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SARS-CoV-2 is an international public health emergency; high transmissibil-
ity and morbidity and mortality can result in the virus overwhelming health
systems. Combinations of social distancing, and test, trace, and isolate
strategies can reduce the number of new infections per infected individual
below 1, thus driving declines in case numbers, but may be both challenging
and costly. These interventions must also be maintained until development
and (now likely) mass deployment of a vaccine (or therapeutics), since other-
wise, many susceptible individuals are still at risk of infection. We use a
simple analytical model to explore how low levels of infection, combined
with vaccination, determine the trajectory to community immunity. Under-
standing the repercussions of the biological characteristics of the viral life
cycle in this scenario is of considerable importance. We provide a simple
description of this process by modelling the scenario where the effective
reproduction number Reff is maintained at 1. Since the additional com-
plexity imposed by the strength and duration of transmission-blocking
immunity is not yet clear, we use our framework to probe the impact of
these uncertainties. Through intuitive analytical relations, we explore how
the necessary magnitude of vaccination rates and mitigation efforts depends
crucially on the durations of natural and vaccinal immunity. We also show
that our framework can encompass seasonality or preexisting immunity due
to epidemic dynamics prior to strong mitigation measures. Taken together,
our simple conceptual model illustrates the importance of individual and
vaccinal immunity for community immunity, and that the quantification of
individuals immunized against SARS-CoV-2 is paramount.
1. Introduction
The current COVID-19 pandemic, caused by the SARS-CoV-2 virus, has caused
substantial morbidity and mortality across the world [1,2]. This pandemic has
additionally led to widespread disruption associated with non-pharmaceutical
interventions to mitigate disease burden, notably, social distancing. Historically,
the effective deployment of such methods has been successful in temporarily
decreasing disease transmission. For example, during the 1918 H1N1 influenza
pandemic, Hatchett et al. [3] showed that disease burden was substantially
reduced in certain US cities due to such widespread measures. Indeed, a com-
parison between Philadelphia and St Louis illustrates that the latter instituted
earlier measures and fared substantially better with a very flat epidemic mor-
tality curve [3]. In the current COVID-19 pandemic, a number of countries
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have had periods of very flat epidemic curves (e.g. South
Korea, Luxemburg, Denmark) due to deployment of non-
pharmaceutical interventions. However, this strong level of
control has been hard to maintain in most contexts [4].
These flat epidemics could partly be due to better testing,
which is an important mitigation measure, in conjunction
with contact tracing and social distancing measures.

In infectious disease epidemiology, a key quantity is the
basic reproduction number R0, defined as the number of new
infections that a single infectious individual would infect in a
fully susceptible population [5]. According to the simplest
mass action SIR models, once the fraction of susceptible indi-
viduals is less than 1=R0, i.e. there is a fraction H ¼ 1� 1=R0

of individualswith immunityoralready infected, then an infec-
tious individual would transmit to less than one susceptible
individual, and so the disease would die out. Thus, a popu-
lation with this property has reached herd or community
immunity, but this threshold can be altered due to factors such
as age-specific or other host heterogeneities [5–8]. Herd immu-
nity is salient for mitigation measures in the current COVID-19
pandemic [9,10]. For example, Kissler et al. [10] illustrate the
interplay between strongmitigationmeasures and herd immu-
nity. The effective reproduction number Reff is defined as the
basic reproduction number times the fraction of individuals
that are susceptible [5], and flat epidemic curves as described
above are likely to reflect a scenario where Reff is close to 1.

