyrimidine-sulfonamides 
could be bypassed through supplementation with exog-
enous branched-chain amino acids or by the addition of 
serum to the medium in all of the fungal organisms tested, 
except for Aspergillus fumigatus (Richie et al. 2013).

Another enzyme of the branched-chain amino acids bio-
synthesis pathway, ketol-acid reductoisomerase Ilv5p, was 
suggested as a good potential target for chemotherapy of 
mycoses caused by Aspergilli after the comparative path-
way analysis between host and parasite (Morya et al. 2011). 
Several compounds were selected as potential strong inhib-
itors of the fungal enzyme by virtual ligand docking studies 
(Morya et al. 2012) but their actual biological activity is not 
known. Several inhibitors of Ilv5p from plant pathogenic 
fungi were reported, including N-(5-substituted-1,3,4-thi-
adiazol-2-yl)cyclo-propanecarboxamides (Fig.  7j, k) (Liu 
et  al. 2009). Compounds with methyl group (Fig.  7i) and 
with chlorophenylo-group (Fig.  7k) exhibited good anti-
fungal activity against R. solanii, F. oxysporum, C. cassii-
cola, and B. cinerea, while the compound containing the 
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fluorophenyl substituent (Fig. 7j) and the commercial fun-
gicide pyrimethanil demonstrates high activity against F. 
oxysporum (Liu et al. 2009).

Histidine biosynthesis

The biosynthesis of histidine in fungi occurs via the unique 
pathway that is more closely linked to the metabolism of 
pentoses and purines than to any of the other amino acid 
(Fig. 8). The pathway of histidine biosynthesis is similar in 
a variety of bacteria and fungi. There are identical interme-
diates and the enzymes involved, but the controlling genes 
and operons are different.

The pathway and enzymes catalyzing the particular steps 
of this pathway have not been extensively studied as poten-
tial antifungal targets. There are some evidences suggesting 
that imidazole glycerol phosphate synthase His7p or histi-
dinol dehydrogenase His4p could be potential targets for 
antifungal drugs (Rivalta et  al. 2012; Pahwa et  al. 2010). 
His7p is essential for histidine biosynthesis in plant patho-
gens as well as in opportunistic human pathogens such as 
Cryptococcus, Candida, and Ajellomyces that infect immu-
nocompromised individuals (Rivalta et al. 2012). His4p is 
considered to be essential for virulence in various patho-
gens (Kishore and Shah 1988). Its potential utility as a 
drug target was shown in the bacterial facultative intracel-
lular pathogen Brucella spp. and several inhibitors of this 
enzyme were proposed and shown to demonstrate good 

antibacterial activity (Abdo et al. 2011 and references cited 
therein) but their antifungal potential is not known.

The shikimate pathway of aromatic amino acids 
biosynthesis

Phenylalanine, tyrosine, and tryptophan are biosynthe-
sized in an aromatic amino acids pathway, with shikimate 
as the major common intermediate (Fig. 9) (Braus 1991). 
Although the enzymes of the aromatic pathway from bac-
teria and plants have been extensively studied, their fun-
gal counterparts are rather poorly characterized. Disrup-
tion of the ARO3 and ARO4 genes encoding catalytically 
redundant 3-deoxy-D-arabinoheptulosonate-7-phosphate 
(DAHP) synthases catalyzing the first committed step 
of aromatic amino acids biosynthesis in Candida albi-
cans resulted in auxotrophy for Phe, Tyr, and Trp, and 
the growth impairment could be only in part rescued by 
supplementation of the growth medium with 5  mM aro-
matic amino acids (Sousa et  al. 2002). Production of the 
tryptophane-based pigment, important for pathogenicity 
of Candida glabrata, was severely diminished in Aro8p-
deficient mutants of this fungus. Growth of this mutant was 
highly attenuated (Brunke et al. 2010) Similar situation was 
observed for Malassezia furfur producing an aromatic pig-
ment malassezin, that induces apoptosis in human melano-
cytes (Krämer et  al. 2005). The ARO8 gene encodes aro-
matic aminotransferase.

Fig. 7   Inhibitors of enzymes involved in branched amino acid biosynthesis
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The phosphoenolopyruvate analog, glyphosate (N-phos-
phomethylglycine), is a well-known herbicide that targets 
plant DHAP synthase but inhibitors of this enzyme or other 
enzymes of the aromatic pathway with antifungal potential 
are not known. Search for the inhibitors of the tryptophane 
branch of the aromatic pathway as potential antifungal 
drugs seems especially promising since the L-Trp level in 
serum is low (~60 μM) (Tagliamonte et al. 1973), so that it 
may be not sufficient to rescue a fungal growth defect due 
to the inhibition of Trp biosynthesis.

