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The imbalance of the redox system has been shown to be closely related to the occurrence and progression of many cancers.
However, the biological function and clinical significance of redox-related genes (RRGs) in clear cell renal cell carcinoma
(ccRCC) are unclear. In our current study, we downloaded transcriptome data from The Cancer Genome Atlas (TCGA)
database of ccRCC patients and identified the differential expression of RRGs in tumor and normal kidney tissues. Then, we
identified a total of 344 differentially expressed RRGs, including 234 upregulated and 110 downregulated RRGs. Fourteen
prognosis-related RRGs (ADAM8, CGN, EIF4EBP1, FOXM1, G6PC, HAMP, HTR2C, ITIH4, LTB4R, MMP3, PLG, PRKCG,
SAA1, and VWF) were selected out, and a prognosis-related signature was constructed based on these RRGs. Survival analysis
showed that overall survival was lower in the high-risk group than in the low-risk group. The area under the receiver operating
characteristic curve of the risk score signature was 0.728 at three years and 0.759 at five years in the TCGA cohort and 0.804 at
three years and 0.829 at five years in the E-MTAB-1980 cohort, showing good predictive performance. In addition, we explored
the regulatory relationships of these RRGs with upstream miRNA, their biological functions and molecular mechanisms, and
their relationship with immune cell infiltration. We also established a nomogram based on these prognostic RRGs and
performed internal and external validation in the TCGA and E-MTAB-1980 cohorts, respectively, showing an accurate
prediction of ccRCC prognosis. Moreover, a stratified analysis showed a significant correlation between the prognostic signature
and ccRCC progression.

1. Introduction

Renal cell carcinoma (RCC) is one of the most common
urogenital tumors, among which clear cell RCC (ccRCC) is
the most common subtype, accounting for about 75% of all
renal tumors [1]. The standard treatment for ccRCC is
surgery, with a high cure rate for localized disease, early
and a 5-year survival rate of more than 90%, while the
5-year survival rate for patients with distant metastases

drops to 12% [2]. However, nearly 25-30% of ccRCC
patients are diagnosed with advanced cancer, and 30%
have distant metastases after surgery for early cancer [3, 4].
In addition, the TNM staging system (tumor, lymph node,
and metastasis) currently used clinically cannot effectively
predict the invasiveness of ccRCC [5]. Although some renal
carcinoma-related biomarkers have been released recently,
such as Li et al. [6] have developed a classification system
of ccRCC based on PKM alternative splicing; Caliskan et al.
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[7] conducted comparative analysis of RNA-seq tran-
scriptome data of different RCC subtypes and found reporter
molecules that were specific to each other or subtype; there
are still few markers or models that can be used to predict
the prognosis of ccRCC patients clinically. Therefore, in-
depth exploration of the molecular mechanism of ccRCC,
identification of biomarkers that can effectively predict the
prognosis and progression of ccRCC, and development of
effective early screening and diagnosis methods are of vital
importance for improving the treatment effect and quality
of life of patients.

The homeostasis system of cellular redox forms a delicate
balance between the production of reactive oxygen species
(ROS) and the removal of reactive oxygen species by antiox-
idant enzymes and small-molecule antioxidants, and partici-
pates in the regulation of physiological events such as cell
signal transduction, proliferation, and differentiation at nor-
mal low concentrations [8, 9]. However, excessive intracellu-
lar ROS accumulation can cause oxidative stress, which can
damage cell membranes, promote mitochondrial damage,
and induce cell death, thus negatively affecting cell function
and survival [10–12]. It is worth noting that this is largely
due to the uncontrolled increase of ROS, which leads to the
accumulation of large amounts of free radicals, thus destroy-
ing proteins, DNA, and lipid macromolecules, leading to
genomic instability and changes in cell growth [13]. It is
therefore not surprising that disorders of redox homeostasis
are associated with the development of a variety of pathol-
ogies, including obesity, diabetes, cardiovascular disease,
and neurodegenerative diseases [14–16]. In the past few
decades, many studies have also shown that the imbalance
of the oxidation-reduction system and the accumulation
of ROS and oxidative stress can mediate the occurrence
and development of cancer by causing molecular damage
[17, 18]. Redox imbalance was also found in the develop-
ment and progression of renal cell carcinoma [19, 20].
However, there has been no systematic study on the
composition of redox-related genes (RRGs) in ccRCC
and their relationship with prognosis. Thus, understand-
ing the molecular composition of RRGs and their roles
and functions in ccRCC is necessary for improving prog-
nosis and identifying new biomarkers.

In the current study, we download the transcriptome
data and corresponding clinical data of ccRCC from The
Cancer Genome Atlas (TCGA) database. We identified
differentially expressed RRGs and found that these genes
were closely related to clinical parameters. Subsequently,
we identified the fourteen RRGs most associated with
prognosis and constructed a predictive model based on
them. Kaplan-Meier survival analysis and time-dependent
receiver operating characteristic (ROC) analysis showed
that the model had satisfactory predictive potential. Next,
we explored the upstream regulatory network of these
RRGs and its relationship with immune cell infiltration.
We then built a nomogram based on the signature and
other clinical parameters and validated it in the TCGA
database and ArrayExpress database. Finally, we verified
the expression of these RRGs in the Human Protein Atlas
(HPA) database.

2. Materials and Methods

2.1. Data Access, Collation, and Differential Expression
Analysis. The miRNA sequencing dataset, RNA sequencing
dataset, and corresponding clinical data of ccRCC were
downloaded from the TCGA (https://portal.gdc.cancer.gov/)
database. Then, genes related to redox were screened from
the OMIM database (https://www.oncomine.org/resource/),
NCBI gene function module (https://www.ncbi.nlm.nih.gov/
gene/), GeneCards database (https://www.genecards.org/),
and GSEA-MSigDB (https://www.gsea-msigdb.org/gsea/
msigdb) with the keyword “redox” [21]; a total of 4087 RRGs
were obtained. In addition, we downloaded the E-MTAB-
1980 dataset from the ArrayExpress database (https://www
.ebi.ac.uk/arrayexpress/) as an external validation cohort.
Next, we used edgeR package (http://www.bioconductor.org/
packages/release/bioc/html/edgeR.html) to preprocess the
raw data of the TCGA cohort, including averaging the
genes with the same name, removing the genes with an
average expression of less than 1, and normalizing the
expression data based on trimmed mean of M-values
(TMM) algorithm. And for microarray data from ArrayEx-
press, the data were background adjusted and normalized
using the robust multiarray analysis (RMA) method in affy
package (http://www.bioconductor.org/packages/release/bioc/
html/affy.html). Additionally, the data were transformed
using a log2 transformation, and the probes were converted
into gene symbols. When a gene was recorded by multiple
probes, its expression level was averaged. ∣Log2 fold change
ðFCÞ ∣ >2:0 and false discovery rate ðFDRÞ < 0:05 were con-
sidered to be differently expressed genes.

