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Abstract

Sensory feedback is very important for movement control. However, feedback information has not been directly used to
update movement prediction model in the previous BMI studies, although the closed-loop BMI system provides the visual
feedback to users. Here, we propose a BMI framework combining image processing as the feedback information with a
novel prediction method. The feedback-prediction algorithm (FPA) generates feedback information from the positions of
objects and modifies movement prediction according to the information. The FPA predicts a target among objects based
on the movement direction predicted from the neural activity. After the target selection, the FPA modifies the predicted
direction toward the target and modulates the magnitude of the predicted vector to easily reach the target. The FPA
repeats the modification in every prediction time points. To evaluate the improvements of prediction accuracy provided by
the feedback, we compared the prediction performances with feedback (FPA) and without feedback. We demonstrated that
accuracy of movement prediction can be considerably improved by the FPA combining feedback information. The accuracy
of the movement prediction was significantly improved for all subjects (P,0.001) and 32.1% of the mean error was reduced.
The BMI performance will be improved by combining feedback information and it will promote the development of a
practical BMI system.
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Introduction

The brain–machine interface (BMI) is a promising technology

that will help disabled people to interact with the external world.

Many BMI studies have been performed over the past few decades

[1–5], the results of which have made it possible for a monkey or

human to control a robotic arm through neural activity to eat or

drink [6–8]. However, the accuracy of controlling a robotic arm is

quite low. For example, in a recent study, success rates were

20.8%–62.2% for reaching and grasping movements [7].

Although the robotic arm approximately reached a target,

grasping movements were often failed because the robotic arm did

not exactly reach an object. The movement prediction inaccuracy

is a critical barrier to practical application [9].

Such inaccuracy problem could be overcome by using feedback

information. Movement control is achieved from not only motor

commands but also sensory feedback [10]. Animals and humans

compensate their movement errors by the feedback such as the

position information obtained from proprioception and vision.

Therefore, feedback information should also be considered in BMI

system for high-accuracy. However, feedback information has not

been directly used to update movement prediction model in the

previous BMI studies, although the closed-loop BMI system

provides the visual feedback to users. Therefore, efforts and times

for adaptation are required to BMI users.

Unfortunately, it is difficult to extract the sensory feedback from

the neural activity. Instead, we can obtain useful information by

adding a stereo camera to the BMI system. For example, the

positions of objects can be calculated from an image recorded by

an external camera and movement prediction can be compensated

toward the object position as a movement goal. The positions of

objects can be easily calculated from the image by the image

segmentation method, which is a conventional technique (Fig. 1;

see [11]).

Here, we propose a BMI framework combining image

processing with a novel prediction method, the feedback-

prediction algorithm (FPA) that generates feedback information

from the positions of objects and modifies movement prediction

with the feedback (Figs. 1, and 2). The FPA predicts a target

among objects based on the movement direction predicted from

the neural activity. After the target selection, the FPA modifies the

predicted direction toward the target and modulates the magni-

tude of the predicted vector to easily reach the target (Fig. 2A).

The FPA repeats the modification in every prediction time points.

To evaluate the performance improvements provided by the

feedback, we predicted 3-dimensional reaching movements from
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MEG signals in both cases with feedback (FPA) and without

feedback and then compared the prediction accuracy.

Materials and Methods

Ethics Statement
Prior to the study, all subjects submitted written informed

consent for participating in the study. This study was approved by

the Institutional Review Board of the Seoul National University

Hospital (1105-095-363).

Data acquisition and signal processing
To decode the movements, we used the identical features as

described in our previous study and the present datasets were used

previously [12]. Briefly, 9 healthy subjects participated in the

experiment (age: 19–37 years; five men and four women). The

MEG signals were measured using a 306-channel whole-head

MEG system (VectorView TM, Elekta Neuromag Oy, Helsinki,

Finland) during arm movements in 3D space. A three-axis

accelerometer (KXM52, Kionix, NY, USA) was used to record

movement trajectories. The accelerometer was placed on the

index finger and the sensor signals were simultaneously recorded

with the MEG signals. To guide three-dimensional reaching

movements, stereographic images were presented on a screen. At

the beginning of the experiment, a sphere was presented on the

center of the screen for 4 s and a target sphere with a stick

connecting it to the center sphere appeared on one corner for 1 s.

The target sphere was presented randomly on one of the four

corners (upper-left, upper-right, bottom-left, and bottom-right).

