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Abstract: Blastocyst implantation involves multiple interactions with numerous molecules expressed
in endometrial epithelial cells (EECs) during the implantation window; however, there is limited
information regarding the molecular mechanism underlying the crosstalk. In blastocysts, fibronectin
plays a major role in the adhesion of various types of cells by binding to extracellular matrix
proteins via the Arg-Gly-Asp (RGD) motif. In EECs, RGD-recognizing integrins are important
bridging receptors for fibronectin, whereas the non-RGD binding of fibronectin includes interactions
with dipeptidyl peptidase IV (DPPIV)/cluster of differentiation (CD) 26. Fibronectin may also
bind to aminopeptidase N (APN)/CD13, and in the endometrium, these peptidases are present in
plasma membranes and lysosomal membranes. Blastocyst implantation is accompanied by lysosome
exocytosis, which transports various peptidases and nutrients into the endometrial cavity to facilitate
blastocyst implantation. Both DPPIV and APN are released into the uterine cavity via shedding
of microvesicles (MVs) from EECs. Recently, extracellular vesicles derived from endometrial cells
have been proposed to act on trophectoderm cells to promote implantation. MVs are also secreted
from embryonal stem cells and may play an active role in implantation. Thus, crosstalk between
the blastocyst and endometrium via extracellular vesicles is a new insight into the fundamental
molecular basis of blastocyst implantation.

Keywords: extracellular vesicles; lysosome; dipeptidyl peptidase IV; aminopeptidase N; blastocyst
implantation

1. Introduction

The human endometrium consists of a single layer of columnar epithelium, which
comprises endometrial epithelial cells (EECs), and a stroma, which comprises endometrial
stromal cells (ESCs). During the normal menstrual cycle, the endometrium undergoes
cyclic changes, and ovarian steroid hormones are considered to control the differentiation
and function of the endometrium. The endometrium is composed of basal and functional
layers, the latter comprising the superficial two-thirds of the endometrium.

Shortly after ovulation, progesterone increases the permeability of the plasma mem-
branes and lysosomal membranes of EECs; the enhanced permeability leads to the secretion
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of various peptidases and other nutrients into the endometrial cavity (Figure 1), possibly
facilitating blastocyst implantation within the limited period of the implantation window
(days 19 to 21 of menstrual cycles) [1]. Thus, EECs are profoundly dynamic as the site of
blastocyst implantation. In recent years, emerging evidence has indicated that extracellular
vesicles (EVs), such as exosomes and microvesicles (MVs), produced by cells are involved
in intercellular communication. Increasing evidence has also shown that EVs of maternal
and/or embryonal origin participate in the blastocyst–endometrial interactions that are
critical to implantation (Figure 1) [2,3].
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Although the mechanisms underlying the molecular basis of crosstalk during the
implantation window are largely unknown, fibronectin is known to play a central role in
the adhesion of various types of cells. Fibronectin interacts with the cell surface via the
Arg-Gly-Asp (RGD) motif, RGD-recognizing proteins, and primarily integrin, which has
been suggested to be an important bridging ligand of fibronectin in blastocysts during
implantation. On the other hand, fibronectin is also involved in implantation via non-RGD
binding, and the fundamental role of blastocyst fibronectin in the implantation process has
been further supported by the identification of large-sized molecules in EECs that bind to
fibronectin via a non-RGD motif [4].

