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Abstract

Information on protein-protein interactions is of central importance for many areas of biomedical 

research. Currently no method exists to systematically and experimentally assess the quality of 

individual interactions reported in interaction mapping experiments. To provide a standardized 

confidence-scoring method that can be applied to tens of thousands of protein interactions we have 

developed an interaction tool-kit consisting of four complementary high-throughput (HT) protein 

interaction assays. These assays were benchmarked against positive and random reference sets 

(PRS and RRS) consisting of well documented human interaction pairs and randomly chosen 
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protein pairs, respectively. A logistic regression model was trained using the PRS/RRS data to 

combine the assay outputs and calculate the probability that any novel interaction pair is a true 

biophysical interaction once it has been tested in the tool-kit. This general approach will allow a 

systematic and empirical assignment of confidence scores to all individual protein-protein 

interactions in interactome networks.

Physical protein-protein interactions are an elementary constituent of biological systems and 

discovering interaction networks is a major goal in systems biology. There are two 

complementary branches of protein interaction analysis. Analysis of protein complexes 

using affinity purification followed by mass spectrometry (AP/MS) identifies directly and 

indirectly associated proteins. Direct, binary interactions have been discovered via HT yeast-

two-hybrid (Y2H) analyses, although smaller datasets have recently emerged from other 

methods1.

As binary interaction mapping has grown, dataset quality has rightly, been scrutinized. A 

first study which compared several interaction datasets to a gold standard of MIPS protein-

complexes suggested that HT-Y2H data have poor quality2. A more recent analysis showed 

that MIPS complexes are inappropriate for evaluating Y2H data, and that HT-Y2H data are 

of high quality when compared against a gold standard of directly interacting proteins3.

Given the importance of protein interactions and the demand for better and more 

comprehensive maps, standardized experimental methods for quality control (QC) are 

crucial. These are particularly important for determining all the direct, physical interactions 

between human proteins in the context of a human interactome project as they will enable 

the scientific community to evaluate assay implementations under a universally interpretable 

quality standard.

Methods for quality control can be categorized according to the evidence analyzed, and 

whether the quality of the dataset as a whole or the quality of individual interactions is 

evaluated (Supplementary Fig. 1 online). Early quality assessments have used the strength of 

a correlation with indirect secondary data, such as co-expression or functional annotation, 

mostly to measure the overall dataset quality2,4–6. However, knowledge about biological 

roles of proteins is limited for most proteins. Furthermore, expression of interacting proteins 

need not be correlated over many conditions and conversely protein pairs with correlated 

expression patterns do not necessarily physically interact. Although a correlation with 

secondary data increases confidence in interaction data, no conclusion can be drawn from 

the absence of such correlations. This is particularly true for HT data that does not have a 

sociological investigation bias and is more likely to contain unexpected connections. For 

rigorous quality assessment it is important to use protein interaction evidence.

Several approaches assign confidence scores based on experimental data. The frequency 

with which interactions are found in HT datasets has been used to inform error models for 

the combined data7. This approach does not provide a quality assessment for individual 

interactions however. To prioritize individual interactions several groups have calculated a 

confidence score based on their experimental data, e.g. how often a given interaction was 

recovered in Y2H screens8,9, how reliably a protein was identified in an AP/MS 
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experiment10,11 or combinations of such primary experimental data with secondary data12. 

These scores are strongly influenced by biases of the particular experimental set-up, and are 

therefore interpretable only within this context. A more universal confidence scoring 

approach is therefore desirable.

Previously we and others experimentally assessed dataset quality by testing a subset of 

newly identified interactions in an orthogonal interaction assay3,13,14. This experimental 

approach confirmed only a fraction of all interactions. Because every method has inherent 

limitations and because performance depends on stringency of the implementation, 

unconfirmed interactions may be merely false negatives of the second assay.

To individually confirm most ‘true’ biophysical interactions found in a HT screen, we 

pursued a strategy to retest every candidate interaction in a panel of several interaction 

assays. If the assay performances are benchmarked against a common reference, the data 

from these retesting experiments can be quantitatively integrated into a confidence score as 

illustrated in Fig. 1. In future interaction mapping experiments it will then be possible to 

report a probability for every protein interaction along with the experimental evidence and 

the underlying benchmarking data for every assay.