During this time, the subject was instructed to use his/her arm and

to reach his/her index finger from the center to the target and

come back to the center as fast as possible along the stick line

(center-out-center paradigm). For each subject, 60 trials for each

direction were measured.

For the movement prediction, we selected 68 gradiometer

channels on motor-related areas based on power spectrum

analysis. The MEG signals were band-pass filtered at 0.5–8 Hz,

and downsampled to 50 Hz. Eleven data points preceding the

current data point were used as features for predicting velocity.

The movement velocities of x, y, and z were predicted from the

regression method without feedback and with feedback (FPA).

After the movement velocity prediction, the movement trajectories

were calculated by integrating the predicted velocities.

The MEG and accelerometer data are located in Data S1.

Because the stereographic images were presented instead of real

objects in our experiment, we assumed that object positions are

equal to the mean position of the end points of real movement

trajectory instead of the real image processing.

Feedback-prediction algorithm (FPA)
In previous BMI studies using a Kalman filter, the next state

was usually predicted from the present state and the prediction was

Figure 1. A BMI framework combining image processing. The BMI framework receives image information through external device. Position
information of objects are calculated from the image information by image processing. The proposed FPA algorithm generates a compensation
vector based on the position information and A priori prediction. The purpose of the compensation vector is to rotate the prediction vector toward
the predicted target and magnify the predicted vector to easily reach the target. The FPA predicts the movement and compensates using the
position information recursively.
doi:10.1371/journal.pone.0103539.g001
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compensated based on the neural signals [13–15]. Therefore, the

method ensures that the prediction maintains the direction of the

previous movements and it diminishes variation of prediction. This

approach can be beneficial in the case of the prediction for smooth

movements. However, the method may hinder the prediction of

movement with rapid change. In robotics, the system generally

estimates the next state from the present state with input signals

and compensates the prediction based on measurement value,

when measurement is possible [16]. Therefore, it is more

reasonable to predict the next state from the present state with

neural activity and compensate the prediction by the measurement

such as with the proposed FPA.

The FPA is a recursive prediction algorithm consisting of three

steps: 1) a prior prediction, 2) generation of a compensation vector,

and 3) final prediction. In the a prior prediction step, the next

movement state was predicted by the multiple linear regression

(MLR) from the previous movement state and the MEG signals.

The a prior prediction method corresponds to the general

prediction method used in various BMI studies [5,6,12,17–20].

In the generation step of a compensation vector, a target is

predicted among the objects based on the direction of the a prior
prediction vector. After the target selection, a new vector directing

target from a present position is created. The magnitude of the

vector is modified based on the probability that the predicted

target is a real target by multiplying a weight value. This is a

compensation vector which is used as feedback information. The

weight value helps the movement prediction easily reach the

target. Lastly, the final prediction is determined by adding the

Kalman gain-multiplied error (the difference between the a prior

prediction and the compensation vector), to the a prior prediction.
The process of the FPA is as follows (Fig. 2A).

Step 1. A priori prediction. In the first step, the next

movement state was predicted from the previous movement state

and the MEG signals. The relation between states, inputs, and

measurements can be described with the state equation and output

equation as follows:

xkz1~AxkzBukzwk

yk~Cxkzzk

where xk is the state matrix (position) at time k; uk indicates the

MEG signal matrix; yk is the measurement matrix which

corresponds to a compensation vector; wk describes the noise

matrix and zk is the measurement error matrix; A, B, and C are

the coefficient matrices. In our study, we assumed that the matrix

A, C is an identity matrix. B was calculated using the multiple

linear regression.

To predict next k+1 state at time k, the FPA a priori predicts the
next state of movements from the present state and neural activity

as follows:

x̂xkz1~AxkzBuk

P{
kz1~APkA

TzSw

Figure 2. Principle of the FPA. (A) Three steps of the FPA. Step 1, the next movement state is a priori predicted from the present state and the
neural activity. Step 2, the a priori predicted vector is projected onto the vectors directed from the present position to each object (green arrows are
vector projections). One of the objects is predicted as the target which has the minimal angle between the predicted vector and vector projections
(the red sphere). The predicted vector is rotated toward the target and multiplied by a weight value (black arrow) to magnify the predicted vector to
easily reach the target. Step 3, the final prediction vector (red arrow) is determined from a priori prediction and the compensation vector. (B)
Prediction example while changing a target. The example shows how a target and final prediction can be changed according to the direction of a
prior prediction.
doi:10.1371/journal.pone.0103539.g002
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where x̂xkz1 describes the a priori predicted next state and P{
kz1 is

an a priori prediction error covariance and where Sw is a

covariance matrix of system noise. We defined Sw as follows:

Sw~E(wkw
T
k )

Step 2. Generation of a compensation vector. In the

second step, a target is predicted among the objects and a

compensation vector is generated. To predict a target, the a priori
predicted vector is projected onto the vectors directed from the

present position to each object.