2.2. Evaluation of Gene Modules and Their Correlation with
Clinical Parameters.We performed weighted correlation net-
work analysis (WGCNA) of differentially expressed RRGs to
establish gene interaction modules and to evaluate the rela-
tionships between these RRGs and clinical parameters as a
whole, according to the WGCNA package. Briefly, after soft
threshold (power) was set and cluster modules and genes
were obtained, correlation analysis was conducted between
clinical parameters (including age, gender, tumor grade,
tumor stage, T stage, N stage, and M stage) and module char-
acteristic genes. A p < 0:05 was considered statistically
significant.

2.3. Establishing Protein-Protein Interaction (PPI) Network
and Screening Key Modules. We first identified the protein-
protein interaction information of these differentially
expressed RRGs through the STRING database (http://www
.string-db.org/). Then, the PPI network was constructed
and visualized using Cytoscape 3.8.0 software. In addition,
we used the Molecular Complex Detection (MCODE) plug-
in to filter the key modules with nodes greater than 10.

2.4. Identification of Prognosis-Related RRGs. First, univariate
Cox regression analysis was performed on these key RRGs of
the TCGA cohort to identify the RRGs associated with prog-
nosis. Subsequently, we performed the least absolute shrink-
age and selection operator (LASSO) regression analysis,
Kaplan-Meier test, and multivariate Cox regression analysis
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to screen for the RRGs most associated with prognosis. A
p < 0:05 was considered significant.

2.5. Construction and Evaluation of RRG-Based Prognosis-
Related Signature. After screening these prognosis-related
RRGs, a multivariate Cox proportional hazards regression
model was constructed to predict the prognosis of ccRCC
patients. The risk score for each patient in the signature
was calculated according to the following formula:

Risk score = 〠
n

i=1
Expiβi: ð1Þ

Here, Exp represents the expression of each gene, and β
represents the regression coefficient. Subsequently, based on
the median risk score, we divided the TCGA cohort into
high-risk and low-risk subgroups. Then, we performed the
Kaplan-Meier survival analysis to compare the difference in
overall survival (OS) between the two subgroups. And the
time-dependent ROC curve was used to evaluate the prog-
nostic ability of the signature. In addition, the E-MTAB-
1980 cohort was used as an external validation set to verify
the stability and accuracy of the signature. Moreover, we also
randomly and equally divided the TCGA cohort into two
datasets, and further verified the stability and reliability of
the signature based on these two datasets.

2.6. The Expression Differences of Signature-Based Risk
Score and Prognosis-Related RRGs Stratified by Different
Clinicopathological Parameters. We analyzed the expression
differences of signature-based risk score stratified by different
clinicopathological parameters to explore whether it might
affect the progression of ccRCC. In addition, we analyzed
the expression differences of prognosis-related RRGs strati-
fied by different clinicopathological parameters to under-
stand the role of redox in ccRCC. A p < 0:05 was
considered significant.

2.7. Upstream Regulatory Network and Functional Enrichment
Analysis of Prognosis-Related RRGs. We first obtained
ccRCC miRNA sequencing dataset from the TCGA data-
base. Next, we conducted coexpression analysis of differen-
tially expressed miRNAs and prognosis-related RRGs to
explore their regulatory relationships, based on ∣Cor ∣ >0:1
and p < 0:001 standard. Subsequently, the functional
enrichment analysis of these differentially expressed RRGs
was detected by the Gene Ontology (GO) and Kyoto Ency-
clopedia of Genes and Genomes (KEGG) database pathway
enrichment analysis. All enrichment analyses were per-
formed by using the clusterProfiler package (http://www
.bioconductor
.org/packages/release/bioc/html/clusterProfiler.html).

2.8. The Infiltration Difference of Tumor-Infiltrating Immune
Cells between High-Risk and Low-Risk Groups in the TCGA
Cohort Assessed by RRG-Based Prognostic Signature. The
degree of infiltration of immune cells in the immune micro-
environment is important for tumor progression, treatment,
and prognosis. We used the cell-type identification by esti-

mating relative subsets of RNA transcripts (CIBERSORT)
and its supplied LM22 gene set to assess the degree of
immune cell infiltration in different subgroups. CIBERSORT
is a deconvolution algorithm that assesses the relative abun-
dance of immune cell infiltration in each patient based on
the expression data of 22 tumor-infiltrating lymphocyte
subsets. Here, the number of permutations was set to 1000.
p < 0:05 was the filtering criterion.

2.9. Construction of a Nomogram. We performed the Cox
regression analysis and multiple regression analysis to assess
the prognostic significance of different clinical parameters
and the prognosis-related signature. Then, to establish a
quantitative approach to predict the prognosis of ccRCC
patients, we constructed a nomogram combining clinical
parameters and RRG-based prognosis-related signature by
using rms package. Subsequently, calibration curves at differ-
ent time intersections were plotted to assess the predictive
accuracy of the nomograms. And the TCGA and E-MTAB-
1980 datasets were used for Kaplan-Meier survival analysis
and ROC analysis to further evaluate the accuracy and stabil-
ity of the nomogram.

2.10. Validation of Prognosis-Related RRG Expression. We
used the immunohistochemical results from the Human
Protein Atlas (HPA, http://www.proteinatlas.org/) online
database to detect the protein expression of these
prognosis-related RRGs [22].