In order to curb SARS-CoV-2 transmission, countries are
already imposing strong mitigation strategies [11], especially
since SARS-CoV-2 can be transmitted to some extent while
individuals are pre-symptomatic or asymptomatic or while
they show very mild symptoms [12,13]. In practice, numerous
countries now exhibit Reff close to one, due to low but sus-
tained transmission. In this setting, the central theme of
additional control measures aimed at long-term population
protection is individual immunity, due to natural infection
or pharmaceutical interventions, leading to herd immunity.
Indeed, in order to attain herd immunity, it is key to optimize
the route to vaccinal and natural immunity, and to do so
while preventing major transmission will assuredly necessi-
tate pharmaceutical interventions such as vaccination [14]
or sera from immune individuals [15]. However, there is cur-
rently significant biological uncertainty about the length
and strength of natural and vaccinal immunity against the
SARS-CoV-2 virus after successful recovery from COVID-19
[16]. Kissler et al. [16] explored the role of the duration of
immunity in long-term epidemic dynamics, but with many
complexities, such as seasonality and multi-strain interactions
with existing coronaviruses. Weitz et al. [17] examined the
role of preferential interactions with immune individuals in
epidemic dynamics, and illustrated how this could interact
with disease mitigation and herd immunity. With their
model, Weitz et al. [17] numerically simulated the effect of
individual immunity on their results, and highlight that
preferential interactions with previously infected individuals
can have beneficial effects as long as individual immunity
lasts long enough. Furthermore, Kissler et al. [10] stress that
individual immunity could affect outcomes in the context
of social distancing to mitigate disease.

Here, we develop a simple analytical model framework to
examine the importance of vaccination rates and the duration
of immunity for a trajectory towards community immunity
driven by vaccination and a slow accumulation of natural
immunity. We first formulate a minimal model of an epidemic
without vaccination but under strong non-pharmaceutical
mitigation strategies. With our model, in order to eventually
attain community immunity, we find an intuitive analytical
threshold for the required duration of individual immunity.
We then generalize our model to consider the deployment of
a vaccine, and investigate the effects of the vaccination rate
and the duration of vaccinal immunity on reaching herd
immunity, and we find a corresponding relation between indi-
vidual immunity (either vaccinal or natural) and community
protection. Overall, our model is aimed at highlighting con-
ceptual relations between these key quantities, in addition
to relative durations. We also examine the consequence of
seasonal variation in transmission on the attainment of herd
immunity. Lastly, we consider cases where individuals may
have preexisting immunity due to epidemic dynamics before
mitigation measures began. Overall, while we focus on the
COVID-19 disease caused by SARS-CoV-2, our framework is
conceptual and can apply to any novel pathogen. Since the
quantification of individuals with natural immunity can
be achieved through serology, our work underlines the
importance of developing appropriate serological assays [18].
2. General framework
We start with low-level accumulation of natural immunity,
and then incorporate vaccination into the framework. To
determine the role of individual immunity in population pro-
tection, we formulate a minimal model based on a flat
epidemic curve. We start by assuming the flattest curve poss-
ible, i.e. constant cases through time (equating to Reff ¼ 1).
Here, we ignore initial transient dynamics, and assume that
the system has reached a flat epidemic curve due to control
measures such as social distancing, so that the number of
infectious individuals at time t is I(t) ¼ M (figure 1a). Our
model only assumes constant incidence as a result of non-
pharmaceutical interventions, and makes no assumption on
the underlying nature of individual susceptibility and trans-
mission. In particular, superspreading events would not
materially affect our calculations given our assumptions.

Omitting births and deaths, if the average duration of
infection is 1/γ, then it follows that Mt=g is the total
number of infections from 0 to t, given that a flat epidemic
curve has been reached by time 0. Here, the herd immunity
threshold H is reached when individuals in the population
are immune or already infected (e.g. figure 1b for R0 ¼ 2).

Let P(t) denote the number of people protected at time t.
The rate atwhich individuals become immune isM, measured
in individuals per time, so thatM ¼ gM. Since the number of
infectious individuals is constant over time, M is also the
number of infections per time. Further, we assume that the
rate of loss of immunity is δ. In other words, 1/δ is the average
time a person is immune to SARS-CoV-2. It follows that

dP
dt

¼ M� dP: (2:1)

Integrating this simple equation and assuming that P(0) = 0
gives

P(t) ¼ M
d

(1� e�dt): (2:2)

Clearly, as t→∞, P(t) ! M=d monotonically. Thus, in order
to eventually reach herd immunity, it is necessary that the
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Figure 1. (a) Model of I(t) under disease control so that the epidemic curve is flat. The number of infections that have happened by time te is Mte=g, where 1/γ
is the average infectious period. (b) Schematic of a population with herd immunity (left), and susceptible to an outbreak (right) for a basic reproduction number
R0 ¼ 2. Here, each circle with I, S and P denotes an individual that is infectious, susceptible or protected (immune). (c,d ) Length of immunity required to reach
herd immunity based on the fraction of individuals immune for herd immunity, and the number of infections per infectious period, assuming the infectious period is
(c) 7 days and (d ) 14 days. The dashed lines are the homogeneous 1� 1=R0 herd immunity thresholds.