Proji;kz1~x̂xkz1
:Oi~Dx̂xkz1DDOi Dcoshi

where Oi is a unit vector pointing to each object i; hi is an angle

between x̂xkz1 and Oi. The length of the vector projection

represents the degree of similarity of the predicted vector to the

vector pointing to each object because the length of the vector

projection is inversely proportional to the angle hi between the

predicted vector and the vector directing the object. Therefore, an

object corresponding to the maximal vector projection is predicted

as the target as follows:

Predicted targeti;kz1~ arg max
i

Proji;kz1

�
�

�
�~ arg min

i

hi

where Proji;kz1

�
�

�
� is a Euclidean distance of the vector projection

Proji;kz1. Because the target is predicted in every FPA process

based on the neural activity, the subject can change his/her

movement goal at any time (Fig. 2B).

After the target selection, the vector projection pointing to the

target is multiplied by a weight value W(t). The purpose of

multiplying the weight value is to help to easily reach the target.

The weight value W(t) was calculated by dividing the length of

projection vector pointing to the target with the mean length of the

projection vectors as follows:

W (t)~
Projt arg et;kz1

�
�

�
�

1
n

Pn

i~1

Proji;kz1

�
�

�
�

ykz1~W (t)Projt arg et;kz1

where ykz1 is the compensation vector. The weight W(t) was

restricted to 2 to prevent overweight. We selected the appropriate

restriction value by the experiment.

Step 3. Final prediction. In the final step, the final

prediction vector is determined using the a priori prediction

vector and a compensation vector calculated from the first and

second steps. The a priori prediction x̂xkz1 is compensated with the

compensation vector ykz1 as follows:

Kkz1~AP{
kz1C

T (CP{
kz1C

TzSz)
{1

xkz1~x̂xkz1zKkz1(ykz1{Cx̂xkz1)

Pkz1~(I{Kkz1C)P{
kz1

where Kkz1 is called the Kalman gain and Pkz1 is a posteriori
prediction error covariance; the 21 superscript indicates the

matrix inversion, the T superscript represents the matrix

transposition; and Sz is a covariance matrix of the measurement

error. We defined the Sz as follows:

Sz~E(zkz
T
k )

We assumed that the Sw and the Sz were same and they were

identity matrices in our study.

Evaluation of the performance
We compared the performance in cases with feedback (FPA)

and without feedback. To evaluate the performance, we assessed

the closeness of the end points of the predicted trajectory to the

target. We defined the error by the distances from the end point of

the predicted trajectory to the target position, which was divided

by the distance from the origin to the target position to normalize

the error. In addition, movement error (ME) and movement

variability (MV) were calculated [21]. ME represents an average

distance of the predicted trajectory from the task axis. ME means

how much a predicted trajectory is far from the ideal straight line.

MV measures the standard deviation between a predicted

trajectory and the task axis. MV depicts the variation of the

predicted trajectory. For statistical analysis, we applied a paired-

samples t-test to the errors in cases with feedback (FPA) and

without feedback using SPSS, version 13.0 (SPSS, Chicago, IL).

Results

The results of the evaluation demonstrate that the end points of

the trajectory predicted with the feedback were closer to the target

and also more focused on the target than the end points predicted

without feedback, because the magnitude and the direction of the

predicted movement with feedback were modulated toward the

target using the feedback information (Figs 1 and 2 and Video S1).

The paired-samples t-test showed a significant group difference

between errors in cases with and without feedback (P,0.001),

implying that the performance of the movement prediction was

significantly improved by feedback (FPA). The mean error

declined from 0.42760.238 to 0.29060.288 (mean 6 SD) with

feedback, corresponding to an error reduction of 32.1%. Because

the reaching target was the virtual sphere, the variation of the real

movements from the target center (error) was 0.17860.131. Based

on the consideration of the real movement variation, the error of

the FPA is considerably low. Fig. 3 illustrates the error bar and

standard error in cases with feedback (gray) and without feedback

(black) for each subject. We also evaluated the individual

difference between errors in cases with feedback and without

feedback by the paired-samples t-test. The p-values of most

subjects were under 0.001 (p=0.021 and p=0.002 for subject 2

and subject 9, respectively).

