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Background: The therapeutic response and prognosis of patients with non-small cell lung carcinoma 
(NSCLC) are widely related to immunity. To improve the prognosis of patients and provide reliable 
information to guide appropriate personalized treatment strategies, it is necessary to identify reliable 
prognostic or predictive indicators closely related to tumor phenotype and immune traits in NSCLC. 
Methods: Based on The Cancer Genome Atlas (TCGA)-NSCLC mRNA expression profile data, a novel 
approach combining differential gene expression analysis, single-sample gene set enrichment analysis 
(ssGSEA), and weighted gene co-expression network analysis (WGCNA) was used to screen hub genes. 
Subsequently, the regulator of hemoglobinization and erythroid cell expansion (RHEX) was identified 
as a key gene using the log-rank test and confirmed in the ArrayExpress database. The relationship 
between RHEX and clinicopathological parameters was analyzed using the Wilcoxon rank-sum test. More 
importantly, through gene set enrichment analysis (GSEA) and cell-type identification by estimating 
relative subsets of RNA transcripts (CIBERSORT) algorithms, and with reference to the Tumor IMmune 
Estimation Resource (TIMER) database, we explored the relevant pathways of RHEX and its relationship 
with tumor-infiltrating immune cells (TICs). Finally, we depicted the association between RHEX and 
immunomodulators in the TCGA and a web portal TISIDB.
Results: The RHEX mRNA expression levels in tumor tissues were lower than those in normal tissues 
and declined with the progression of NSCLC. Meanwhile, RHEX overexpression was associated with 
high immune infiltration levels and a favorable clinical prognosis. RHEX may participate in tumor 
microenvironment (TME) regulation through multiple tumor-immune related pathways, especially the JAK-
STAT signaling pathway. Furthermore, RHEX expression affected the infiltrating abundance of multiple 
TICs and positively correlated with most of the immunomodulators in NSCLC.
Conclusions: Our study is the first to propose that RHEX is an immune-related gene with prognostic 
value in NSCLC and reveals the underlying mechanism between RHEX and tumor-immune system 
interactions. These results ultimately provide guidance for prognosis and immunotherapy for NSCLC 
patients. 
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Introduction

Although the prevalence of lung cancer has been gradually 
declining over the past decade, it remains one of the most 
common tumors and the leading cause of cancer-related 
mortality worldwide (1). Non-small cell lung carcinoma 
(NSCLC) accounts for the vast majority of lung cancers, of 
which lung adenocarcinoma (LUAD) and lung squamous 
cell carcinoma (LUSC) are the most common subtypes 
(2,3). Although the introduction of several molecular 
targeted drugs and immune checkpoint inhibitors has 
dramatically changed the therapeutic landscape for NSCLC 
patients (4,5), some remain refractory to treatment and 
certain therapeutic drugs are unable to provide long-
term remission, resulting in a poor prognosis. Therefore, 
more specific biomarkers are required for predicting the 
prognosis and progression of NSCLC.

Concerns regarding the therapeutic response and 
prognosis of patients with NSCLC are mostly related to 
immunity (6,7). The tumor microenvironment (TME) is 
comprised of tumor cells and surroundings such as blood 
vessels, the extracellular matrix, and other nonmalignant 
cells such as mesenchymal stem/stromal cells, fibroblasts, 
pericytes, and immune cells (8). A growing body of studies 
have closely investigated the impact of immune-related 
genes and immune cells in the tumor microenvironment 
(TME) on tumor progression, therapeutics, and clinical 
outcomes. Baraibar et al. confirmed that differentiation 
inhibitor 1 (ID1) in KRAS-mutant lung cancer could 
assist programmed cell death protein 1 (PD-1) inhibitors 
to impair tumor growth and survival by stimulating 
programmed cell death protein ligand 1 (PD-L1) expression 
and increasing tumor-infiltrating CD8+ T cells (9), and 
several clinical studies have shown that higher levels of 
intratumoral infiltration of CD4+ and/or CD8+ T cells are 
associated with longer survival in early NSCLC (10,11). 
Further, Li et al. demonstrated that regulatory T cells 
(Tregs) were more efficient than cytokeratin-19 fragments 
(Cyfra21-1) and carcinoembryonic antigen (CEA) to predict 
tumor recurrence in patients with NSCLC following 
radical surgery (12). Therefore, to improve the prognosis 
of NSCLC patients and to provide reliable information 
to guide appropriate personalized treatment strategies, it 
is necessary to identify reliable immunological prognostic 
or predictive indicators that are closely related to tumor 
phenotype and immune traits. 