RESULTS

Compiling an interaction assay tool-kit

To establish a confidence scoring methodology we first compiled and characterized a panel 

of protein interaction assays implemented in HT format. The assays are based on 

complementary principles and expression systems (Fig. 2): Yeast-2-hybrid (Y2H)15,16; 

Mammalian Protein-Protein Interaction Trap (MAPPIT)17; LUminescence-based 

Mammalian IntERactome (LUMIER)1; Yellow Fluorescent Protein (YFP) Protein 

Complementation Assay (PCA)18; and a modified version of the Nucleic Acid 

Programmable Protein Array (wNAPPA)19. Because the assays are compatible with 

recombinational cloning and performed in 96-well format hundreds of thousands of 

interactions identified in HT screens can be tested at a reasonable cost (Supplementary Data 

online).

Benchmarking tool-kit assays using reference sets

To develop a confidence score, we characterized assay performance using a positive 

reference set (PRS) and a random reference set (RRS) for protein interactions20. Our first 

version of a human PRS (hsPRS-v1) contain 92 interacting human protein pairs for which 

we found more than one peer-reviewed publication in multiple manually curated 

databases21–25 (details in Supplementary Methods online). Apart from verification of the 

curation reports26 and ensuring ORF availability in the human ORFeome1.127, we applied 

no additional filters, so interactions between membrane proteins, ligand-receptor pairs or 

those dependent on post-translational modifications (PTMs) were all included. HsPRS-v1 

thus constitutes a reasonable representation of well-established human binary interactions. 

For our first version of a human RRS (hsRRS-v1), 92 protein pairs were chosen randomly 

from the human ORFeome1.1 (108 pairwise combinations) after removing all previously 
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described interacting pairs21–25. Because there is no available gold standard for non-

interacting proteins and because randomly chosen protein pairs are unlikely a priori to 

interact, our RRS serves as a negative control set. Alternative approaches for choosing 

negative training examples are possible, but introduce unacceptable biases28,29.

We tested all pairs of the reference sets by tool-kit assays evaluating the effect of assay 

stringency on the detection of PRS and RRS pairs (Supplementary Fig. 2 online). The use of 

184 controls, as opposed to the small number usually used to characterize interaction assays, 

increases robustness. The receiver-operating characteristics (ROC) curve of four tool-kit 

assays illustrating the tradeoff between true and false positive rates as a function of 

stringency are shown in Fig. 3a. For the analysis of assay performance we used a threshold 

that maximized detection of PRS while maintaining a low number of positive scoring RRS.

For Y2H we measured activation of one or more reporter genes using both high and low 

copy plasmids to alter DB-X and AD-Y expression levels 15,30. Most implementations 

involve the Y8800/8930 yeast strains (Y-strain) currently used for screening at CCSB3, and 

we included one implementation with the MaV103/20330 strains (MaV-strain) for 

comparison20. The standard implementation for HT-Y2H screening at CCSB (low copy 

plasmids, both reporters activated3) detects 16% of hsPRS-v1 pairs and no hsRRS-v1 pairs, 

while relaxation of the scoring criteria (either reporter activated) leads to an increase in 

assay sensitivity to 25%, while not affecting RRS detection (Fig. 3b). Raising protein levels 

increases Y2H assay-sensitivity to >40% at the expense of detecting four hsRRS-v1 pairs. 

The profile of detected individual interactions differs between Y2H implementations 

(Supplementary Fig. 3 online). When the same search space of the human interactome was 

interrogated using two different yeast strains many interactions were uniquely detected by 

each implementation. Hence, different implementations of the same technology can lead to 

different results, which may partially explain why datasets acquired by different groups 

exhibit limited overlap.

The performance of each assay on PRS and RRS reveals the ability to report true protein 

interactions under the respective assay conditions (Fig. 4a). The approach provides a method 

for benchmarking different assays on a standardized set of controls. Surprisingly, assay-

sensitivity of all methods fell in a similar range of ~20%–35%.

LUMIER

The LUMIER pull-down assay (Fig. 2d) had the highest assay-sensitivity as demonstrated 

by the detection of 36% of hsPRS-v1 pairs and four negative control hsRRS-v1 pairs at the 

chosen scoring threshold (Fig. 4a). LUMIER recovered one phosphorylation-dependent 

interaction (Fig. 4b). Post-translational modification dependent interactions, like that 

between SMAD1 and SMAD4, are likely to be detected only after proper activation of 

specific signaling cascades1.