Enzymes of human‑non‑essential amino acids 
biosynthesis in fungi and their inhibitors

The glutamate family

l-Glutamine, l-proline, and l-arginine are amino acids non-
essential for humans. Pathways of their biosynthesis start 
from a common intermediate, L-glutamate, so that L-Glu, 

L-Gln, L-Pro, and L-Arg constitute a so-called “glutamate 
family” of amino acids.

Biosynthesis of glutamate and glutamine

L-Glutamate is synthesized from α-ketoglutarate by 
NAD(P)+-dependent glutamate dehydrogenase Gdh2p or 
Gdh3p. The enzyme plays a central role in the synthesis 
of other amino acids by transamination or transamidation 
reactions. Reaction catalyzed by glutamate dehydrogenase 
constitutes an important link between amino acid metabo-
lism and the tricarboxylic acid cycle. On the other hand, 
l-glutamine is synthesized from glutamate by glutamine 
synthetase Gln1p, with the participation of ammonia and 
ATP. Both enzymes play a pivotal role in ammonium assim-
ilation. Glutamate dehydrogenases from several organisms 
have been extensively characterized (Hudson and Daniel 
1993; Noor and Punekar 2005). Several attempts to ration-
alize and generate efficient inhibitors of NADP-depend-
ent glutamate dehydrogenase were made (Choudhury 

Fig. 8   Histidine biosynthesis in fungi: His1p ATP phosphoribosyl trans-
ferase, His4p phosphoribosyl ATP diphosphatase/phosphoribosyl-AMP 
cyclohydrolase/histidinol dehydrogenase; His7p phosphoribosylformim-
ino-5-amino-1-phosphoribosyl-imidazole carboxamide isomerase; Sno1p 

imidazoleglycerol-phosphate synthase; His3p imidazoleglycerol-phos-
phate dehydratase; His5p L-histidinol-phosphate transaminase; His2p 
histidinol-phosphatase
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and Punekar 2007; Noor and Punekar 2005; Rogers et al. 
1972). Since the molecular mechanism of glutamate dehy-
drogenase assumes formation of the ‘iminoglutarate’-
like intermediate, several inhibitors of this enzyme were 
designed as structural analogs of this compound, including 
2-methyleneglutarate, isophthalate, and 2,4-pyridinedicar-
boxylate (Fig. 10a–c) (Noor and Punekar 2005). The first 
two compounds inhibited NADP-dependent glutamate 

dehydrogenases from Aspergillus niger in a selective and 
specific manner, with Ki  =  6.9 and 9.2  μM, respectively 
(Choudhury and Punekar 2007). Moreover, the dimethyl 
ester of isophthalate, but not the compound itself, inhibited 
A. niger growth and strongly affected mycelial morphology 
(Choudhury et al. 2008).

NAD(P)-dependent glutamate dehydrogenase was also 
reported as one of the points of metabolic control of fungal 

Fig. 9   Fungal aromatic amino acids biosynthesis pathway. Aro3p, 
Aro4p DAHP synthase; Aro1p pentafunctional arom enzyme; Aro2p 
chorismate synthase; Aro7p chorismate mutase; Trp2p anthranilate 
synthase; Tyr1p prephenate dehydrogenase; Aro8p, Aro9p aromatic 

aminotransferase; Pha2p prephenate dehydratase; Trp4p anthranilate 
phosphoribosyl transferase; Trp1p PRA isomerase; Trp2p InGP syn-
thase; Trp3p tryptophan synthase; Trp5p tryptophan synthase
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morphological transformation (Joshi et al. 2013; Peters and 
Sypherd 1979). 1,2,3-Triazole-linked β-lactam-bile acid 
conjugates: B18 and B20 (Fig. 10d, e) were found to be the 
potent inhibitors of NAD-dependent glutamate dehydro-
genase from Benjaminiella poitrasii, with Ki = 27.38 and 
18.28 μM, respectively and significantly affected yeast-to-
mycelia transition of this fungus. Furthermore, the com-
pound B20 inhibited germ tube formation during Y → M 
transition of Candida albicans and Yarrowia lipolytica 
(Joshi et al. 2013).