In recent years, with the development of genomic 

technologies, bioinformatics has been widely used to study 
the molecular mechanisms of diseases and to identify 
disease-specific biomarkers (13). The advantage of weighted 
gene co-expression network analysis (WGCNA) is that it 
can be used to detect the co-expression of highly relevant 
genes and modules of interest related to clinical traits (14). 
Differential gene expression analysis identifies differentially 
expressed genes (DEGs) that may play key roles in human 
disease between experimental groups and control groups. 
The single-sample gene set enrichment analysis (ssGSEA) 
applies the genetic characteristics expressed by immune cell 
populations to individual cancer samples, and according 
to the results obtained, the immune infiltration traits of 
tumors can be extracted and grouped. At present, there are 
few reports based on the combination of differential gene 
expression analysis with ssGSEA and WGCNA.

In the present study, based on The Cancer Genome Atlas 
(TCGA)-NSCLC mRNA expression data, we screened 
hub genes related to the tumor phenotype and immune 
traits using a novel approach investigating differential gene 
expression analysis with ssGSEA and WGCNA. Finally, 
the regulators of hemoglobinization and erythroid cell 
expansion (RHEX) were screened as a key gene and related 
to the prognosis, tumor phenotype, and immunity traits 
of patients with NSCLC. At present, only one study in 
solid tumors reported that RHEX expression was higher 
in lymph node metastasis-positive patients than in lymph 
node metastasis-negative patients, and it may be a new 
biomarker for predicting lymph node metastasis in patients 
with early-stage endometrial cancer (15). Therefore, our 
study is the first to examine the role of RHEX in NSCLC 
providing valuable insights for clinicians and researchers 
globally, and is designed to encourage the further validation 
of these results to implement their use in clinical practice 
and ultimately, curb the growing burden of NSCLC. 
We present the following article in accordance with the 
REMARK reporting checklist (available at https://dx.doi.
org/10.21037/tcr-21-1316).

Methods

Collection and grouping of NSCLC data

The transcriptome count data and corresponding clinical 
data of NSCLC were downloaded from the TCGA 
program (https://portal.gdc.cancer.gov). The data of 
fragments per kilobase million (FPKM) were first converted 

https://cdn.amegroups.cn/static/public/TCR-21-1316-Supplementary.pdf
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from count data and used for immune grouping of NSCLC 
samples by ssGSEA, which then applied the genetic 
characteristics expressed by immune cell populations to 
individual cancer samples. We used the ssGSEA method 
of R software gene set variation analysis (GSVA) package 
to analyze the infiltration level of different immune cells, 
immune-related pathways, and the activity of immune-
related functions in the profile data of NSCLC expression. 
According to the results of ssGSEA, the TCGA-NSCLC 
samples were divided into a high immune cell infiltration 
group (Immunity_H group) and low immune cell 
infiltration group (Immunity_L group) using the R package 
“hclust”. The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

Verification of the effectiveness of immune grouping

By Estimation of STromal and Immune cells in MAlignant 
Tumour tissues using Expression data (ESTIMATE) 
algorithm, the ESTIMATE score, immune score, stromal 
score, and tumor purity were analyzed to verify the effect 
of ssGSEA immune grouping and to draw a clustering 
heat map and statistical map in the TCGA-NSCLC 
dataset. Human leukocyte antigen (HLA) and PD-L1 gene 
expression levels were used to verify differences between the 
two groups. The CIBERSORT deconvolution algorithm 
was used to accurately assess the composition of immune 
infiltrating cells in tumor samples, thereby verifying 
the differences in the level of immune cell infiltration 
between the two groups. Finally, to confirm differences 
in the enrichment pathways between the two groups, we 
performed GSVA enrichment analysis using “GSVA” R 
packages. The gene sets of “c2.cp.kegg.v7.1.symbols.gmt” 
were downloaded from the Molecular Signatures Database 
(MSigDB) (https://www.gsea-msigdb.org/gsea/msigdb/
index.jsp) for running GSVA analysis. Statistical significance 
was set at a P value <0.05. 

Identification of DEGs

According to the criteria of |log2FC| ≥1 and adjusted 
P<0.05, the R package “limma” and “edgeR” were 
separately utilized to normalize the data and discover DEGs 
between the Immunity_L and Immunity_H group. Next, 
the differential analysis was carried out according to the 
same criteria between the tumor and normal groups. In 
addition, to make the data types more appropriate for our 

next analysis, we retained genes with counts per million 
(CPM) ≥1, then converted the count values into reads per 
kilobase million (RPKM) values by dividing gene counts by 
the length of the gene. 

WGCNA

We used the “WGCNA” feature in the R package to 
separately find the module that was most positively related 
to tumor phenotype or Immunity_H traits and the hub 
genes in the module. The adjacency matrix was transformed 
into a topological overlap matrix (TOM), and genes were 
divided into different gene modules according to the 
TOM-based dissimilarity measure. Here, we set the soft-
thresholding power to 6 (scale free R2=0.90), defined the 
height as 0.25 and the minimal module size as 50 to identify 
key modules. Subsequently, the overlapping genes between 
DEGs and co-expression genes extracted from the co-
expression network were used as hub genes and used to 
identify potential prognostic genes, which are presented as 
a Venn diagram. 