3. Results

3.1. Identifying Differentially Expressed RRGs. In this study,
we systematically and comprehensively analyzed the role
and clinical significance of RRGs in ccRCC. Figure 1 shows
a flow chart of the study. A total of 72 normal renal tissue
samples and 539 ccRCC samples were analyzed. We identi-
fied a total of 4087 RRGs from the GeneCards, OMIM, NCBI,
and GSEA-MSigDB databases, and finally, 3845 RRG expres-
sion data was obtained according to the TCGA cohort. Next,
based on our inclusion criteria (∣log2 FC ∣ >2:0 and FDR <
0:05), 344 differentially expressed RRGs were identified,
including 234 upregulated and 110 downregulated RRGs.
The expression distribution of these RRGs is shown in
Figures 2(a) and 2(b).

3.2. Correlation between Gene Modules and Clinical
Characteristics. We performed WGCNA analysis to deter-
mine the correlation between gene modules and clinical
features. Briefly, after extracting gene expression data and
corresponding clinical data from the TCGA database, includ-
ing prognosis status, age, gender, tumor grade, tumor stage, T
stage, N stage, and M stage, we then set a soft threshold
(power) and obtained the optimal scale-free topology fitting
model index (scale-free R2) and average connectivity. The
degree of difference among genes was determined based on
topological overlap measure, and the clustering tree diagram
of genes was obtained. Finally, the clinical factors and mod-
ule characteristic genes in TCGA were analyzed by cluster
analysis. Figure 2(c) shows the relationships between differ-
ent gene modules and clinical features such as age, gender,
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tumor grade, tumor stage, T stage, N stage, and M stage after
WGCNA analysis. Two modules were significantly corre-
lated with tumor grade (p = 0:025, p = 0:025). One module
was significantly correlated with tumor stage (p = 0:030).
Three modules were negatively correlated with M stage
(p = 0:013, p = 0:013, and p = 0:017). Three modules were
significantly correlated with N stage (p = 0:033, p = 0:025,
and p < 0:001). However, there was no significant correlation
between the gene models and age, gender, and T stage.
Although our results showed a small effect size, the associa-
tion was statistically significant, suggesting that RRGs may
affect clinical outcomes in ccRCC patients. Therefore, prog-
nostic analysis deserved to be performed subsequently.

3.3. Construction of PPI Network and Screening Key Modules.
In order to further explore the role of key RRGs in
ccRCC, we used the STRING database and Cytoscape soft-
ware to analyze these differentially expressed RRGs and
construct a PPI network containing 189 nodes and 489
edges (Figure 3(a)). We also used the MCODE plug-in

to filter two key modules. Module 1 contained 23 nodes
and 143 edges (Figure 3(b)). And module 2 contained 12
nodes and 32 edges (Figure 3(c)).

3.4. Construction and Evaluation of RRG-Based Prognosis-
Related Signature. We first performed univariate Cox
regression analysis on these 189 key RRGs and identified
103 prognosis-related RRGs (Supplemental Table S2).
Next, LASSO regression analysis was performed for further
analysis, and 15 RRGs were identified (Supplemental
Figure S1). To further identify the RRGs with the best
prognostic significance, we identified 14 RRGs, including
ADAM8, CGN, EIF4EBP1, FOXM1, G6PC, HAMP, HTR2C,
ITIH4, LTB4R, MMP3, PLG, PRKCG, SAA1, and VWF, by
using the Kaplan-Meier test (Supplemental Figure S2).
Next, the GEPIA online tool (http://gepia.cancer-pku.cn/)
was used to explore the expression levels of these 14 RRGs
in different cancer types in the TCGA cohort, and the
results are shown in Supplemental Figure S3. Subsequently,
a RRG-based prognosis-related signature was established by
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tumor and normal tissues (344 RRGs)

Construction of protein-protein
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(14 RRGs)

ccRCC clinical information in TCGA

LASSO regression analysis (15 RRGs)

Kaplan-Meier test (14 RRGs)ccRCC miRNA data from TCGA

Differently expressed miRNA
between tumor and normal tissues

miRNA-RRGs regulatory network

Validation cohort
E-MTAB-1980

Diagnostic value
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Figure 1: The flow chart for analyzing RRG-based model and miRNA-RRG regulatory network in ccRCC.
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multiple stepwise Cox regression (Table 1). The risk score of
each ccRCC patient was calculated as follows:

Risk score = 0:0632 × ExpADAM8 readsð Þ
+ −0:0989 × ExpCGN readsð Þ
+ 0:1336 × Exp EIF4EBP1 readsð Þ
+ 0:1039 × Exp FOXM1 readsð Þ
+ −0:0263 × ExpG6PC readsð Þ
+ 0:0258 × ExpHAMP readsð Þ
+ 0:1703 × ExpHTR2C readsð Þ
+ 0:0460 × Exp ITIH4 readsð Þ
+ 0:1244 × Exp LTB4R readsð Þ
+ 0:0618 × ExpMMP3 readsð Þ
+ −0:0531 × Exp PLG readsð Þ
+ 0:0259 × Exp PRKCG readsð Þ
+ 0:0332 × Exp SAA1 readsð Þ
+ −0:0657 × ExpVWF readsð Þ:

ð2Þ

Then, according to the median risk score, the TCGA
cohort was divided into high-risk and low-risk subgroups.
Kaplan-Meier survival analysis showed that patients in the