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

18:20200683

3

sum of the number of immune individuals and those that are
already infected, but not yet immune, is able to attain the
number of individuals needed for herd immunity, i.e. it is
necessary that (M=d)þM � H, which gives

1
d
� H�M

M ¼ H
M� 1

g
: (2:3)

Thus, interpreting the biological meaning of these parameters,
this relation implies that

Length of immunity � Herd immunity threshold
Infections per time

�Duration of infection: (2:4)

The relation (2.4) can be understood intuitively. Suppose that
natural immunity is lifelong, and that time is measured in
durations of infection. Then, the number of immune individuals
would reach the herd immunity threshold when the number of infec-
tions per infectious period times the number of infectious periods
elapsed is at the herd immunity threshold. Since hosts that are
infected but not yet recovered are not susceptible to infection, herd
immunity is attained one duration of infection before the number of
immune hosts would reach the herd immunity threshold. If, instead,
natural immunity is not lifelong but lasts the length of or longer
than this required number of infection periods, then herd
immunity is still eventually attainable, but the time until
community immunity changes.
Once the epidemic curve is flat, if the length of immunity
plus the duration of infection is shorter than the ratio of the
number of infections per time to the number of immune indi-
viduals needed for herd immunity, then herd immunity
through natural infection alone will not stop the epidemic.
The basic reproduction number of SARS-CoV-2 is thought
to be around 3 (e.g. [19,20]), and so homogeneous models
predict that about 67% of the population must be immune
or infected to reach herd immunity. The length of natural
immunity required for herd immunity under severe control
measures is explored in figure 1c,d.

Another key parameter is the time until the population
reaches herd immunity tprotected. In this simple model,
setting P(t)þM ¼ H and solving for t gives

tprotected ¼ � 1
d
log 1� d

H
M� 1

g

� �� �
: (2:5)

As an illustration, in figure 2 we compute the time until pro-
tection for different average lengths of natural immunity,
across a range of M=N, where N is the total population
size, i.e. M is normalized. Since the average length of con-
ferred immunity after SARS-CoV-2 infection is presently
unknown, we schematically present in figure 2 the shape of
these curves with natural immunity persisting for on average
1–2 years. Here, we find that the time until herd immunity
can be smaller than a year with high enough infection. In
other cases, herd immunity can be attained within a few
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years. Intuitively, for faster immune waning (i.e. larger δ), our
model predicts that the time until protection is longer.

For certain parameter values in our model, the times to
reach herd immunity qualitatively agree with time estimates
(less than a year) obtained by Kissler et al. [10] for herd immu-
nity under strong and long social distancing; however, these
authors did not consider waning immunity in their models,
but they mention that waning immunity would affect their
results. Indeed, waning immunity increases the time until
population protection, especially if waning is rapid, and
our model highlights this point.

Reaching the herd immunity threshold is important to
allow for the eventual relaxation of strongmitigation strategies
such as extreme social distancing. However, as proposed by
Weitz et al. [17], social distancing could be decreased progress-
ively for individuals that have attained immunity. In this
scenario, reaching the vicinity of the original herd immunity
threshold could still lead to an ‘effective’ population protec-
tion. Thus, if we instead suppose that fH of the population
has to be immune or infected, then analogous relations hold.
Indeed, relation (2.3) becomes

1
d
� fH

M � 1
g

(2:6)

and the time until ‘effective’ protection is

t(f)p ¼ � 1
d
log 1� d

f H
M � 1

g

� �� �
: (2:7)