Moreover, ME and MV were significantly decreased by

feedback (P,0.001 and P,0.05, respectively). The mean ME

without feedback was 0.114660.0722 and the mean ME with

feedback was 0.081160.0925. The mean MV without feedback

was 0.072460.0512 and the mean MV with feedback was

0.069860.0850. The results represent that predicted trajectories

BMI Using Feedback Information
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were closed to the optimal path and the variations of the predicted

trajectories were reduced by feedback.

Note that the prediction results without feedback already

showed high performance (mean r.0.7) as described in our

recent study [12]. Nevertheless, performance was significantly

improved by combining the feedback information generated from

the positions of objects.

Fig. 4 shows the example results of one subject during one

session. Predicted movements without feedback roughly followed

the original movements (Figs. 4B and 4D). However, the predicted

trajectory without feedback often did not reach the target. On the

other hand, the predicted movements with feedback almost did

reach the target (Figs. 4C, and 4D). Although real movements

were somewhat scattered because the subject was instructed to

move as fast as possible during the task, the predicted movement

trajectory with feedback was more focused on the target because

the predicted trajectory with feedback was compensated toward

the target based on the target position. Improvement of prediction

accuracy is more clearly represented in Video S1.

Discussion

We proposed a BMI framework combining image processing

with a novel prediction method, the FPA that generates feedback

information and modifies movement prediction. The FPA predicts

a target in every FPA process based on the neural activity, modifies

the predicted direction toward the target and modulates the

magnitude of the predicted vector to easily reach the target.

Because the target is predicted in every FPA process, the subject

can change a movement goal at any time. We demonstrated that

combining feedback information for movement prediction con-

siderably improves prediction accuracy. The proposed method will

improve the performance of the arm-control BMI system not only

for non-invasive but also for invasive neural signals. Therefore, the

FPA will promote the development of a practical BMI system.

Importance of feedback information
Feedback information is very important in movement control.

To generate a reaching movement, three processes are required

[10]. First, in the movement planning process, the movement

needs to be planned to determine the movement direction and

distance based on the sensory information about the object and

hand locations. Second, in the process of inverse kinematic

transformation, the joint angle trajectories of the shoulder and the

elbow are determined to achieve the movement. Third, in the

process of inverse dynamic transformation, the torque of the

shoulder and elbow should be calculated based on the angle

trajectories. The three processes are called sensorimotor transfor-

mations and are achieved based on the relationship between the

joint angles of the arm and the location of the hand in space.

However, neural representations of the relationship may not

exactly describe the real relationships because of structural

differences or errors in the model’s parameters [10]. Therefore,

this causes movement inaccuracies and it is difficult to predict a

movement exactly without feedback information.

To overcome the inaccuracy, we suggested the BMI framework

with the FPA. The predicted movements with feedback (FPA)

almost did reach the target by modifying the direction and

magnitude of the predicted movement vector, although the

predicted trajectory without feedback does not reach the target

(Fig. 4).

A recent study also proposed a BMI that combined target

information [22]. The suggested study method predicts the target

from neural activity before movement initiation in the first stage

and combines the predicted target with the trajectory prediction in

the second stage. Although the study is similar to our study in

terms of combining position information for movement prediction,

there are several limitations. In the previous study, the object

positions were determined and fixed on the screen. Therefore, the

method cannot be applied to control a neural prosthesis because

the object positions are unknown in real life. This differs to our

method, in which BMI obtains the object position from image

processing. Moreover, the method predicts the target once before

the movement and utilizes it during the trajectory prediction. This

causes two main problems. Firstly, if the initial prediction is

incorrect, then the target information will disrupt the subsequent

prediction. Secondly, although the initial prediction is correct, the

user cannot change the movement goal until one trial ends. In

contrast, our proposed algorithm, FPA, predicts the target in every

time step, therefore several incorrect predictions do not critically

affect the trajectory prediction and the user can change the

movement goal at any time (see Video S2). Lastly, information

about the start and end times of the trials is required to predict the

target and trajectory separately, which is inappropriate for

practical BMI.