high-risk group had a worse prognosis than those in the
low-risk group (p = 1:033e − 14, Figure 4(a)). A time-
dependent ROC curve was performed to further evaluate
the predictive performance of the signature, and the area
under the ROC curve (AUC) for OS was 0.796 at one year,
0.728 at three years, and 0.759 at five years (Figure 4(b)).
Next, the external cohort E-MTAB-1980 dataset was used
to verify the stability of the RRG-based signature. The
Kaplan-Meier survival analysis also showed a poorer
prognosis for patients in the high-risk group (p = 1:164e −
05, Figure 4(c)). The AUCs of the 1-, 3-, and 5-year
survival rates were 0.759, 0.804, and 0.829, respectively
(Figure 4(d)). Figures 4(e), 4(g) and 4(f), 4(h) show the
survival status and expression heat maps of each patient in
the TCGA and E-MTAB-1980 cohort, respectively.
Moreover, to further verify the accuracy and stability of the
signature, the whole TCGA cohort was randomly divided
into training (n = 270) and test groups (n = 269) for
subsequent analysis. The Kaplan-Meier survival analysis also
showed a worse prognosis in the high-risk group in both
datasets (p = 1:484e − 08 and p = 3:747e − 08, Figures 5(a)
and 5(c)). In the training dataset, the predicted AUCs for 1-,
3-, and 5-year survival rates were 0.771, 0.693, and 0.763,
respectively (Figure 5(b)), and in the test dataset, the
predicted AUCs for 1-, 3-, and 5-year survival rates
were 0.826, 0.767, and 0.756, respectively (Figure 5(d)).
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Figure 2: Landscape of the expression and distribution of differentially expressed RRGs in ccRCC and the correlation between gene module
and clinical parameters based onWGCNA analysis. (a) Heat map of 344 differentially expressed RRGs in the normal renal tissues and ccRCC
tissues. (b) Volcano plot shows the log2 fold change and q value of each differentially expressed RRG. (c) Module-trait relationships based on
WGCNA analysis. Each column represents a clinical trait and each row represents a gene module.
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Figures 5(e) and 5(h) show the survival status of each
patient in the training and test groups, respectively.
These results showed that the RRG-based prognosis-
related signature has good predictive performance and
stability.

3.5. Prognostic Value of the Signature Stratified by Clinical
Parameters. To investigate the clinical prognostic value of
the 14 RRGs-based prognosis-related signature in the ccRCC
patients stratified by different clinical parameters, ccRCC
patients were stratified by age, gender, tumor grade, tumor
stage, T stage, N stage, and M stage. Kaplan-Meier survival
analysis showed poor prognosis in all high-risk groups
(Figure 6). These results suggested that the RRG-based
prognosis-related signature could predict the prognosis of
ccRCC patients without considering clinical parameters.

3.6. The Expression Differences of Signature-Based Risk Score
Stratified by Different Clinicopathological Parameters. Next,
to explore whether the signature would affect the ccRCC pro-
gression, we investigated the correlation between the signa-
ture and different clinical parameters. The results showed

that there was no significant correlation between age, gender,
N stage, and the signature (p = 0:174, p = 0:321, and p =
0:281, Figures 7(a), 7(b), and 7(f)). However, the risk score
of stage I-II was significantly lower than that of stage III-IV
(p < 0:001, Figure 7(c)), the risk score of grades 1-2 was sig-
nificantly lower than that of grades 3-4 (p < 0:001,
Figure 7(d)), the risk score of T1-2 was significantly lower
than that of T3-4 (p < 0:001, Figure 7(e)), and the risk score
of M0 was significantly lower than that of M1-X (p < 0:001,
Figure 7(g)). These results indicated that the prognostic sig-
nature was significantly associated with tumor progression
in ccRCC, and the higher the risk score, the more advanced
the tumor was.

3.7. The Expression Differences of Prognosis-Related RRGs
Stratified by Different Clinicopathological Parameters. Based
on the above results, we analyzed the relationship between
prognosis-related RRGs and different clinical parameters to
further investigate the role of these RRGs in ccRCC. The
results showed that the expressions of G6PC and SAA1 were
significantly correlated with gender; the expressions of
ADAM8, CGN, EIF4EBP1, FOXM1, G6PC, HAMP, HTR2C,

HTR2C

UTS2

GCR TAC1

LTB4RF2

VWF

PLG

VEGFA SERPINE1

EGF

LTB4R2

(c)

Figure 3: Construction of protein-protein interaction network and screening key modules. (a) Protein-protein interaction network of
differentially expressed RRGs. (b) Critical module 1 from PPI network based on MCODE plug-in. (c) Critical module 2 from PPI network
based on MCODE plug-in. Green circles: downregulation; red circles: upregulation.
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ITIH4, LTB4R, MMP3, PLG, PRKCG, SAA1, and VWF were
significantly correlated with grade; the expressions of
ADAM8, CGN, EIF4EBP1, FOXM1, G6PC, HAMP, ITIH4,
LTB4R, MMP3, PLG, PRKCG, SAA1, and VWF were signif-
icantly correlated with stage and T stage; the expressions of
ADAM8, EIF4EBP1, G6PC, HAMP, LTB4R, PLG, SAA1,
and VWF were significantly correlated with M stage. How-
ever, no genes were associated with age and N stage (Table 2).

3.8. Multidimensional Regulatory Network and Functional
Enrichment Analysis of Prognosis-Related RRGs. The redox-
dependent regulation of cell homeostasis is considered to be
a multilayered process involving not only protein and
enzyme complexes but also noncoding RNAs [23, 24]. These
noncoding RNAs, including miRNAs, play important roles
in regulating cellular redox homeostasis systems [25]. Some
miRNAs have been found to be involved in cellular reactions
by altering the expression of genes encoding antioxidant
enzymes (SOD, catalase, peroxidase, and glutathione trans-
ferase) [26]. Zhang et al. [27] found that miR-206 induces
ROS accumulation in vivo and in vitro by binding to SOD1
mRNA, which may be a cause of cardiovascular disease.
Gómez de Cedrón et al. [28] reported that miR-661 regulates
redox and metabolic homeostasis in colon cancer. Therefore,
it is noteworthy to reveal the multidimensional regulatory
network in tumor genesis and progression of prognosis-
related RRGs and miRNAs in this study. We first investigated
the upstream mechanism of RRGs based on the prognosis-
related signature. We obtained 2089 miRNA sequencing data
from the TCGA database, and 211 miRNAs were obtained
after differential analysis, including 115 upregulated and 96
downregulated miRNAs (Figure 8(a)). Next, we conducted
coexpression analysis between differentially expressed miR-
NAs and prognosis-related RRGs, identified a total of 9 miR-
NAs involved in upstream regulation, and drew a Sankey plot
(Figure 8(b)). And all miRNAs positively regulated the corre-
sponding RRGs (Supplemental Table S3).