The dependence of t(f)p on f is

@t(f)p
@f

¼ H
M edt

(f)
p . 0: (2:8)

Thus, intuitively, decreasing f decreases the time until protec-
tion, and the relative advantage of a decrease in f depends
upon the other parameter values. As a special case, we present
an application of our framework in electronic supplementary
material, where the number of infections is limited by the
number of ICU beds (see An application with ICU beds,
electronic supplementary material, and figure S1).
3. Introducing vaccination
Numerous vaccines against SARS-CoV-2 are currently in
development. Eventually, a vaccine will hopefully be readily
available, and our framework gives insight into the number
of individuals successfully immunized by vaccination
required to attain herd immunity. The deployment of
transmission-reducing vaccination can have two roles in
population immunity: (1) it can be the only approach
to reach herd immunity, e.g. in a scenario where natural
infections are rare, and (2) it can decrease the time until
population protection.

We first make the pessimistic assumption that natural
immunity is sufficiently transient so that natural immunity
alone cannot lead to herd immunity, i.e. 1=d , H=M� 1=g.
Since the number of individuals with natural immunity
against the virus approaches limt!1 P(t) ¼ M=d, then it fol-
lows that the steady state is M=d ¼ gM=d. Therefore, in this
setting, assuming that vaccinal immunity is effective, the
number of individuals that require successful immunization
from a vaccine is H�M(1þ g=d).

To incorporate more nuance, suppose that immunity from
vaccination of individuals without natural immunity occurs
at a constant rate V and starts at time tv (figure 3a), so that
herd immunity could eventually be reached through both
vaccination and natural immunity (figure 3b). The assump-
tion of a constant vaccination rate is feasible, because there
are bottlenecks in vaccine development and deployment
that could reasonably lead to a constant number of individ-
uals getting vaccinated per time. We also assume that
vaccine-derived immunity wanes at rate ρ, which could be
different from the rate of waning for natural immunity δ.
Then, the number of individuals with vaccine-derived
immunity Y(t) at time t follows

dY
dt

¼ V � rY: (3:1)

Since vaccination is started at time tv, it follows by integration
that

Y(t) ¼ 0 t , tv
V
r (1� e�r(t�tv)) t � tv:

�
(3:2)
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Thus, the total number of individuals with immunity, either
from natural infection or from vaccination, is T(t) = P(t) +
Y(t), so that

T(t) ¼
M
d (1� e�dt) t , tv
M
d (1� e�dt)þ V

r (1� e�r(t�tv)) t � tv:

(
(3:3)

Again, since the goal is to reach herd immunity, we
assume that this cannot be reached before the start of vacci-
nation. We note that T(t) is monotonically increasing in
time, and so herd immunity can be achieved if the number
of protected individuals and those previously infected can
reach the number of individuals required for herd immunity,
and we set H ¼ (M=d)(1� e�dt)þ (V=r)(1� e�r(t�tv)). Since
we assume that herd immunity is not attained at tv, then
t > tv and so the right-hand side is monotonically increasing,
it follows that herd immunity is eventually reached if and
only if H � M=dþ V=rþM. This inequality can be simply
rearranged to give

1
d
þ 1
g
� H

M� 1
r

V
M : (3:4)

Thus, the length of natural immunity plus the period of infec-
tion has to be equal to or greater than the difference between
the corresponding threshold without vaccination and the
ratio of the vaccination rate to infections weighted by the
length of vaccine-derived immunity.
Another important goal of vaccination is to reach herd
immunity more rapidly than from natural infection, thus
averting a substantial number of infections. If vaccine-derived
and natural immunity last for similar time periods, i.e. ρ≈ δ,
then, assuming herd immunity is not reached through natural
immunity alone by tv, the time until herd immunity is

tprotected ¼ � 1
d
log 1� d

H
M� 1

g

� �
þ V
M

� �
þ 1
d
log 1þ V

M edtv
� �

:

(3:5)

The dependence of the time until protection tprotected
on the time that vaccination is initiated tv is
@tprotected=@tv ¼ V=(M e�dtv þ V). Further, if M � V, then
@tprotected=@tv � 1, i.e. an increase in the time of vaccination
initialization leads to a corresponding increase in the time
until protection. This is intuitive, since the assumption
M � V implies that the number of individuals obtaining
immunity through infection is negligible as compared to
those undergoing vaccination. Here again, by replacing H by
fH, we obtain the time until a fraction f of the herd immunity
threshold has been reached.