Functional annotation and survival analysis of hub genes

We conducted the Gene Ontology (GO) enrichment 
and Kyoto Encyclopedia  of  Genes and Genomes 
(KEGG) pathway analyses using the R package feature 
“clusterProfiler.” GO terms or KEGG pathways with 
adjusted P<0.05 were considered significant, and were 
visualized by the R package feature “GOplot.” 

For further screening of key genes, survival analysis 
was conducted for hub genes using the R package features 
“survminer” and “survival.” Tumor samples within the 
TCGA-NSCLC dataset were divided into a high and low 
expression group, based on the median value of each hub 
gene to plot the Kaplan-Meier survival curves. 

Validation in ArrayExpress database

We downloaded the series matrix files of the dataset 
(E-MTAB-6043) and the corresponding clinical data 
of NSCLC from ArrayExpress (http://www.ebi.ac.uk/
arrayexpress). As described above, ArrayExpress-NSCLC 
samples were also divided into high and low immune groups 
and the grouping was confirmed, as shown in Figure S1. 
Differential gene expression analysis and Kaplan-Meier 
survival analysis were then performed in the ArrayExpress-

https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
http://www.ebi.ac.uk/arrayexpress
http://www.ebi.ac.uk/arrayexpress
https://cdn.amegroups.cn/static/public/TCR-21-1316-Supplementary.pdf
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NSCLC dataset. 

Immune-related analysis of RHEX expression

We utilized software GSEA 4.1.0 (https://www.gsea-msigdb.
org/gsea/downloads.jsp) to perform GSEA analysis. Based 
on the median RHEX mRNA expression, 1,037 NSCLC 
samples were divided into high- and low-RHEX expression, 
and the gene set “h.all.v7.1.symbols” was selected for 
the enrichment analysis. Permutations were set to 1,000 
to obtain a normalized enrichment score, and statistical 
significance was set at P<0.05. 

In addition, CIBERSORT analysis  was used to 
investigate the association between RHEX and TICs. 
According to the median, 1,037 TCGA-NSCLC samples 
were first normalized using the voom function and were 
divided into high and low-RHEX expression groups. 
LM22 is an annotated gene signature matrix that defines 
22 immune cell subtypes and was downloaded from the 
CIBERSORT web portal (http://cibersort.stanford.edu/), 
and we ran CIBERSORT locally in the R software. The 
number of permutations was set to 1,000, and a threshold 
P value of <0.05 was the criteria for successful computation 
of a sample. To further confirm the correlation between 
the expression of RHEX and TICs, we applied the “gene 
module” of the online tool Tumor IMmune Estimation 
Resource (TIMER, https://cistrome.shinyapps.io/timer/) 
which contains 10,897 samples from diverse cancer types 
available in the TCGA database. Moreover, the correlation 
between the somatic copy number alteration (SCNA) 
of RHEX and immune abundance of the leukocytes was 
explored using the “SCNA module.” The association 
between RHEX and immune modulators in pan-cancer was 
depicted through the web portal TISIDB (http://cis.hku.hk/
TISIDB/index.php) (16), which is an integrated repository 
portal for tumor–immune system interactions.

Statistical analysis

Statistical analyses were performed using R software (version 
3.6.0, https://www.r-project.org). The survival curves for 
prognostic analyses were generated using the Kaplan–Meier 
method, and the log-rank test was used to identify the 
significance of differences. The correlation between RHEX 
expression and clinical parameters was analyzed using the R 
package feature “ggpubr”, and gene expression correlations 
were analyzed using Spearman’s correlation. For all 
comparisons, a two-tailed P value <0.05 was considered 

significant.

Results

Construction and verification of the NSCLC immune 
groupings

The flowchart of this study is summarized in Figure S2. We 
obtained 1,037 NSCLC samples and 108 paracancerous 
samples from the TCGA database, and the ssGSEA 
method was applied to the NSCLC expression profile 
data to evaluate the infiltration of immune cells. Using an 
unsupervised hierarchical clustering algorithm, NSCLC 
samples were divided into an Immunity_H group (n=758) 
and Immunity_L group (n=279) (Figure 1A), and to prove 
the feasibility of this immune grouping strategy, the 
ESTIMATE algorithm was employed to calculate the 
ESTIMATE score, stromal score, immune score, and tumor 
purity. While compared with the Immunity_L group, the 
Immunity_H group had lower tumor purity, the other scores 
were higher (Figure 1A) in the latter. The violin diagram 
also showed a significantly positive correlation between the 
Immunity_H group and the ESTIMATE score, stromal 
score, and immune score, and showed a negative correlation 
with tumor purity (Figure 1B). We also found expression 
of the HLA family and PD-L1 in the Immunity_H group 
was significantly higher than in the Immunity_L group 
(P<0.05) (Figure 1C,1D), and the CIBERSORT method 
revealed there were more immune cells in the Immunity_
H group than in the Immunity_L group (Figure 1E). GSVA 
enrichment analysis was performed to demonstrate that the 
above groups differed in the KEGG enrichment pathways. 
The top 20 enrichment pathways are shown in Figure 1F, 
and the Immunity_H group was markedly enriched in 
immune-related pathways. To summarize, the Immunity_
H group had higher immune components and lower tumor 
purity than the Immunity_L group (P<0.05), indicating the 
NSCLC immune grouping could be used for follow-up 
analysis.