MAPPIT

MAPPIT generates a ligand-dependent semi-quantitative luciferase read-out in mammalian 

cells without enrichment steps (Fig. 2b). The scoring conditions detected 33% of hsPRS-v1 
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pairs and two positive hsRRS-v1 pairs (Fig. 4a). Like Y2H and PCA, MAPPIT detected two 

phosphorylation-dependent interactions (Fig. 4b). The detection of other PTM dependent 

interactions may require additional stimulation or use of the heteromeric MAPPIT variant31.

Y2H

The Y2H system (Fig. 2a) had an assay-sensitivity of 25% and no hsRRS-v1 pairs were 

detected (Fig. 4a). Contrary to common perception, the detection of interactions involving 

nuclear proteins was not greater in Y2H than in other assays (Supplementary Fig. 4 online). 

We also detected phosphorylation dependent interactions (PTK2-SRC, SMAD1-SMAD4) 

(Fig. 4b), so Y2H, like the other assays, can detect a subset of PTM-dependent interactions.

PCA

The YFP reconstitution of the PCA assay (Fig. 2c) gave such strong signals that stringent 

criteria had to be applied to decrease the number of hsRRS-v1 interactions that scored 

positive. High signal strength may be due to the irreversible nature of YFP refolding. After 

optimization, PCA had an assay-sensitivity of 23% with two positive scoring RRS pairs 

(Fig. 4a).

wNAPPA

The completely in vitro performed wNAPPA (Fig. 2e) has an assay-sensitivity of 21% under 

conditions in which three hsRRS-v1 pairs were detected (Fig. 4a). Interestingly 7 out of 16 

interactions between two membrane proteins scored positive (43%) (Supplementary Fig. 4), 

in contrast to none of the seven hsRRS-v1 membrane protein pairs.

Detection of hsPRS-v1 interaction pairs

A total of 55 out of the 92 (59%) hsPRS-v1 interactions were detected by at least one of the 

tool-kit assays. Remarkably, the five very complementary assays failed to detect ~40% of 

hsPRS-v1 (Fig. 4b). We investigated possible systematic reasons for this finding 

(Supplementary Data). A combination of different reasons explains detection failure, 

including PTM-dependence, steric geometry of fusion proteins (Supplementary Fig. 5b 

online), and protein families that are impervious to detection such as extracellular proteins 

(Supplementary Fig. 4). The use of different sequence isoforms likely also has an effect. The 

methods originally used to describe the hsPRS-v1 interactions had no detectable influence 

on the insensitivity.

Detection of RRS protein pairs

In all assays except Y2H, the threshold values chosen led to several hsRRS-v1 pairs scoring 

positive. Such small numbers of detected RRS in these experiments cannot extrapolate 

directly to false-positive rates expected in large-scale screens1. Large-scale screens would 

need to be carried out at increased stringency relative to these confirmatory assays, but this 

may come at the expense of detecting fewer real interactions.

Several hsRRS-v1 pairs were positive in one (seven pairs) or in two different assays (ITPA/

WDR62 and MCCC1/GALK1) (Fig. 4b). The protein pairs were picked randomly and 
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because current knowledge about interaction networks is incomplete, these pairs may be real 

yet unknown interactors. It is unlikely that all nine detected hsRRS-v1 pairs (10%) fall into 

this category. Some interactions may be “pseudo-interactions”, i.e., valid biophysical 

interactions which never occur in vivo because the involved proteins are separated spatially 

or temporally. Artifactual interactions may occur at a given frequency as a consequence of 

the particular conditions of the respective assay (expression levels + fusion tags + mechanics 

of the assay). While interactions detected by only a single assay should be interpreted with 

caution, one quarter (22) of the well-documented hsPRS-v1 were detected by just a single 

assay. As such, protein pairs detected by a single method cannot be dismissed outright. Such 

interactions emphasize the need to integrate the outcome of several assays into a quantitative 

confidence score.

Integrative analysis of assay outcome

The PRS/RRS characterization quantitatively benchmarks protein interaction assays against 

a standardized reference and thus measures the reliability of a positive result in each assay. 

The tool-kit assays in conjunction with the PRS/RRS benchmarking data can therefore be 

used for confidence scoring, with all interactions identified in large-scale primary screens 

retested by the tool-kit. The confidence assigned to each interaction is then adjusted 

according to the outcome of these retests (Fig. 1).