Subsequently, we conducted GO and KEGG enrichment
analysis of these RRGs by using clusterProfiler package to
explore the biological functions and molecular mechanisms
of these differentially expressed RRGs. GO and KEGG
enrichment analysis showed that these RRGs were mainly
involved in reactive oxygen species metabolic process, cal-
cium ion homeostasis, antigen processing, treatment, peptide
antigen presentation, HIF-1 signaling pathway, transcrip-
tional misregulation in cancer, and PI3K-Akt signaling path-
way (Figures 8(c) and 8(d)).

3.9. The Infiltration Difference of Tumor-Infiltrating Immune
Cells between High-Risk and Low-Risk Groups in the TCGA
Cohort Assessed by Fourteen RRG-Based Prognostic Signature.
The degree of immune cell infiltration is critical to tumor
progression, treatment, and prognosis. The CIBERSORT
algorithm was used to evaluate the differences in immune
cell infiltration among different risk subgroups. The results
showed that in each sample of the TCGA cohort, there were
significant differences in the composition of 22 immune
cells (Figure 9(a)). In addition, we found that there were
some differences among the cells in different groups. Specif-
ically, the infiltration degree of plasma cells, T cells CD8, T
cells CD4 memory activated, T cells follicular helper, T cells
regulatory (Tregs), monocytes, macrophages M0, dendritic
cells activated, mast cell resting, and eosinophils were sig-
nificantly different between the two groups (Figure 9(b)).
Moreover, the results of correlation matrix showed that T
cells CD8 had the strongest positive correlation with T cells
regulatory (Tregs), and was also positively correlated with T
cells follicular helper. There was also strong positive corre-
lation between T cells follicular helper and T cells regulatory
(Tregs) (Figure 9(c)).

3.10. Construction and Validation of a Nomogram. Cox
regression analysis was first performed to assess the prog-
nostic value of different clinical parameters and risk score
in ccRCC patients. The results indicated that the age

Table 1: Multivariate Cox regression analysis to identify prognosis-related redox genes.

Gene Coef Exp (coef) se (coef) z Pr >∣z ∣ð Þ
ADAM8 0.0632 1.0652 0.0834 0.7575 0.4488

CGN -0.0989 0.9058 0.0569 -1.7376 0.0823

EIF4EBP1 0.1336 1.1430 0.0898 1.4880 0.1367

FOXM1 0.1039 1.1095 0.0773 1.3442 0.1789

G6PC -0.0263 0.9741 0.0383 -0.6851 0.4933

HAMP 0.0258 1.0261 0.0595 0.4328 0.6651

HTR2C 0.1703 1.1857 0.0707 2.4100 0.0160

ITIH4 0.0460 1.0470 0.0584 0.7873 0.4311

LTB4R 0.1244 1.1324 0.0957 1.3003 0.1935

MMP3 0.0618 1.0637 0.0392 1.5764 0.1149

PLG -0.0531 0.9483 0.0291 -1.8230 0.0683

PRKCG 0.0259 1.0263 0.0571 0.4536 0.6501

SAA1 0.0332 1.0337 0.0273 1.2146 0.2245

VWF -0.0657 0.9364 0.0628 -1.0463 0.2954

Coef: coefficient.
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(p < 0:001), tumor grade (p < 0:001), tumor stage (p <
0:001), primary tumor location (p < 0:001), lymph node infil-
tration (p = 0:049), distant metastasis (p < 0:001), and risk
score (p < 0:001) of ccRCC patients were significantly
correlated with OS (Figure 10(a)). However, multiple regres-
sion analysis revealed that age (p = 0:013), tumor stage
(p < 0:001), and risk score (p < 0:001) were independent
prognostic factors associated with OS (Figure 10(b)).

Subsequently, to establish a quantitative approach to
predict the prognosis of ccRCC patients, we constructed a
nomogram combining clinical parameters and the RRG-
based prognosis-related signature by using rms package
(Figure 10(c)). We mapped the points of each variable to
the corresponding horizontal line and then calculated the

total points of each patient and normalized it to a distribution
of 0 to 100. By drawing a line perpendicular to both axes
(prognosis axis and total point axis), we can estimate the 1-
year, 3-year, and 5-year survival probabilities of ccRCC
patients, which may be used as a reference for making clinical
decisions. The calibration curve showed that the predicted
value of the nomogram has a good correlation with the actual
value (Figures 10(d), 10(e), and 10(f)). Moreover, to expand
the clinical application and availability of the nomogram
based on risk score and clinical parameters, we used TCGA
and E-MTAB-1980 datasets for validation, respectively.
Kaplan-Meier survival analysis showed that nomogram
could better distinguish ccRCC patients with low survival
rates in TCGA and E-MTAB-1980 datasets (p < 0:001 and
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Figure 4: Risk score, survival time, and survival status analysis of ccRCC patients based on the fourteen RRGs’ prognostic signature in the
TCGA and E-MTAB-1980 cohorts. (a) Kaplan-Meier survival curve analysis of OS in the high- and low-risk subgroups of the TCGA
cohort. ccRCC patients were grouped according to the median risk score. (b) Time-dependent ROC curves of the RRG-based risk
signature for the TCGA cohort. The ROC curves and AUC were shown to predict ccRCC patients at 1, 3, and 5 years. (c) Kaplan-Meier
survival curve analysis of OS in the high- and low-risk subgroups of the E-MTAB-1980 cohort. ccRCC patients were grouped according to
the median risk score. (d) Time-dependent ROC curves of the RRG-based risk signature for the E-MTAB-1980 cohort. The ROC curves
and AUC were shown to predict ccRCC patients at 1, 3, and 5 years. (e) The survival status of each patient in the TCGA cohort assessed
by risk score. (f) The survival status of each patient in the E-MTAB-1980 cohort assessed by risk score. (g) Heat map of the fourteen
RRGs in the TCGA cohort was evaluated based on risk score combined with other clinical parameters. (h) Heat map of the fourteen RRGs
in the E-MTAB-1980 cohort was evaluated based on risk score combined with other clinical parameters.
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Figure 5: Risk score, survival time, and survival status analysis of ccRCC patients based on the fourteen RRGs’ prognostic signature in the
training and test groups. (a) Kaplan-Meier survival curve analysis of OS in the high- and low-risk subgroups of the training group. ccRCC
patients were grouped according to the median risk score. (b) Time-dependent ROC curves of the RRG-based risk signature for the
training group. The ROC curves and AUC were shown to predict ccRCC patients at 1, 3, and 5 years. (c) The survival status of each
patient in the training group assessed by risk score. (d) Kaplan-Meier survival curve analysis of OS in the high- and low-risk subgroups of
the test group. ccRCC patients were grouped according to the median risk score. (e) Time-dependent ROC curves of the RRG-based risk
signature for the test group. The ROC curves and AUC were shown to predict ccRCC patients at 1, 3, and 5 years. (f) The survival status
of each patient in the test group assessed by risk score.
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p = 1:549e − 06, Figures 10(g) and 10(i)). Based on the nomo-
gram, in the TCGA dataset, the predicted AUCs for 1-, 3-,
and 5-year survival rates were 0.871, 0.804, and 0.787,
respectively (Figure 10(h)), and in the E-MTAB-1980 data-
set, the predicted AUCs for 1-, 3-, and 5-year survival rates
were 0.897, 0.917, and 0.896, respectively (Figure 10(j)),
indicating that the nomogram had good predictive power
and accuracy.