Analyses of DEGs between the tumor and normal groups 
and between the Immunity_H and Immunity_L groups

Based on the cutoff criteria of |log2FC| ≥1 and adjusted 
P<0.05, we analyzed the difference between the tumor 
group (1,037 cases) and the normal group (108 cases). 
We found 4,283 DEGs, of which 1,755 and 2,528 were 
upregulated and downregulated, respectively (Figure 2A). 

https://www.gsea-msigdb.org/gsea/downloads.jsp
https://www.gsea-msigdb.org/gsea/downloads.jsp
http://cibersort.stanford.edu/
https://cistrome.shinyapps.io/timer/
http://cis.hku.hk/TISIDB/index.php
http://cis.hku.hk/TISIDB/index.php
https://www.r-project.org
https://cdn.amegroups.cn/static/public/TCR-21-1316-Supplementary.pdf
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Figure 1 Construction and verification of immune grouping in the The Cancer Genome Atlas (TCGA)-Non-small cell lung carcinoma 
(NSCLC) dataset. (A) The immune cells show high expression in the Immunity_H group and low expression in the Immunity_L group. 
Using the algorithm of Estimation of STromal and Immune cells in MAlignant Tumour tissues using Expression data (ESTIMATE), tumor 
purity, ESTIMATE score, stromal score, and immune score of each sample are displayed together with the grouping information. (B) The 
boxplot shows a significant difference in tumor purity, ESTIMATE score, stromal score, and immune score between the two groups. The 
expression of HLA family genes (C) and PD-L1 (D) in the Immunity_H group (red) is significantly higher than in the Immunity_L group 
(green). (E) The statistical chart after using the CIBERSORT method shows the proportional difference in each immune cell between the 
Immunity_H group (red) and the Immunity_L group (green). (F) GSVA enrichment analysis showing the activation states of the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathways between the Immunity_H and Immunity_L groups. A heatmap is used to visualize 
these KEGG pathways. Red represents the activation pathways, while green represents inhibitory pathways. *, P<0.05; ***, P<0.001.
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Figure 2 The differentially expressed genes were screened and analyzed by weighted gene co-expression network analysis (WGCNA) in 
The Cancer Genome Atlas (TCGA) database. (A) Volcano plot showing that the expression of 1,755 genes is upregulated and that of 2,528 
was downregulated between Non-small cell lung carcinoma (NSCLC) and normal tissues. (B) The volcano plot shows that the expression 
of 1,077 genes is upregulated and that of 200 genes is downregulated between the Immunity_H and Immunity_L groups. (C) The Cluster 
dendrogram of co-expression network modules is ordered by a hierarchical clustering of genes based on the 1-TOM matrix in the tumor 
and normal sample sets. Each module is assigned different colors. (D) In regard to module-trait relationships, each row corresponds to a 
color module and each column correlates with a clinical trait (tumor and normal). Each cell contains the corresponding correlation and P 
value. Consistent with C and D, the Cluster dendrogram of co-expression network modules in the sample sets of high and low immune cell 
infiltration (E), and the correlation heat map between module eigengenes and clinical traits (Immunity_H and Immunity_L) (F). (G) Venn 
diagram displaying a total of 14 overlapping genes in the intersection of two differentially expressed genes (DEG) lists and two co-expression 
modules. (H,I) Differential expression heat map of 14 hub genes: (H) tumor vs. normal and (I) Immunity_H vs. Immunity_L. The Gene 
Ontology (GO) (J) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis (K) of the 14 hub genes were performed.
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According to the same criteria, 1,277 DEGs were identified 
in the Immunity_H group compared to that identified in 
the Immunity_L group, of which 1,077 were upregulated 
and 200 were downregulated (Figure 2B). 

WGCNA and extraction of overlapping genes 

Co-expression networks facilitate network-based gene 
screening methods that can be used to identify hub 
biomarkers and therapeutic targets. Based on this, to 
screen co-expression genes most relevant to NSCLC 
clinical traits (tumor & Immunity_H groups), WGCNA 
analysis was performed twice to find the key modules most 
positively related to tumor and immunity traits in TCGA  
(Figure 2C-2F). From the heatmap of module-trait 
correlations we identified that the turquoise module was 
most positively correlated with tumor traits (cor =0.55, 
P<0.0001), which included 3,232 genes (Figure 2D), and 
the brown module was the most highly correlated with the 
Immunity_H trait (cor =0.67, P<0.0001), which included 
1,511 genes (Figure 2F). 