We modeled the probability that a given protein pair is truly interacting with a Bayesian 

framework. Traditionally, the continuously-valued raw data of each assay are converted into 

a binary (“yes” or “no”) call for each protein pair, but much information is lost this way and 

there is the potential to ‘over fit’ the thresholds used to make a binary call. Instead we used 

normalized raw data (for LUMIER, MAPPIT, wNAPPA, and PCA) across hsPRS-v1 and 

hsRRS-v1 to train a logistic regression model that computes a probabilistic confidence score 

for each potential interaction. This confidence scoring method will not be applied to 

randomly chosen protein pairs, but to candidate interactions identified for example in HT-

Y2H screens. We used the 23 Y2H-positive hsPRS-v1 pairs as positive examples to train the 

regression model. Our approach is not limited to evaluating Y2H interactions however, and 

can easily be adapted to other screening platforms. To account for training example bias (the 

ratio of positive to negative samples), we used a Bayesian correction incorporating the prior 

probability that the interactions are ‘true’ before considering additional evidence from the 

tool-kit assays. We used the 78% precision previously estimated for HT-Y2H interactions in 

the CCSB-HI1 human interactome dataset (details in Supplementary Methods)14.

We evaluated predictive performance of the integrated model, i.e., sensitivity vs. specificity 

analysis, based on relative ranks using leave-one-out cross-validation (LOO-CV) 

(Supplementary Fig. 6 online). The beta parameter for each assay indicates the contribution 

of this assay to the final score. The large values for LUMIER and MAPPIT indicate that 

these two assays provide most information to the final confidence score (Table A in 

Supplementary Methods). Thus, the beta parameters can be used to optimize the tool-kit for 

greatest value, i.e, most complementary assay implementations, which would lead to similar 

beta-parameters for the different assays. Features that could be optimized include 
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eliminating less informative assays, replacing one assay with a more informative assay, or 

changing details an existing assay implementation, i.e., use of different constructs.

The most important feature of our integrative analysis is that it calculates a confidence score 

for each candidate interaction, based on the results of a consistently benchmarked panel of 

tool-kit assays. We demonstrated the concept by calculating the LOO-CV confidence score 

for the Y2H positive hsPRS-v1 pairs (Fig. 5a). In future interactome maps such confidence 

scores can be provided along with the underlying experimental evidence for every reported 

interaction (Fig. 5b).

DISCUSSION

Our confidence scoring method crucially uses a PRS and RRS to benchmark interaction 

assays. The reference sets in hand enabled standardized calibration of different interaction 

assays and implementations. This calibration can be expanded to other binary interaction 

assays and facilitates optimization and interpretation of protein interaction experiments. 

Establishment and widespread use of more reference sets would enhance the ability to 

compare and interpret data acquired in different studies.

These first version reference sets suffer from small size, but growing knowledge about 

protein interactions and increased ORF availability will enable construction of larger and 

more representative PRS and RRS versions. One potential bias in PRSs could be towards 

‘better behaved’ interactions that are more easily detected by different assays. Such a bias 

could lead to artificially low confidence scores. We did not find that interactions supported 

by multiple methods in the curation are more easily detected by the tool-kit. Even after 

retesting in several assays three Y2H-positive hsPRS-v1 interactions received a low 

confidence score (Fig. 5a). Even among low scoring interactions valid pairs can be found, so 

the experimentally determined scoring parameters may be conservative.

In contrast to conventional assumptions, under our assay conditions Y2H (i) is not more 

prone to detect false positives than other binary assays, (ii) does not favor detection of 

interactions among nuclear proteins and (iii) is not blind to detecting PTM-dependent 

interactions. Mammalian cell-based assays will nonetheless be better suited for focused 

studies of context-dependent interactions and may provide time-resolved information1,18. 

Increasing protein expression in Y2H significantly increased the number of detected hsPRS-

v1 pairs, albeit at the expense of more positive-scoring hsRRS-v1 pairs. Once a confidence 

scoring scheme becomes established, primary screening stringency can be relaxed, boosting 

the number of detected interactions while reporting the high accuracy of all published 

interactions.

Our linear regression model calculates, based on the tool-kit data, a quantitative confidence 

score for any interaction pair. This model can be adapted to other assays, implementations, 

and to different primary screening methods, so long as assays are benchmarked using 

PRS/RRS and the false discovery rate for screening methods is estimated. Thus, this method 

for assessing confidence in protein-protein interactions is universal.
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A standardized and transferable approach for calculating confidence scores will impact 

interaction mapping in several ways. The ability to discriminate between “exceedingly 

likely” and “possible” interactions will be invaluable for triaging follow-up studies. 