3.11. Validation of Prognosis-Related RRG Expression. We
used immunohistochemical results from the HPA online
database to determine the protein expression of these 14
prognostic-related RRGs. The results showed that EIF4EBP1,
FOXM1, PLG, and VWF were highly expressed in renal car-
cinoma compared with normal renal tissue, and ADAM8,
CGN, G6PC, ITIH4, and MMP3 were low in expression in
renal carcinoma compared with normal renal tissue. How-
ever, there was no significant difference in the expression of
LTB4R and PRKCG between normal renal tissues and renal
carcinoma tissues (Figure 11) (Supplemental Table S4).

4. Discussion

According to the latest global cancer statistics, RCC accounts
for about 3% of all cancers and is increasing at 2% per year.
Approximately 99,200 new cases of RCC and 39,100 RCC-
related deaths were reported in Europe in 2018 [29]. As the
most common histological subtype of RCC, ccRCC is a
malignant parenchymal tumor derived from renal tubular
cells, with a 5-year survival rate of only 11.7% in advanced
patients [30–32]. However, approximately 25-30% of ccRCC

patients are diagnosed with advanced cancer, and 30% have
distant metastases after surgery for early cancer [3, 4]. And
the molecular mechanism is still unclear. Redox homeostasis
depends on the balance between antioxidant and oxidant
levels. During tumorigenesis and progression, when tumor
growth exceeds the capacity of the existing vascular system
to provide oxygen to tumor cells, tumor cells are often sub-
jected to oxidative stress caused by ischemia, hypoxia, and
independent anchored growth [33–35]. More and more evi-
dence showed that redox homeostasis played a fundamental
role in tumor genesis and metastasis progression [36–38].
Yet, current studies on cancer, including ccRCC, mainly
focus on changes in oxidative stress. The expression pattern
and role of RRGs in ccRCC is still unclear, and the redox
omics characteristics of ccRCC have not been further studied.

In our current study, we identified a total of 344 differen-
tially expressed RRGs between tumor and normal tissues
based on the transcriptome data of ccRCC in the TCGA data-
base. We systematically analyzed the biological functions and
molecular mechanisms of these RRGs using bioinformatics
techniques. In addition, by performing Cox regression analy-
sis, we identified fourteen prognosis-related RRGs and con-
structed a RRG-based prognosis-related signature. We also
explored the correlation between the prognostic signature
and clinical parameters and the role of these prognostic
RRGs in ccRCC. Moreover, we also explored the upstream
regulatory networks of these RRGs and their relationship
with immune cell infiltration.

After our thorough and in-depth analysis, we identified
fourteen RRGs that were most associated with prognosis,
including ADAM8, CGN, EIF4EBP1, FOXM1, G6PC,HAMP,
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Figure 6: Kaplan-Meier survival analysis of ccRCC patients stratified by different clinical parameters. (a) Age ≤ 65. (b)Age > 65. (c) Male. (d)
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HTR2C, ITIH4, LTB4R, MMP3, PLG, PRKCG, SAA1, and
VWF. ADAM8 is a member of the disintegrin and metallo-
proteases family with proteolytic activity, and plays an
important role in cell adhesion, migration, proteolysis, and
signal transduction. High expression of ADAM8 in tumor
cells has been shown to be associated with invasion and
metastasis of cancer cells and is associated with poor progno-
sis in patients [39, 40]. CGN interactions with other proteins
are involved in the regulation of tight junction assembly, cell
growth, and gene expression [41]. Oliveto et al. [42] found

that highly expressed CGN was a predictor of survival in
mesothelioma patients, and miR-24-3p promoted tumor
progression and metastasis in mesothelioma patients by inhi-
biting the expression of CGN. The EIF4EBP1 gene encodes a
translation suppressor protein that competitively binds to
eukaryotic translation initiation factor 4E, thereby inhibiting
its protein expression [43]. Phosphorylated EIF4EBP1 is
thought to be an indicator of tumorigenic activity and is asso-
ciated with poor survival in cancer patients, while nonpho-
sphorylated EIF4EBP1 acts as a tumor suppressor [44].
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Figure 7: The expression differences of signature-based risk score stratified by different clinicopathological parameters. (a) Age. (b) Gender.
(c) Stage. (d) Grade. (e) T stage. (f) N stage. (g) M stage.
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FOXM1 plays an important role in balancing genomic stabil-
ity and maintaining cell proliferation and differentiation
[45]. Studies have shown that FOXM1 is abnormally elevated
in a variety of human malignancies and acts as a major acti-
vator of tumor cell invasion and metastasis [46]. G6PC plays
an important role in the glycogen breakdown pathway.
Studies have shown that glycogen plays a key role in pro-
moting the survival of cancer cells, and inhibition of gly-
cogen decomposition can induce apoptosis and early cell
senescence [47]. HAMP plays an important role in the prolif-
eration and metastasis of tumor cells [48]. Studies have

shown that dysregulated HAMP expression is associated
with an increased risk of hepatocellular carcinoma [49].
HTR2C was found to be involved in the non-small-cell lung
cancer pathway, directly affecting epidermal growth factor
receptor tyrosine kinase inhibitor resistance [50]. ITIH4 is
an acute-phase protein secreted by the liver into the blood
circulation system, and it is believed to be closely related to
the occurrence, progression, invasion, and metastasis of
many solid tumors. Li et al. [51] found that ITIH4 is an effec-
tive serummarker for early warning and diagnosis of hepato-
cellular carcinoma. LTB4R is a potent lipid mediator that

Table 2: The relationship between prognosis-related redox genes and clinicopathologic parameters.