As shown in Figure 2G, after Venn analysis, 14 co-
expressing DEGs were extracted between the DEGs 
lists and the co-expression modules including IL22RA2, 
POU6F2, CSF3R, RAB37, RHEX, CX3CR1, FOXI3, 
ICAM1, CD1E, CD1C, MAP1LC3C, FCER1A, BANK1, and 
CHI3L2. Finally, we plotted the heat map of differential 
expression of the 14 hub genes in the tumor versus the 
normal group (Figure 2H) and in the Immunity_H versus 
the Immunity_L group (Figure 2I) to show their expression 
patterns. 

Functional enrichment analyses for the 14 DEGs 

To gain further insights into the potential functions of 
the 14 identified DEGs, we conducted GO and KEGG 
analyses, and a P value <0.05 was considered significant. 
The top 10 factors of each aspect of GO are shown in 
Figure 2J. The GO terms were mainly clustered in immune-
related pathways, tyrosine phosphorylation, and apoptotic 
signaling pathways. The significant KEGG pathways are 
displayed in Figure 2K, including hematopoietic cell lineage, 
amoebiasis, tight junction, JAK-STAT signaling pathway, 
asthma, cytokine-cytokine receptor interaction, African 
trypanosomiasis, ferroptosis, and malaria. Unsurprisingly, 
these pathways were associated with tumor and immunity 
traits, which was consistent with our screening approach. 
These results suggest that these 14 DEGs may be involved 

in immune-oncology-related functions.

Validation and identification of key genes

We performed a Kaplan-Meier analysis to determine 
whether the expression of these genes was related to the 
overall survival (OS) of patients with NSCLC in TCGA 
(Figure 3A-3N) and found RHEX (P=0.031) (Figure 3A) 
and CD1E (P=0.039) (Figure 3B) were associated with a 
favorable clinical prognosis. Based on the ArrayExpress-
NSCLC microarray dataset, we verified the results of the 
above two genes (Figure 4A,4B) and found that RHEX 
expression alone was associated with a good prognosis. 
Simultaneously, we analyzed the expression profiles of 
RHEX and CD1E between the tumor and the normal 
group and between the Immunity_H group and Immunity_
L group in this dataset (Figure 4C-4F) and again found the 
expression pattern of RHEX alone was consistent with the 
TCGA dataset. As only the expression level of RHEX was 
related to the prognosis, tumor phenotype, and immunity 
traits of patients with NSCLC in both the databases, we 
focused on the RHEX gene in subsequent analyses.

Correlation of RHEX expression with clinicopathological 
parameters in NSCLC patients

The relationship between RHEX expression levels and 
clinicopathological parameters was explored in TCGA-
NSCLC patients (Figure 5A-5F), and the results revealed 
that RHEX expression was higher in females than in 
males (Figure 5B). The expression of RHEX in early-stage 
NSCLC cases (stage I) was significantly higher than that 
in the middle- and advanced-stage cases (Figure 5C) and 
was significantly higher in the T1 stage than that in other 
T stages (Figure 5D). However, the correlation between 
other parameters and RHEX expression was not significant. 
Overall, these results suggest that RHEX expression levels 
decline as NSCLC progresses.

RHEX is a potential immune-predictive indicator

To further confirm the functions of RHEX we performed 
a GSEA by separating patients with NSCLC into two 
groups according to the median RHEX expression. As 
presented in Figure 6A and Table S1, in the high-RHEX 
expression phenotype, eight gene sets were upregulated and 
significantly enriched in immune-related activities, while 
in the low-RHEX expression group, the genes were mainly 

https://cdn.amegroups.cn/static/public/TCR-21-1316-Supplementary.pdf
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Figure 4 Overall survival analysis and analysis of differentially expressed mRNAs for RHEX and CD1E in the ArrayExpress database. (A) 
Survival analysis for RHEX (P<0.001). (B) Survival analysis for CD1E (P=0.223). (C,D) The expression of RHEX in the tumor group and 
the Immunity_H group is significantly higher than that in the normal and Immunity_L groups. The expression of CD1E in the tumor group 
is significantly higher than in the normal group (E); however, there is no difference between the Immunity_H and Immunity_L groups (F). 

enriched in cell cycle-related pathways (Figure 6B and 
Table S1). These results suggest that as RHEX expression 
decreases, the status of the TME shifts from being immune-
predominant to cell cycle control-dominant, which indicates 
RHEX might be a potential indicator of immune status.