In other BMI studies, the target information was also used to

assist the cursor control during the training periods for the

adaptation of the subject to the system [6,23] or to determine the

parameters of a prediction model [24]. However, the method

requires target information. As described above, the method also

cannot be used in real life because the target will be changed in

various situations.

Feasibility of practical brain-machine interfaces
The proposed BMI framework with FPA will enable the

practical BMI. First, the suggested algorithm improves prediction

accuracy, as mentioned above. Second, it is applicable regardless

of the object number or position because the FPA uses the

positions obtained from the image and the image processing is not

affected by the number or position of the object. Third, the subject

can change a target at any time because the FPA selects a target

based on neural activity and compensates the prediction in every

time step (Figs. 1 and 2; see Video S1). Last, the suggested method

can also be applicable to any patients regardless of their disability

type because it uses the additional information obtained from an

external camera. Moreover, it may be possible to provide

Figure 3. Error bar with standard error for each subject. Black
bars illustrate errors in a case without feedback and gray bars represent
errors in a case with feedback (FPA). *P = 0.021, **P = 0.002, ***P,0.001.
doi:10.1371/journal.pone.0103539.g003
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automatic grasping control signals using image information

regardless of the various sizes and shapes of objects, without

decoding the sophisticated finger movement. Therefore, the

proposed BMI framework with FPA will promote the realization

and commercialization of BMI.

Limitations
The FPA is effective only if the movements are predictable from

neural activity. Although the FPA improves prediction accuracy in

most cases, it may not improve the performance when the

movement prediction is extremely inaccurate because the algo-

rithm compensates the movement based on the position of the

target, which is predicted from neural activity. For this reason,

subjects 2 and 9 show relatively little improvement, although the

errors were significantly reduced. For the same reason, in case

objects are very close to each other, performance improvements by

the FPA may be decreased because it is difficult to predict the

target from neural activity.

Another limitation is that the proposed method requires an

external camera. Therefore, the adherence of a camera may be

cumbersome. Nevertheless, it may be more convenient for the

user, because it will innovatively improve the performance.

Supporting Information

Data S1 The ‘Data S1’ consists of epoched_MEG and
epoched_acc. The ‘epoched_MEG’ is the 68 channel MEG data

on motor-related area of 25 trials. The ‘epoched_acc’ is an

accelerometer data measured on the index finger. Each cell of the

data corresponds to the different direction movement. The

sequence of the data is channels, time, and trials.

(MAT)

Video S1 Correct compensation with feedback (FPA). In
the movie, the FPA modified the predicted direction toward the

target and modulated the magnitude of the predicted vector to

easily reach the target. As a result, the predicted trajectory with

feedback (FPA) reached the target accurately, although the

predicted trajectory without feedback did not reach the target.

In the movie, the green ball refers to the home position, the blue

balls represent objects, the red ball refers to the predicted target

from brain activity, the blue arrows describe the a prior predicted
movement vectors without feedback, the black arrows are

compensation vectors generated by the FPA, the red line

represents the finally predicted vectors by the FPA, and the blue

dotted line refers to the a prior predicted movement trajectory

without feedback. The movie shows the sequence of the a prior
prediction, selecting the target, generating artificial feedback

vector, and final prediction by FPA.

(AVI)

Video S2 Incorrect compensation with feedback (FPA).
In the movie, the predicted trajectory reached the target rapidly

due to the effect of the weight value. Because the movement was

predicted offline, the feedback of the compensated prediction was

Figure 4. Examples of the movement prediction in 3D space in cases with feedback (FPA) and without feedback. The four color lines
illustrate the movement trajectory for the different directions. Gray spheres represent objects. (A) Real movement trajectory. (B) Predicted movement
trajectory without feedback. (C) Final predicted movement trajectory with feedback (FPA). (D) Endpoint comparison. Blue spheres indicate endpoints
of predicted movement trajectory and red spheres depict endpoints of compensated movement trajectory. Radii of blue and red spheres represent
SDs of endpoints in cases with feedback and without feedback, respectively.
doi:10.1371/journal.pone.0103539.g004
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not presented to the subject. Therefore, the predicted movement

was outside the target, because the subject may want to reach

continuously. This caused incorrect compensation and the

predicted trajectory pointed out another target. Although this is

a result of incorrect compensation, it shows that the FPA could

change the target at any time.

(AVI)
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