Quantitative scores assessing confidence in protein interaction may be readily integrated 

with other types of genomic data to predict functional relationships. Now the scientific 

community can set quality standards and compare datasets generated by different protein 

interaction mapping methods.

METHODS

Construction of the first version of a human positive reference set (hsPRSv1)

To measure the performance of the interaction tool-kit assays we sought to compile a 

diverse panel of very well documented high quality interactions from the literature as a 

positive reference set. Within the space of approximately 7000 × 7000 ORFs (Space-I) 

defined by the human ORFeome 1.1 collection available at that time 4,067 direct binary 

interactions were reported by five manually curated databases (MINT, HPRD, BIND, MIPS 

and DIP). To ensure high quality interactions we required 2 publications describing each 

interaction to obtain 275 interaction pairs. After elimination of homodimers we were left 

with 188 interactions, which were manually recurated by rereading all publications reported 

by the databases as supporting these interactions. Surprisingly, one result of this recuration 

was that 38% of “curation-units” (one experiment supporting one interaction reported by 

any one database) were wrong, thus validating the insistence on multiple papers and 

multiple databases supporting each interaction. Of the 111 interactions supported by >1 

verified publication 92 were among full-length proteins thus constituting hsPRS v1. All 

interaction pairs and a standardized description of the methods by which the interactions 

have been described can be found in supplementary table 1.

Y2H

The yeast two-hybrid assay was done using a modified retesting protocol3. Haploid yeast 

expressing individual AD and DB constructs were mated, diploids were selected, and HIS+ 

and ADE+ phenotypes were scored after incubation for 4 days at 30°C. The same protocol 

was used for the high-copy 2 micron (2µ) Y2H vectors (pVV212 (DB) and pVV213 

(AD)30). MaV103/203 experiments were performed as described20 The genotype of the Y-

strains is: GAL2::ADE2 LYS2::GAL1-HIS3 met2::GAL7-lacZ cyhR ura3–52 leu2–3 trp1–

901 his3D200 gal4D gal80D. The genotype of the MaV strains is: SPAL10::Ura3 

GAL1::LacZ GAL1::HIS3@LYS2 can1R cyhR ura3–52 leu2–3 trp1–901 his3D200 ade2–

101 gal4D gal80D. For the experiments in Figure 4, CYH sensitive activation of either HIS3 

or ADE2 in either tested configuration (Supplementary Fig. 5) was used as criteria for 

positive interactions using CEN plasmids in the Y-strain. A detailed step-by-step protocol 

can be found in Supplementary Protocol 1 online.

MAPPIT

MAPPIT experiments were performed as described32 with minor changes. Briefly, 

HEK-293T cells were transfected in 96-well plates. Twenty-four hours after transfection 

cells were stimulated with ligand (Epo) or left untreated for an additional 24 hours, followed 
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by measurement of luciferase activity in triplicate. All interactions were tested in two 

configurations (Supplementary Fig. 5) and in two independent trials. For the data in Figure 4 

pairs were scored positive if the fold-induction value was 12 times higher or equal to the 

ones obtained with both the irrelevant bait and the irrelevant prey in either of the two tested 

configurations. A detailed step-by-step protocol can be found in Supplementary Protocol 2 

online.

LUMIER

LUMIER assays were as previously described 1. All configurations were tested in duplicate. 

HEK-293T cells were transfected in 96-well plates. Forty-eight hours after transfection cells 

were lysed and 70% of lysate was processed for immunoprecipitation. Expression of RLUC-

tagged baits was measured in 10% of the cell lysates. LIR values were obtained as described 

before1 for the immunoprecipitates (LIR-IP), and calculated similarly for the total lysates 

(LIR TOT). NLIR was calculated as the ratio LIR-IP/LIR-TOT. The corresponding NLIR 

value for each Flag-tagged prey with RLUC (no fusion) was subtracted. These final NLIR 

values were used to generate the ROC curve. The data in Figure 4 were calculated by 

requiring an average NLIR score of >33.2 in either of the tested configurations 

(Supplementary Fig. 5). A detailed step-by-step protocol can be found in Supplementary 

Protocol 3 online.

PCA

Baits were fused to the F1 fragment and preys to F2 fragments of YFP using Gateway LR 

reactions. Both plasmids were transfected in 96-well format into CHO-K1 cells. CFP 

encoding plasmid was included to identify transfected cells. 18hrs post-transfection cells 

were washed, trypsinized at room temperature and analyzed using FACS. For Figure 4 

protein pairs were scored as positive when in any tested configuration (Supplementary Fig. 