Significant correlation between RHEX and TICs in the 
TME

To confirm the correlation between RHEX expression 
and the immune microenvironment, we conducted a 
CIBERSORT analysis and referred to the TIMER. The 
CIBERSORT algorithm applied to the 22 immune cell 
subtypes helped assess their differing concentrations 
in the high- and low-RHEX expression groups. As the 
estimated proportion of CD4+ naive T cells was not found 
in the eligible sample group, it was not included in the 
subsequent analysis. Figure 7A shows the proportion of 
14 subpopulations of immune cells in the high- and low-

RHEX expression groups and reveals the proportion of 
TICs in the two groups differs. Moreover, differential 
analysis using the Wilcoxon test indicated that RHEX 
expression was correlated with multiple TICs as shown in  
Figure 7B. Spearman’s correlation analysis found a significant 
correlation between RHEX and 15 TICs (Figure 7C) and 
the results from the differential and correlation analyses 
showed that the 15 types of TICs were correlated with 
the expression of RHEX (Figure 7D). Among them, eight 
types were positively correlated with RHEX expression, 
including memory B cells, CD4+ memory resting T 
cells, Tregs, monocytes, resting/activated dendritic cells, 
neutrophils, and resting mast cells, while seven TICs were 
negatively correlated with RHEX expression, including 
activated CD8+ T cells, follicular helper T cells, CD4+ 
memory activated T cells, macrophage M0/M1, resting NK 
cells, and activated mast cells. Taken together, these results 
strongly suggest RHEX is important for immune cell 
infiltration in tumor pathology.
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Figure 5 Relationships between RHEX expression and clinicopathological parameters. (A) Age; (B) sex; (C) tumor stage; (D) T stage; (E) 
lymph node metastasis, and (F) distant metastasis.

Figure 6 Gene set enrichment analysis (GSEA) for samples with high-RHEX expression and low-RHEX expression. (A) Enriched gene 
sets in HALLMARK collection by the high-RHEX expression sample. (B) Enriched gene sets in HALLMARK collection by low-RHEX 
expression samples. Only gene sets with normal P<0.05 was considered significant.
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To confirm the above results, the TIMER tool was used 
for analysis. As a result, the expression level of RHEX 
was negatively correlated with tumor purity, indicating 
their comparative enrichment outside tumor cells may be 
attributable to the enrichment patterns of RHEX in the 
TME, while RHEX was positively correlated with the 
infiltration levels of six immune cells both in LUAD and 
LUSC (Figure 8A). In addition, different mutational forms 
of RHEX were associated with immune infiltration of 
these six TICs (Figure 8B), which also reveals its influence 
on the NSCLC immune microenvironment. In particular, 
arm-level gain of RHEX was associated with substantially 
lower levels of six immune infiltrates than normal RHEX 
expression in NSCLC. 

Relationship between RHEX expression and immune 
modulators in NSCLC

To investigate the potential impact of RHEX expression 
on NSCLC immunotherapy, we systematically analyzed 
correlations between RHEX expression and three types 
of immune modulators described in a previous study 
conducted by Charoentong et al. through the TISIDB 
database (17). Intriguingly, we found RHEX expression was 
positively correlated with most of the immune modulators, 
including immunoinhibitors, immunostimulators, and major 
histocompatibility complex (MHC) molecules in pan-cancer 
(Figure 9A-9C). More importantly, we observed that RHEX 
was positively correlated with almost all MHC molecules 
in NSCLC, and very few immune modulators showed 
negative correlation with RHEX expression in NSCLC. 
These results indicate that RHEX might play a pivotal role 
in co-regulating the NSCLC TME.

To further explore and confirm the relationships between 
RHEX and immune checkpoint members (immunoinhibitor 
and immunostimulator), correlation analyses were 
performed in the TCGA database (Figure 9D,9E ;  
Table S2) and, as expected, RHEX was positively correlated 
with most of the checkpoint members (Table S2). The 
top five immunoinhibitors and immunostimulators most 
associated with RHEX expression are respectively plotted 
in the circle diagrams (Figure 9D,9E). Thus, our findings 
revealed that RHEX might manipulate anti-tumor immune 
responses through co-regulation with RHEX-related 
immune checkpoint molecules, thereby lending support to 
the use of combination cancer immunotherapy targeting 
these molecules in future studies. 

Discussion 

Although various therapeutic strategies such as surgery, 
chemotherapy, radiotherapy, and immunotherapy have been 
used to improve the clinical efficacy of NSCLC patients 
for many years, the prognosis remains less than satisfactory, 
prompting us to search for the underlying molecular 
mechanisms related to this condition. Multiple investigators 
have reported that immune-related genes can be used as 
prognostic indicators for NSCLC (18-21). A growing body 
of evidence shows the importance of biomarkers, especially 
genes, in determining the outcomes of cancer, offering 
new opportunities for integrating this information into 
therapeutic algorithms, especially those related to immunity.

Our study is the first to investigate differential gene 
expression analysis combined with WGCNA and ssGSEA 
to explore novel tumor- and immune-related genes. We 
successfully identified 14 overlapping genes that were 
significantly related to the tumor phenotype and immunity, 
among which, RHEX alone had the same expression trend 
and prognostic value in both the TCGA and ArrayExpress 
databases. Compared with the tumor and Immunity_
L groups, RHEX mRNA expression was significantly 
higher in the normal group and in the Immunity_H group. 
In addition, this is the first study to report a consistent 
association between increasing RHEX mRNA levels and 
favorable clinical prognosis in NSCLC patients. 