Gene Age (≤65/>65) Gender (male/female)
Grade

(G1-2/G3-4)
Stage

(I-II/III-IV)
T stage

(T1-2/T3-4)
N stage

(N0/N1-X)
M stage

(M0/M1-X)

N 353/186 353/186 249/282 331/205 349/190 241/298 428/109

ADAM8
t 0.733 NA∗ 6.708 6.059 5.807 0.995 4.203

p 0.919 0.942 <0.001 <0.001 <0.001 0.640 <0.001

CGN
t 2.333 1.735 4.626 5.274 4.749 1.748 1.245

p 0.140 0.387 <0.001 <0.001 <0.001 0.640 0.250

EIF4EBP1
t 2.360 NA∗ NA∗ NA∗ NA∗ 0.779 NA∗

p 0.140 0.806 <0.001 <0.001 <0.001 0.655 <0.001

FOXM1
t 0.638 NA∗ NA∗ NA∗ NA∗ 0.869 NA∗

p 0.919 0.530 <0.001 <0.001 <0.001 0.655 0.112

G6PC
t 1.027 3.144 4.643 5.276 4.730 1.144 3.983

p 0.854 0.028 <0.001 <0.001 <0.001 0.640 <0.001

HAMP
t NA∗ 1.529 6.518 5.939 4.891 0.999 2.855

p 0.919 0.445 <0.001 <0.001 <0.001 0.640 0.012

HTR2C
t NA∗ 0.903 NA∗ NA∗ NA∗ 0.481 0.100

p 0.229 0.587 0.019 0.355 0.324 0.680 0.920

ITIH4
t 0.581 NA∗ NA∗ NA∗ 3.747 0.727 2.035

p 0.919 0.636 <0.001 <0.001 <0.001 0.655 0.065

LTB4R
t 1.189 NA∗ 2.676 3.679 3.906 1.086 NA∗

p 0.823 0.587 0.009 <0.001 <0.001 0.640 0.018

MMP3
t 0.110 0.972 NA∗ NA∗ NA∗ 1.351 0.854

p 0.954 0.587 <0.001 <0.001 <0.001 0.640 0.424

PLG
t 0.258 1.314 4.076 NA∗ 5.230 1.238 2.766

p 0.945 0.529 <0.001 <0.001 <0.001 0.640 0.012

PRKCG
t 0.241 0.810 NA∗ NA∗ NA∗ 0.521 NA∗

p 0.945 0.587 <0.001 <0.001 <0.001 0.680 0.214

SAA1
t 0.289 2.725 NA∗ 7.910 7.124 0.126 4.796

p 0.945 0.049 <0.001 <0.001 <0.001 0.900 <0.001

VWF
t 0.057 0.064 3.670 3.661 3.232 0.608 3.966

p 0.954 0.949 <0.001 <0.001 0.001 0.680 <0.001
NA: not available. ∗Nonparametric Mann-Whitney rank sum test.
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Figure 8: Multidimensional regulatory network of prognosis-related RRGs and differentially expressed miRNAs and the functional
enrichment analysis of these RRGs. (a) Heat map of 211 differentially expressed miRNAs in the normal renal tissues and ccRCC tissues.
(b) Sankey plot of the regulatory relationship between miRNAs and prognosis-related RRGs. (c) GO enrichment analysis of the
differentially expressed RRGs. The top 10 enrichment analysis results, including biological processes, cell components, and molecular
functions, are shown in the figure. (d) KEGG enrichment analysis of the differentially expressed RRGs. The first 30 results of functional
enrichment analysis are shown in the figure.
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Figure 9: Continued.
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regulates allergy, inflammation, and immune responses, and
has been shown to be upregulated in a variety of tumors and
to play a potential role in the early stages of tumor develop-
ment [52, 53]. MMP3 is an extracellular matrix-degrading
protease that plays an important role in a variety of tumors.
Polette et al. [54] found that MMP3 expression was a
prognostic marker for HNSCC invasion and lymph node
metastasis. Radisky et al. [55] found that overexpression
of MMP3 in breast epithelial cells was associated with
epithelial-mesenchymal transformation in vitro and tumor
promotion in vivo. PLG has broad substrate specificity,
which not only supports the migration and invasion of
tumor cells due to the enzymatic properties of fibrinolytic
enzyme but also has antiangiogenesis and antitumor fac-
tors [56]. Zhao et al. [57] found that high expression of
PLG in advanced high-grade serous ovarian cancer is a
favorable prognostic biomarker. The PRKCG gene encodes
γPKC, which plays an important role in tumor genesis,
proliferation, differentiation, and migration. Studies have
found that mutations in the PRKCG gene increase breast
cancer susceptibility [58]. Lu et al. [59] also found that
PRKCG gene intron variation was significantly associated

with an increased risk of osteosarcoma. SAA1 is an
acute-phase high-density lipoprotein-associated apolipo-
protein that is significantly upregulated in injury, inflam-
mation, and cancer [60]. Studies have shown that SAA1
is involved in a variety of functions, including inducing
extracellular matrix-degrading enzymes for tissue repair,
recruiting immune cells to inflammatory sites, and lipid
transport and metabolism [61]. VWF is a multifunctional
adhesive glycoprotein. Elevated plasma VWF antigen con-
centrations have been found in a variety of malignancies
[62]. Aryal et al. [63] found that intraplatelet VWF could
independently predict the recurrence of early hepatocellu-
lar carcinoma after resection. These results suggested that
these fourteen RRGs may be involved in the occurrence
and progression of ccRCC. However, the exact molecular
mechanisms are unknown, and further exploration of pos-
sible mechanisms may be valuable.