The proline pathway

l-Proline is a non-essential amino acid for humans, so that 
the pathway of its biosynthesis in fungi is identical with 
the mammalian one and constitutes a part of the “gluta-
mate family”; L-Glutamate and ATP are first transformed 
to γ-glutamylphosphate by γ-glutamyl kinase Pro1p. 
γ-Glutamylphosphate is then reduced to glutamate γ-
semialdehyde by glutamate-5-semialdehyde dehydrogenase 
Pro2p. This compound undergoes a spontaneous cycliza-
tion to 1-pyrroline-5-carboxylate which is next finally con-
verted to l-proline by a δ-pyrroline-5-carboxylate reductase 
Pro3p. Proline biosynthesis can also alternatively start from 
arginine but the “glutamate route” is considered to be the 
main pathway (Aral and Kamoun 1997; Cunin et al. 1986). 
A stereospecific and irreversible conversion of l-ornithine 
to l-proline may be accomplished in a single step by the 
enzyme ornithine cyclodeaminase, which is however very 
rare and occurs only in some soil- and plant-associated 

bacteria. Pro1p, Pro2p, and Pro3p have been reported as 
potential antibacterial targets (Adachi et  al. 2004; Forlani 
et  al. 2012), but it was also shown that disruption of the 
PRO3 gene encoding pyrroline-5-carboxylate reductase in 
Magnaporthe grisea reduced the pathogenicity of this fun-
gus (Balhadère et al. 1999).

The arginine pathway

The pathway of arginine biosynthesis is complex and linked 
to the urea cycle. The fungal pathway is identical with the 
mammalian one. Some reports indicated that inhibition of 
L-Arg formation may affect fungal growth and virulence. 
Disruption of the ARG5,6 gene encoding acetylglutamate 
kinase and acetylglutamyl-phosphate reductase led to the 
arginine auxotrophy in Candida albicans (Negredo et  al. 
1997), and disruption of the gene encoding argininosucci-
nate lyase Arg4p may cause arginine auxotrophy of Fusar-
ium oxysporum and results in a reduced virulence of this 
melon pathogen (Namiki et  al. 2001). The same enzyme 
is essential for germination of C.  albicans and A. nidu-
lans (Gibbons and Howard 1986; Serlupi-Crescenzi et  al. 
1983); therefore, inhibition of Arg4p may affect virulence 
as germination ability is considered one of the pathogenic-
ity factors (Matsumoto et al. 2013). Arginine biosynthesis 
was found to be very important at the early stage of infec-
tion by C. higginsianum, a plant pathogen. Mutants lack-
ing N-acetylglutamate kinase and carbamoyl–phosphate 
synthase have an impaired ability to penetrate the host 
cells (Huser et al. 2009). In addition carbamoyl–phosphate 

Fig. 10   Inhibitors of enzymes 
involved in glutamate and glu-
tamine biosynthesis
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synthase lacking mutants were able to produce more papil-
lae which probably also affected the virulence (Huser et al. 
2009). On the other hand, deletion of N-acetylglutamate 
kinase and ornithine transcarbamoyl transferase did not 
affect virulence of A.  fumigatus in the insect host model 
(Beckmann et  al. 2013). Moreover, arginine auxotrophy 
caused by lack of argininosuccinate lyase had no clear 
impact on C.  neoformans virulence (Rhodes and Howard 
1980).

To our best knowledge any selective inhibitors of fungal 
enzymes of arginine biosynthesis as potential antifungals 
have not been reported so far.

The serine/cysteine pathway

l-Serine derives from glycine and may give rise to 
l-cysteine, which may also be formed from cystathionine, 
an intermediate in the methionine pathway (Fig. 11). The 
first pathway, consisting of two steps: O-acetylation of 
L-Ser catalyzed by serine acetyltransferase and subsequent 
sulfurization of O-acetylserine upon the action of cysteine 
synthase, is called the de novo cysteine biosynthesis path-
way and operates in bacteria, plants, some protozoans, and 
fungi. In the reverse transsulfurization pathway l-cysteine 
is formed upon splitting of cystathionine by cystathionine 
γ-lyase Cys3p. This pathway is functional in mammals and 
some fungi (Paszewski et al. 1994).

Enzymes of the de novo pathway are considered prom-
ising targets for chemotherapy of diseases caused by the 
“amitochondriate” protozoan parasites, like Entamoeba 
histolytica, Giardia intestinalis, and Trichomonas vaginalis 