5) at least 30% of transfected cells in that well showed YFP signal above background and 

the YFP/CFP ratio was at least twice as high as the ratio of the average YFP signal over the 

average CFP ratio on that plate. A detailed step-by-step protocol can be found in 

Supplementary Protocol 4 online.

wNAPPA

The used protocol was modified from Ramachandran et al. (ref. 24). Bait and prey fusion 

proteins were expressed in coupled transcription translation mix. After protein expression 

GST-tagged bait proteins were captured at the bottom of a 96-well plate coated with anti-

GST antibody. Interactions were detected using anti-HA ascites using standard 

immunochemical protocols. Signal was visualized using chemiluminescence. Signal was 

manually assigned a score between 0 and 5 and interactions that scored >2 in either 

configuration were scored positive (Supplementary Fig. 5 online). A detailed step-by-step 

protocol can be found in Supplementary Protocol 5 online.

Calculation of Confidence Score

A complete and detailed description of the statistical methods can be found in 

Supplementary Methods.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Strategy for deriving a confidence score for individual protein-protein interactions after HT 

screening using data from several complementary follow-up interaction assays. After initial 

screening using a HT platform, for example Y2H, all positives are evaluated using 

secondary tool-kit assays that have been benchmarked by PRS/RRS. The resulting raw data 

are integrated using a model trained on the PRS/RRS calibration data to derive a confidence 

based on the experimental support for each interaction (see text for details).
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Figure 2. 
Schematic description of complementary tool-kit assays for binary protein interaction. (a) 

Yeast-2-hybrid: The Gal4 transcription factor is reconstituted to activate one or more 

independent reporter genes in S. cerevisiae. (b) MAPPIT: A bait-protein is fused to a hybrid 

erythropoietin-leptin receptor and the prey is fused to gp130. Upon stimulation with 

erythropoietin JAK2 molecules trans-phosphorylate each other and if bait and prey interact 

the activated JAKs will phosphorylate gp130, which in turn recruits and subsequently 

activates STAT3, which then activates transcription of a reporter (c) PCA: Two YFP 

fragments fused to bait and prey proteins reconstitute a fluorescent protein if brought in 

close proximity by two proteins that physically interact. (d) LUMIER: A luciferase tagged 

bait is co-expressed with a Flag-tagged prey in HEK-293T cells. The association between 

these proteins is determined by co-immunoprecipitation using an anti-Flag antibody and the 

presence of the bait is detected via its luciferase activity. (e) wNAPPA: Plasmids encoding 

GST-bait and HA-prey are mixed in a coupled transcription/translation reticulocyte lysate to 

express protein. Subsequently, the bait-GST is captured on the bottom of 96-well plate 

coated with anti-GST antibodies. If the proteins are interacting, the HA-prey can be 

immunologically detected.
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Figure 3. 
Evaluation of assay performance at different stringencies using hsPRS-v1 and hsRRS-v1. 

(a) The tradeoff between true and false positive rate at different stringencies of the tool-kit 

assays. For different applications, different thresholds may be used. (b) Y2H assay 

performance in different scoring protocols (one vs. two reporters) and different bait and prey 

expression levels (high vs. low copy plasmid, y-axis). 3-AT (3-amino-1,2,4-triazole) is a 

competitive inhibitor of the HIS3 gene product and was included to reduce background in 

one set of experiments.
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Figure 4. 
Performance of assays against positive and random reference sets (PRS and RRS). (a) 

Quantitation of assay sensitivity and specificity with standard error using hsPRS-v1 and 

hsRRS-v1. (b) Detection of individual hsPRS-v1 and hsRRS-v1 pairs by the tool-kit assays: 

Top panel: detected hsPRS-v1 pairs are indicated by green squares. Bottom panel detected 

hsRRS-v1 pairs are indicated by red squares. Phosphorylation dependent interactions are 

indicated by solid black frames. Thresholds used for the assays in this figure can be found in 

the Materials and Methods section.
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Figure 5. 
Application of the integrated confidence score. (a) Application of the confidence scoring 

scheme to the Y2H-positive hsPRS-v1 to exemplify the process. Probabilities for pairs 

within each assay (middle panel) are computed using LOO-CV and a single-assay logistic 

regression model, trained identically to the combined-assay regression model. (b) Every 

reported interaction reported in future protein-protein interaction mapping experiments can 

be assigned a confidence score based on the tool-kit assay data for each individual protein 

pair.
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