In figure 3c,d, we schematically illustrate how the length
of immunity can impact the time until a population reaches
herd immunity for different regimes of constant infection
levels. Under equivalent vaccination efforts, if herd immunity
requires a larger fraction of immune individuals (i.e. smaller
versus bigger R0, figure 3c versus figure 3d ), then the
dependence of the time until community immunity on the
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duration of individual immunity is greater. Intuitively, this
observation follows since a larger fraction for herd immunity
is reached through a greater relative fraction of individuals
with natural immunity.
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4. Incorporating seasonality
Disease transmission can vary throughout time, often on
seasonal timescales (due to, for example, climatic drivers
and/or population aggregation in schools; e.g. [21–23]).
The inclusion of seasonality in our framework could also
represent a very simple model of a mitigation strategy that
oscillates between two regimes. Intrinsic seasonality could
affect the basic reproduction number and the herd immunity
threshold, and these effects have been examined through
mathematical models with periodicity [24–26]. Here, we
assume that the herd immunity threshold H is known.

To model seasonality, we consider two constant values
for the number of infectious individuals at any given time (elec-
tronic supplementary material, figure S1), so that I(0) ¼ M and

I(t) ¼ M 2nts , t � (2nþ 1)ts
W (2nþ 1)ts , t � (2nþ 2)ts,

�
(4:1)

where ts is the time for half a period and n is a measure of the
number of periods.

The rate of infections per time in the second half
of a period is W, so that W ¼ gW. Thus, the number of
individuals that have individual immunity follows

dP
dt

¼ M� dP 2nts , t � (2nþ 1)ts
W � dP (2nþ 1)ts , t � (2nþ 2)ts:

�
(4:2)

The details of the calculation to obtain P(t) are omitted here
but are included in electronic supplementary material, and
these give that

P(t) ¼

W �M
d

� �
(1� e�dts )

Xn
k¼1

e�d(t�2kts)

þM
d

(1� e�dt), 2nts � t � (2nþ 1)ts

W �M
d

� �
(1� e�dts )

Xn
k¼1

e�d(t�2kts)

þ M�W
d

� �
e�d(t�(2nþ1)ts)

þW
d
�M

d
e�dt, (2nþ 1)ts � t � (2nþ 2)ts,

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

(4:3)

where the sum from k = 1 to n is zero if n = 0. After n periods,
t = 2nts, and Pn = P(2nts). Pn is a monotonically increasing
sequence of n (see electronic supplementary material for
details), and taking the limit of Pn as n→∞ gives

lim
n!1Pn ¼ M

d
� M�W

d

� �
etsd

edts þ 1
: (4:4)

Here, I(t) is discontinuous at 2nts and (2n + 1)ts, and this dis-
continuity introduces a difficulty for the computation of
I(t) + P(t) at the end of a period. Thus, after a certain
number of periods, we instead take the sufficient condition
that the number of immune individuals can reach the
number of individuals needed for herd immunity H. That
is, since Pn is monotonically increasing, if limn!1 Pn � H
then H can be attained. Thus, the duration of immunity
1/δ must satisfy

1
d
� H

M� (M�W)(edts=(edts þ 1))
, (4:5)

since limn!1
Pn

k¼1 e�2dts(n�k) ¼ e2tsd=(e2tsd � 1) and e2tsd � 1 ¼
(edts � 1)(edts þ 1). Equation (4.5) is a transcendental equation
for δ due to the presence of edts , and (4.5) also depends on the
number of infections that occur during each half period (M
and W) and the length of half a period ts.