RHEX (also called C1orf186) was originally identified as 
a transduction factor of the erythropoietin-erythropoietin 
receptor (EPO-EPOR) signaling pathway, modulating 
human erythroid progenitor cell (hEPCs) expansion and 
promoting erythroid cell differentiation (22). RHEX is 
well-conserved in humans and other primates but not in 
the genomes of rats, mice, or lower vertebrates. RHEX 
mRNA is also expressed in multiple primary human 
tissues, including the brain, liver, lung, and peripheral 
blood cells (monocytes, T cells, neutrophils, and platelets), 
and is highly expressed in primary hEPCs and the kidney 
(15,22,23). RHEX is a plasma membrane protein, whose 
predicted domains include an amino-terminal (NT) 
hydrophobic region and two carboxy-terminal candidate 
growth factor receptor-bound protein 2 (GRB2)-binding 
sites (22,24). RHEX protein proved to be upregulated by 
EPO ≥20-fold in its phosphorylation at phosphotyrosine 
(PY) 132 and PY141 sites, which were also implicated in 
binding GRB2. Beyond this, RHEX protein has been shown 
to comprise a likely Janus kinases-2 (JAK2) PY target and to 

https://cdn.amegroups.cn/static/public/TCR-21-1316-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-21-1316-Supplementary.pdf
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co-immunoprecipitate with EPOR and JAK2, both of which 
indicate it may be involved in crosstalk between the EPOR/
JAK signaling pathways (22,25). EPO/EPOR ligation is 
known to activate JAK2 kinase, JAK2 phosphorylation of 
EPOR cytoplasmic PY motifs, and canonical STAT, PI3K, 
and RAS/MEK/ERK signal transduction pathways (26,27). 
JAK2 plays an important role in the promotion of multiple 
oncogenic phenotypes encompassing tumorigenesis, 
prol i ferat ion,  invas ion,  metas tas i s ,  and immune  
evasion (28). Therefore, based on the above literature 
mining, we can speculate that RHEX may affect multiple 
immune tumor-related signaling pathways through the 
EPOR/JAK signaling pathways. 

Presently, few studies have been conducted on RHEX 
in solid tumors, and its role in NSCLC has not yet been 
elucidated. Given that our knowledge on the role of RHEX 
in cancer is limited, herein we aimed to dissect its biological 
functions in NSCLC and reveal its associated regulatory 
pathways by performing a comprehensive analysis of open-
access databases. Co-expressed genes act synergistically 
in biological processes under strict regulatory control and 
have an advantage during adaptive evolution (29). Based on 
the functional enrichment analyses of the 13 genes in the 
RHEX co-expression module, we attempted to elucidate 
the biological roles of RHEX. First, we identified some 
functional terms that corresponded to previous studies on 
RHEX, especially the tyrosine phosphorylation pathway, 
hematopoietic cell lineage, and JAK-STAT signaling 
pathway, which confirmed the reliability of our analytical 
method. Second, functional enrichment analysis revealed 
that RHEX was correlated with a variety of immune 
response pathways, including T cell activation, lymphocyte 
activation, antigen processing and presentation, leukocyte 
migration, and cytokine and cytokine receptor interaction, 
which indicated it might promote TME immune infiltration 
by these functional terms. Third, following enrichment 
analysis, we finally found programmed cell death-related 
terms, such as extrinsic apoptosis signaling pathway and 
ferroptosis, which suggested RHEX might be involved in 
anti-tumor mechanisms. These results strongly indicated 
RHEX may have complex regulatory roles in NSCLC 
tumors. 

To further explore the biological functions of RHEX 
in NSCLC, we conducted a GSEA and found the samples 
with high-RHEX expression were positively correlated 
with signaling pathways implicated in various immune-
oncology-related pathways, especially the IL-6/STAT3 
pathway. We speculated that RHEX may participate in 