(Ali and Nozaki 2007). There is little chance for their 
exploitation in antifungal chemotherapy, since the human 
pathogenic fungi usually posses either both alternative 
pathways of cysteine biosynthesis or only the reverse trans-
sulfurization pathway (Paszewski et  al. 1994). Good anti-
fungal activity was noted for inhibitors of cystathionine 
γ-lyase Cys3p, including 2-amino-2-pentynoic acid (pro-
pargylglycine) (Piotrowska and Paszewski 1986), but the 
selective toxicity of such compounds is poor, as they also 
target the mammalian enzyme. Obviously, enzymes partici-
pating in the preceding steps of the reverse transsulfuriza-
tion pathway take also part in methionine biosynthesis, so 
that their inhibition or deletion of the respective genes may 
lead to methionine/cysteine auxotrophy (Yang et al. 2002). 
However, it was shown that cystathionine β-synthase Cys4p 
is not essential for virulence of M. grisea (Lo et al. 2002). 
On the other hand, genetic variation in the cysteine biosyn-
thesis, namely expression of the cystathionine β-synthase 
gene strongly affects sensitivity of yeast to various pharma-
colological compounds, probably due to the effect on intra-
cellular glutathione level (Kim and Fay 2007).

Concluding remarks and future perspectives

This review provides sample evidence that at least some 
of the enzymes catalyzing particular steps in biosynthetic 
pathways of amino acid biosynthesis could be success-
fully exploited as molecular targets for antifungal agents 
(Table 1; Fig. 12). Two lines of evidence support such the-
sis: (a) poor in vivo viability and/or attenuated virulence of 

Fig. 11   Serine and cysteine biosynthesis in fungi. Shm1p, Shm2p serine hydroxymethyltransferase; Cys4p cystathionine β-synthase, Cys1p ser-
ine acetyltransferase, Met15p cysteine synthase, Cys3p cytathione γ-lysase, Str2p cytathione γ-synthase
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Table 1   The most promising antifungals inhibiting amino acid biosynthesis in fungi

Compound Enzyme inhibited Fungi affected Antifungal effect

The threonine branch

RI-331 (Fig. 2c) Homoserine dehydrogenase C. kefyr, Growth inhibition

C. albicans,

C. tropicalis,

C. parapsilosis,

C. glabrata, Effective in the treatment of systemic 
murine candidiasis being highly tolerated 
in micea, b

C. neoformans

Phenolic analogs (Fig. 2d–g) Probably homoserine dehydro-
genase

Candida strains, Growth inhibitionc

S. cerevisiae

3,6-Dimethyl-1-phenylpyrazolo[5,4-b]pyridin-4-ol 
(Fig. 2i)

Homoserine kinase S. cerevisiae, Growth inhibitiond

S. pombe,

C. neoformas

Rhizocticin A (Fig. 2 j) Threonine synthase C. albicans Growth inhibitione

S. cerevisiae

The methionine branch

Azoxybacilin and esters analogs (Fig. 2a) ATP sulfurylase, homoserine 
transacetylase, sulfite  
reductase

A. corymbifera, Growth inhibition (low antifungal activity 
in an animal infection modelf, g)A. fumigates,

M. canis,

T. mentagrophytes

3,3,3-Trifluoro-N-(2-methylphenyl)
-2-(trifluoromethyl) propanamide (Fig. 2 d)

Probably cystathionine
β-lyase

C. albicans Growth inhibitionh

The fungal α-Ketoadipate pathway of lysine biosynthesis

Trimethyl ester of (2R,3S)-3-(p-carboxybenzyl)
malate (Fig. 5a)

Homoisocitrate dehydrogenase C. krusei, Growth inhibition

C. albicans,

C. tropicalis,

S. cerevisiae,

C. pseudotropicalis,

C. dubliniensis,

C. lusitaniae,

(2R,3S)-3-(p-carboxybenzyl) malate (Fig. 5b) C. dubliniensis, Low activity

C. lusitaniae Low activityi

Trans-homoaconitate (Fig. 5g) Homoaconitase C. albicans Growth inhibitionj

trans-1,2-epoxy-propane-1,2,3-carboxylate (Fig. 5h) Homoaconitase C. albicans Growth inhibitionj

(2R,3S)-2-fluoro-3-allylsuccinate and the methyl 
esters (Fig. 5i)

Homoisocitrate dehydrogenase C. albicans Growth inhibitionj

(1R,2S)-1-fluorobutane-1,2,4-tricarboxylate and the 
methyl esters (Fig. 5 j)

Homoisocitrate dehydrogenase C. albicans Growth inhibitionj

L-thialysine and DL-hydroxylysine (Fig. 5l, m) Homocitrate synthase S. cerevisiae Growth inhibitionk

Branched-chain amino acid biosynthesis

Sulfonylureas derivatives (Fig. 7a–d) Acetohydroxyacid synthase C. albicans Growth inhibitionl

Triazolo-pyrimidine-sulfonamides (Fig. 7g, h) Acetohydroxyacid synthase S. cerevisiae, Growth inhibitionm