If M . W (as assumed in electronic supplementary
material, figure S1), it is intuitive that the corresponding
limit of fraction protected after offset periods should be
greater than the value given above. Furthermore, in this
case, it is easy to see that P(t) � M=d for 2nts≤ t≤ (2n + 1)ts,
which implies that P(t) is increasing on this interval. Thus,
the maximal fraction of protected individuals on each such
interval is at the end of an offset period, i.e. at Qm =
P((2m + 1)ts). Qm is a monotonically increasing sequence of
m by a similar argument as for Pn, and

lim
m!1Qm ¼ M

d
� M�W

d

� �
1

edts þ 1
: (4:6)

In this scenario, since again I(t) is discontinuous at t = (2m +
1)ts, we focus on the immune individuals. At an offset period,
a sufficient condition for herd immunity is if the limit as
m→∞ of the number of immune individuals reaches or
exceeds the herd immunity threshold. This condition gives
the transcendental equation

1
d
� H

M� (M�W)(1=(edts þ 1))
: (4:7)

Here, considering vaccination at a constant rate V at time
tv > 0 can be incorporated akin to the model without season-
ality. As previously, the number of individuals with vaccinal
immunity that wanes at rate ρ is Y(t) ¼ (V=r)(1� e�r(t�tv))
and the total number of individuals with natural or vaccinal
immunity is T(t) = P(t) +Y(t) also.
5. Preexisting immunity
So far, we have assumed that no individuals have immunity
at t = 0. However, depending on the timing of mitigation
measures, it is possible that there is an initial transient that
does not follow the flat curve, which gives rise to individuals
that are immune before our model applies. For example,
during the current COVID-19 pandemic, South Korea had
an initial increase in cases, before a subsequent decrease
to a flat incidence curve. Our framework can be easily
adapted to incorporate preexisting immunity. Indeed, we
can generalize the model to include P(0) = P0 individuals
with immunity at t = 0 when the flat line begins, where P0

is not at or beyond herd immunity and is such that
P0 , M=d. Thus, the number of protected individuals
over time is then P(t) ¼ (M=d)(1� e�dt)þ P0 e�dt. Since
lim t→∞P0 e

−δt = 0, and P0 is assumed less than M=d, relation
(2.4) on the duration of immunity required to reach herd
immunity does not change, but the time until protection
is now

tprotected ¼ 1
d
log 1� dP0

M
� �

� 1
d
log 1� d

H
M� 1

g

� �� �
(5:1)
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(otherwise, if P0 . M=d, then the maximal value of P(t)
is P0).

With vaccination, the total number of individuals with
natural or vaccinal immunity is

T(t) ¼
M
d (1� e�dt)þ P0 e�dt t , tv
M
d (1� e�dt)þ V

r (1� e�r(t�tv))þ P0 e�dt t � tv:

(

(5:2)

Here again, provided P0 , M=d and since limt→∞P0 e
−δt = 0,

relation (3.4) does not change. Under the further assumption
that natural and vaccinal immunity wane at approximately
the same rate, i.e. δ≈ ρ, and that herd immunity is not
reached by the time vaccination is introduced, the time to
protection becomes

tprotected ¼ � 1
d
log 1� d

H
M� 1

g

� �
þ V
M

� �

þ 1
d
log 1þ V

M edtv � d
P0

M
� �

: (5:3)

Lastly, with seasonality, a similar extension also follows.
200683
6. Discussion and conclusion
We investigated the relationship between vaccination, indi-
vidual and vaccinal immunity, community immunity, and
the time until a population is successfully protected, which
are all key variables for successful disease mitigation of the
current COVID-19 pandemic. We formulated a simple con-
ceptual model of an epidemic, motivated by very flat
epidemic curves that can occur under adequate non-
pharmaceutical interventions, such as seen in St Louis
during the 1918 H1N1 pandemic [3]. In a nutshell, the
pillar of our analyses centres on achieving community immu-
nity against SARS-CoV-2 through individual vaccinal and
natural immunity in a setting where transmission is restricted
to a low level of infections.