Next, we established a redox-associated prognostic signa-
ture based on these fourteen prognostic-related RRGs.
Kaplan-Meier survival analysis found that patients in the
high-risk group had worse OS than those in the low-risk
group. ROC curve analysis showed that the prognostic
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Figure 9: The infiltration difference of tumor-infiltrating immune cells between high-risk and low-risk groups in the TCGA cohort assessed
by fourteen RRG-based prognostic signature. (a) The stacked bar chart shows the distribution of 22 immune cells in each sample of the TCGA
cohort. ccRCC patients were grouped according to the median risk score. (b) Box plot shows the infiltration difference of tumor-infiltrating
immune cells between the high-risk and low-risk groups in the TCGA cohort. (c) Correlation matrix of the proportion of immune cells. Red
means positive correlation and blue means negative correlation.
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signature could better screen out ccRCC patients with poor
prognosis. Further analysis showed that after stratification
by different clinical parameters, the prognosis of patients in
each high-risk group was poor. And this prognosis-related
signature was also associated with disease progression of
ccRCC, and the higher the risk score, the more malignant
the ccRCC tumor, suggesting that this signature has a good
recognition in distinguishing the degree of malignancy of
the tumor and prognosis of the patient.

In addition, we used the TCGA database to construct
ccRCC network to explore the interaction between differen-
tially expressed miRNAs and prognosis-related RRGs. A net-
work of 9 differentially expressed miRNAs and 6 RRGs was
established based on the results of coexpression analysis.
These miRNAs may have the potential to activate oxidative
stress or act as a great regulator of cancer triggering and
deserve further investigation. To further understand the bio-
logical functions and molecular mechanisms of these differ-
entially expressed RRGs, we performed GO and KEGG
enrichment analysis. The results showed that these RRGs
were significantly enriched in reactive oxygen species meta-
bolic process, calcium ion homeostasis, antigen processing,
treatment, peptide antigen presentation, HIF-1 signaling

pathway, transcriptional misregulation in cancer, and PI3K-
Akt signaling pathway. The imbalance of the redox system
plays an important role in the pathogenesis and progression
of tumors. During tumor development, when tumor growth
exceeds the capacity of the existing vascular system to pro-
vide oxygen to tumor cells, tumor cells are often subjected
to oxidative stress caused by ischemia, hypoxia, and indepen-
dent anchored growth [33–36]. These by-products of oxida-
tive stress cause conformational changes in DNA, proteins,
and lipids that further lead to glycosylation, phosphorylation,
or oxidation, thereby affecting the function and stability of
biomolecules [64]. When these proteins and lipids undergo
apoptosis or oxidation, antigenic changes lead to tumor
resistance to radiation therapy and the host immune system
[65, 66]. Additionally, excessive ROS can react with residues
of various amino acids of proteins (such as cysteine, histi-
dine, lysine, arginine, proline, or threonine) to form car-
bonyl groups, changing the coding sequence and tertiary
and quarter-level structures of proteins [67]. These mutated
peptides may produce new epitopes. These results suggest
that genes may influence the occurrence and development
of tumors by regulating cell redox homeostasis and affecting
immune cell function. Further studies found that, based on
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Figure 10: Cox regression analysis was performed on the common clinical characteristics and RRG-based signature in the TCGA cohort,
and the establishment and verification of the nomogram. (a) Univariate Cox regression analysis of correlations between risk score for OS
and clinical characteristics. (b) Multivariate Cox regression analysis of correlations between risk score for OS and clinical characteristics.
(c) Nomogram for predicting the 1-year, 3-year, and 5-year OS of ccRCC patients in the TCGA cohort. (d, e, f) Calibration curves of the
nomogram to predict OS at 1, 3, and 5 years. (g) Kaplan-Meier survival curve analysis of OS in the high- and low-risk subgroups of the
TCGA cohort based on the nomogram. (h) Time-dependent ROC curves for predicting OS in the TCGA cohort based on the
nomogram. The ROC curves and AUC were shown to predict ccRCC patients at 1, 3, and 5 years. (i) Kaplan-Meier survival curve
analysis of OS in the high- and low-risk subgroups of the E-MTAB-1980 cohort based on the nomogram. (j) Time-dependent ROC
curves for predicting OS in the E-MTAB-1980 cohort based on the nomogram. The ROC curves and AUC were shown to predict
ccRCC patients at 1, 3, and 5 years.
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the signature, there were differences in the degree of
immune cell infiltration between high- and low-risk ccRCC
groups.

Moreover, to expand the clinical application and avail-
ability of RRG-based prognostic signature and to establish a
quantitative method for predicting patient prognosis, we
constructed a nomogram combining clinical parameters.
After drawing the calibration curve of each time cutoff point
and verifying it with TCGA dataset and E-MTAB-1980 data-
set for many times, it is suggested that the performance and
accuracy of the nomogram are good.

Overall, our study provides new insights into the occur-
rence and progression of ccRCC from the perspective of
redox. Our prognostic signature can better predict the sur-
vival probabilities of ccRCC patients, which may become a
new prognostic biomarker for ccRCC. However, our study
also has some limitations. First, our study is mainly based
on a single bioomics information, and different characteris-
tics of different platforms may lead to patient heterogeneity.
Second, the model construction and validation of this study
were designed by retrospective analysis, and the model still
needs to be validated through a prospective clinical cohort.
Finally, the specific biological function and molecular
mechanism of prognostic RRGs in ccRCC are still unclear,
and need to be further analyzed by in vitro and in vivo
experiments.

5. Conclusions

In conclusion, we systematically explored the biological func-
tion and prognostic value of these differentially expressed
RRGs in ccRCC by a variety of bioinformatics techniques.
We also constructed redox-associated prognostic signature
that could independently predict the prognosis of ccRCC
patients. To our knowledge, this is the first report on the
establishment of redox-associated prognostic signature of
ccRCC. Our results may have important significance in
revealing the mechanism of ccRCC and provide new thera-
peutic targets and prognostic biomarkers for ccRCC.
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