anti-tumor immune mechanisms by interfering with 
abnormally activated JAK-related signaling pathways in 
NSCLC. Previous studies have shown that abnormal 
activation of the IL-6/STAT3 pathway could induce the 
expression of PD-L1, enhance tumor cell proliferation, 
and inhibit tumor cell apoptosis in NSCLC (30,31). In 
addition, Cai et al. reported that decreased expression 
of JAK1 was associated with immune infiltration and a 
poor prognosis in LUAD tissues (32). While the specific 
regulatory mechanism of RHEX involved in JAK-related 
signaling pathways needs to be verified through more 
detailed experiments, the low expression group was mainly 
enriched in multiple gene sets with well-established roles in 
NSCLC development, including G2M_CHECKPOINT, 
MYC_TARGETS_V1/V2, E2F_TARGETS, DNA_
REPAIR, MTORC1_SIGNALING, and GLYCOLYSIS. 
It is widely believed that abnormal cell proliferation is a 
hallmark of malignant tumors, and tumor cells often show 
changes in the expression of genes that directly regulate 
their cell cycles (33). Each replication of DNA in cancer 
cell cycles may cause a large amount of damage, including 
DNA substitutions or deletions (34). Therefore, the 
mechanisms of DNA repair and cell cycle examinations are 
particularly important. Notably, as a proto-oncogene, MYC 
encodes a transcription factor that regulates gene networks 
controlling cell cycle progression, apoptosis, and cellular 
transformation (35,36), and previous studies have indicated 
that it is able to promote the proliferation, metastasis, and 
metabolism of NSCLC by regulating multiple pathways 
(37-40). In addition, the roles of E2F_TARGETS, 
MTORC1_SIGNALING, and GLYCOLYSIS in NSCLC 
have been reported in several studies (41-43). Above all, 
we infer that high-RHEX expression can participate in 
immunomodulation and promote the prognosis of patients, 
while a decrease in RHEX expression is beneficial for tumor 
progression and leads to a poor prognosis. In addition, we 
verified that RHEX mRNA levels were inversely correlated 
with the T stage status of NSCLC patients. Thus, our 
data confirmed the downregulation of RHEX coincides 
with the advancing stage of NSCLC and the conversion 
of TME from an immune-predominant to a cell cycle 
control-dominant status and supported the proposition that 
RHEX might play an important anti-tumor role in NSCLC 
tumors.

 With the development of scientific research, immune 
cell infiltration in the TME could help elucidate the 
mechanisms behind tumor development. Here, we could 
only determine the significant correlations between 
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immune cell infiltration and RHEX expression in tumors, 
while the relationship between cause and effect was 
difficult to establish. Overexpression of RHEX mRNA 
leads to bidirectional changes in TIC infiltration levels, 
namely, the immune abundance of memory B cells, CD4+ 
memory resting T cells, Tregs, monocytes, resting/activated 
dendritic cells, neutrophils, and resting mast cells, which 
is consistent with the results of the TIMER database. 
Conversely, CD8+ T cells, follicular helper T cells, CD4+ 
memory activated T cells, macrophage M0/M1, resting NK 
cells, and activated mast cells were observed to decrease. 
The immune infiltration levels of antigen-presenting cells 
such as macrophages, monocytes, dendritic cells, and B cells 
were significantly correlated with the RHEX expression 
level, which was consistent with the previously mentioned 
role of RHEX in promoting immune infiltration in the 
TME by enhancing antigen processing and presentation 
and lymphocyte activation. However, we also found 
contradictory results in the correlation analysis of RHEX 
expression levels and abundance of CD8+ T cell infiltration, 
which we speculated might be due to the heterogeneity of 
data processing, while the specific mechanism remains to 
be further confirmed by experiments. In addition, we also 
found a strong association between RHEX copy number 
variation and immune infiltrates. The finding further 
revealed a correlation between RHEX expression and 
immune infiltration, suggesting a potential mechanism 
by which RHEX alterations predict  the response 
to immunotherapy. These results demonstrated the 
influence of RHEX on immune processes in NSCLC is 
a comprehensive biological effect. As mentioned earlier  
(10-12,44), some studies have confirmed that the occurrence 
and progression of tumors can be regulated by TICs in the 
TME, which are promising targets for treatment and the 
basis of immunotherapy. Therefore, the crosstalk between 
RHEX and TICs in NSCLC suggests that RHEX could be 
used as a potential biomarker for therapeutic strategy design 
and immune state prediction for NSCLC patients in the 
future.

Finally, we estimated the association of RHEX with 
immune checkpoint members to further explore its 
synergistic role in NSCLC-induced immune responses. 
Interestingly, our results revealed that immunomodulators, 
including stimulator and suppressor molecules, were 
positively related to RHEX expression simultaneously in 
NSCLC, which is a good reflection of the complexity of 
the TME. Studies have shown that the complex interplay 
between cancer and its TME is also responsible for 

resistance to immunotherapy (45). Hence, the complex 
interaction interplay between RHEX expression, immune 
inhibitors, and immune stimulators in the TME might 
be one possible explanation for NSCLC immunotherapy 
resistance. In conclusion, our findings revealed that RHEX 
might manipulate anti-tumor immune responses through 
co-regulation with RHEX-related immune checkpoint 
molecules, and suggests immunotherapy, by both blocking 
inhibitory checkpoints and activating stimulatory pathways, 
should be strongly considered.

Notably, the main limitation of our study is that it was 
based on preliminary data generating predictions. Although 
we provided a comprehensive bioinformatics analysis to 
identify potential key genes, RHEX expression needs to be 
validated between normal and tumor and between high and 
low levels of immune cell infiltration groups. Furthermore, 
the specific mechanisms by which RHEX regulates immune 
cell infiltration and the anti-tumor response requires further 
investigation through a series of experiments.

Conclusions

In this  study,  we found that  RHEX signif icantly 
correlated with the prognosis, immune infiltration, and 
immunomodulators. Our findings shed light on the 
important role of RHEX in NSCLCs and provided insight 
into the potential relationship and underlying mechanism 
between RHEX and tumor-immune system interactions. 
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