Here, we have shown that the timescale of individual
immunity, whether natural or vaccinal, is important to
reach community immunity. We first simply portray the
important relationship between individual and population
immunity by considering a model without vaccination and
a constant number of infectious individuals. In this setting,
in order for the population to reach the threshold for herd
immunity, we analytically derived that the duration of indi-
vidual immunity plus the infectious period has to be equal
to or greater than the ratio of the herd immunity threshold
to the number of infections at any given time. In the case
that herd immunity is eventually reached, we also analytically
calculated the time until the population is protected. We
assume thatReff ¼ 1 for analytical simplicity, which is conser-
vative and captures the essence of the interactions between
individual and herd immunity. More complete control
(Reff , 1) would decrease accumulation of immunity.

While natural infection leads to individual immunity,
pharmaceutical interventions can also protect individuals,
such as vaccination through vaccinal immunity. We therefore
incorporated the introduction of a vaccine and subsequently
vaccination at a fixed rate in our model. Here, we obtained
an analogous inequality on the duration of natural immunity
for herd immunity as a function of the length of vaccine-
derived immunity and vaccination rate. Furthermore, if
vaccinal and natural immunity wane at approximately the
same rate, we computed the time until a population is pro-
tected. We find that the dependence of this duration on the
time when a vaccine is introduced is determined by the dur-
ation of immunity, the magnitude of the vaccination rate and
the time a vaccine is introduced.

We then investigated the effect of ‘seasonality’, either due
to intrinsic properties of the disease or the environment, or as
the result of an oscillatory control strategy, on community
immunity by incorporating simple periodicity. With this
extended model, we derived analogous conditions that, in
the long run, guarantee eventual herd immunity at the end
of a half-period or full period. Lastly, we incorporated indi-
viduals with preexisting immunity to model situations with
an initial transient period before control measures are enacted
and a flat epidemic curve is reached.

To distill the importance of the duration of individual
immunity and vaccination on the epidemic trajectory and
their relation to community immunity, we have formulated a
simplified framework that incorporates these key components
but omits other realistic factors. For example, by assuming a
constant influx of infections, we have ignored more complex
transmission dynamics. Yet, for certain parameter values,
our framework captures the approximate time until herd
immunity obtained through more realistic simulations with
lifelong immunity [10]. Furthermore, we have omitted specific
biological details, such as the natural deaths of immune indi-
viduals, in our analyses. Mortality of individuals that are
immune only affects the effective rate of waning immunity
in our framework. Indeed, if mortality is considered, the effec-
tive rate of waning immunity is the sum of the actual waning
rate and the natural mortality rate. Thus, with natural deaths,
the relations we derived would instead be for the death-
adjusted length of immunity rather than purely for the average
duration that a host is immune. As we have illustrated, our
conceptual model can be further refined for specific appli-
cations and increased biological realism. Indeed, we also
omit many other complexities, e.g. imperfect immunity
[27,28], which are important areas for future work. Addition-
ally, while we have incorporated vaccination into our
framework, we have assumed that the herd immunity
threshold is independent of both the relative level of vacci-
nation to infection incidence and of the vaccination strategy.
However, population heterogeneity can affect the infection
herd immunity threshold [5–7], and the type of vaccination
(random versus directed) in the presence of heterogeneity
can alter the vaccination herd immunity threshold [5,8]. Incor-
porating these specific considerations into our framework of
constant incidence would be valuable.

Overall, from a population perspective, our work under-
lines how the attainment of population protection is
interconnected to the rate at which individuals are vaccinated
in addition to the duration of individual immunity, whether
natural or vaccinal. We also illustrate that our model can
encompass other relevant biological factors. The inclusion
of these factors gives conceptual characterizations of their
impacts on the intuitive relations that tie vaccination, individ-
ual immunity and community immunity. Due to the centrality
of individual immunity, it is important to quantify individuals
immune against SARS-CoV-2, and it is crucial to determine the
strength and duration of both vaccinal and natural immunity.
Such a characterization could be achieved through serology
[18]. While we emphasize the current COVID-19 pandemic,
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the analytical framework we developed is general and could
be used with other pathogens against which a combination
of vaccination and strong mitigation measures are applied.
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