C. albicans,

A. fumigatus,

R. oryzae

C. neoformans

N-(5-substituted-1,3,4-thiadiazol-2-yl)cyclo- pro-
panecarboxamides (Fig. 7i–j)

Ketol-acid reductoisomerase R. solanii, Growth inhibitionn

F. oxysporum,

C. cassiicola,

B. cinerea
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a   Yamaguchi et al. (1988); b Yamaki et al. (1990); c Ejim et al. (2004a); d Pascale et al. (2011); e Kugler et al. (1990); f Aoki et al. (1994); g Aoki 
et al. (1996); h Ejim et al. (2007); i Gabriel et al. (2013); j Milewska et al. (2012); k Gray and Bhattacharjee (1976); l Lee et al. (2013); m Richie 
et al. (2013b); n (Liu et al. 2009); o Choudhury et al. (2008); pJoshi et al. (2013); q Peters and Sypherd (1979)

Table 1   continued

Compound Enzyme inhibited Fungi affected Antifungal effect

Biosynthesis of glutamate and glutamine

Dimethyl 2-methyleneglutarate (Fig. 10a) NADP-glutamate dehydrogenase A. niger Growth inhibitiono

Dimethyl isophthalate (Fig. 10b) NADP-glutamate dehydrogenase A. niger Inhibit growth in vivo and resulted in 
changes in mycelial morphologyo

1,2,3 Triazole-linked β-lactam-bile acid conjugates: 
B18 (Fig. 10d)

NAD-glutamate dehydrogenase B. poitrasii Inhibition of germ tube formation during 
Y–H transitionp, q

1,2,3 Triazole-linked β-lactam-bile acid conjugates: 
B20 (Fig. 10e)

NAD-glutamate dehydrogenase B. poitrasii, Inhibition of germ tube formation during 
Y–H transitionp, q

C. albicans,

Y. lipolytica

Fig. 12   Diagram summarizing the most promising antifungal molecular targets in amino acids biosynthesis pathways
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mutant cells of human pathogenic fungi defective in genes 
encoding enzymes of fungi-specific amino acid biosyn-
thetic pathways; (b) antifungal in vitro and in vivo activ-
ity of some chemicals targeting these enzymes. Moreo-
ver, antimetabolic inhibitors of fungi-specific enzymes 
of amino acid biosynthesis known so far exhibit at least 
two features, very advantageous for them as antifungal 
drug candidates. They demonstrate very little if any mam-
malian toxicity and are able to overcome fungal multid-
rug resistance. Evidence accumulated so far indicates the 
enzymes catalyzing threonine, methionine, and branched-
chain amino acid biosynthesis, especially homoserine 
dehydrogenase, homoserine kinase, threonine synthase, 
methionine synthase, homoserine transacetylase, and 
acetohydroxyacid synthase as the most promising target 
candidates. Effective inhibitors of enzymes validated as 
targets from the phenotyping studies of the auxotrophic 
mutants may derive from the high-throughput search or 
from the rational drug design. It seems, however, that the 
final output of this search depends on finding satisfactory 
solutions of two problems. First of all, requirement of fun-
gal cells for a particular amino acid, biosynthesis of which 
is inhibited by an enzyme inhibitor, may be satisfied by the 
exogenous supply provided by amino acids and peptides 
present in mammalian serum, what obviously cancels the 
possible chemotherapeutic effect. From this point of view, 
the fungi-specific pathways of methionine and tryptophan 
biosynthesis seem the most promising targets, since the 
serum levels of these two human-essential amino acids are 
especially low (Tagliamonte et al. 1973; Lewis et al. 1980; 
Motil et  al. 1994), possibly well below the levels needed 
to rescue the L-Met or L-Trp auxotrophy due to the inhi-
bition of their fungal biosynthesis. Another challenge is 
a successful delivery of effective enzyme inhibitors into 
fugal cells, since inhibitors of enzymes of amino acid bio-
synthesis are often hydrophilic molecules, unable to cross 
the cytoplasmic membrane barrier. This problem may be 
solved by application of the portage transport approach 
(Hwang et  al. 1989) or by the construction of lipophilic 
pro-drug molecules. Examples of successful application 
of both approaches have been already reported (Aoki et al. 
1996; Kugler et  al. 1990; Gabriel et  al. 2013), although 
the resulting molecules have not become drugs for other 
reasons. Some reports cited in this review indicate also a 
possibility of good therapeutic effect of existing antifungal 
drugs in combination with inhibitors of amino acid bio-
synthesis (Kingsbury and McCusker 2010a, b). Summing 
up, the search for antifungal drug candidates targeting 
enzymes of amino acid biosynthesis is undoubtedly worth 
sustaining.
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