In this review, the roles of RGD- and non-RGD-containing proteins that possibly
interact with fibronectin in blastocyst implantation are discussed. One example of such
proteins is dipeptidyl peptidase IV (DPPIV)/cluster of differentiation (CD) CD26, which
is highly expressed in glandular epithelium during the implantation window [5], and
is involved in the interaction with blastocyst fibronectin during implantation [6]. The
adhesion mechanism of fibronectin and DPPIV/CD26 is different from that of the RGD
motif. Aminopeptidase N (APN)/CD13 also binds to blastocyst fibronectin via the Asn-
Gly-Arg (NGR) motif, and is expressed in ESCs of the endometrium. Both DPPIV and
APN are also present in EVs and lysosomes; therefore, we proposed the hypothesis that
lysosomes are secreted as EVs, and blastocyst fibronectin may also bind to these peptidases
localized in EVs/lysosomes on the outer side of the endometrium. The blastocyst attached
to the EVs/lysosomes may subsequently return to the endometrium, leading to completion
of blastocyst implantation, wherein glycocalyx plays a central role as the destination of
the blastocyst attached to the EVs/lysosomes [7,8]. Lastly, the possible involvement of
blastocysts in implantation is discussed; EVs secreted from embryonic stem (ES) cells of a
preimplantation embryo have been shown to play active roles in implantation [9].
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2. Endometrial Change during Decidualization

Epithelial–mesenchymal transition (EMT) is a critical process in various developmen-
tal stages. The essential step in EMT is the loss of epithelial cell markers; a notable example
is the decreased expression of E-cadherin [10]. E-cadherin is responsible for maintaining
the lateral contacts of epithelial cells via adherent junctions, cell adhesion, and relative im-
mobility in tissues [11]. Matsuzaki et al. [12] showed that a significantly higher expression
of E-cadherin was detected in infertile patients with endometriosis, while its expression
was extremely low or not detected in the EECs of the mid-secretory endometria of healthy
fertile women. Progesterone may play a key role in maintaining the epithelial phenotype
by actively inhibiting EMT, as demonstrated using various cell models [13–15], whereas the
temporal downregulation or loss of E-cadherin expression in EECs during the implantation
window may be necessary for blastocyst implantation.

2.1. Changes in ESCs during Decidualization

Human endometrial decidualization begins approximately 6 d after ovulation at the
onset of the implantation window. The stromal compartment of the human endometrium
becomes edematous, with an increase in ESC cytoplasm; this change is initiated in ESCs
near the terminal spiral arteries, and subsequently expands throughout the stroma over
the secretory phase of the menstrual cycle [1]. Although the reason for the initiation
of decidualization around the terminal spiral arteries is unknown, various molecules
exudated from the blood vessels may contribute to the initiation of decidualization at the
end of the arteries. These changes in ESCs are essentially parallel to the changes in EECs
during decidualization; various changes observed in ESCs during decidualization, such as
those in intracellular organelles and the accumulation of glucose and various nutrients, are
similarly observed in EECs.

The substantial differentiation process of the uterine endometrium during decid-
ualization includes both morphological and biochemical changes aimed at blastocyst
implantation. Decidualization is a biological transformation process that closely resembles
a mesenchymal–epithelial transition that occurs independent of the presence of an implant-
ing blastocyst; ESCs are differentiated from elongated fibroblast-like ESCs, into cells with
a more rounded and highly specialized secretory epithelioid cell type, termed decidual
cells [16]. Generally, the mesenchymal phenotype exhibits a distinct elongated cell shape
with anterior–posterior polarity and the ability to move in the extracellular matrix, rather
than attaching to it via a leading pseudopodium extruded from a continuously formed
plasma membrane [16].

Decidualizing ESCs also undergo biochemical alterations, including an expansion of
the rough endoplasmic reticulum and Golgi complex, accumulation of glycogen and lipid
droplets in the cytoplasm, enhanced expression of certain extracellular matrix proteins,
such as laminin and type IV collagen, and an increase in the production of secretory
proteins, including prolactin and insulin-like growth factor binding protein 1 (both of
which are well-known markers of decidualization) [17,18]. Thus, decidualization in the
endometrium is profound and gradually affects all uterine compartments.

Another important aspect of decidual cells is that these cells lack aminopeptidase A
(APA), the AP responsible for the degradation of angiotensin II (A-II). Vasoconstrictive
neuropeptides, such as A-II, arginine vasopressin, and oxytocin, play critical roles in
embryo growth [1]. The absence of APA in the decidual cell area may constitute a critical
preparation for implantation; A-II shows a growth-factor-like effect at 10−11 M on post-
implantation embryos in rats, and expression of A-II type 1 and 2 receptors (AT1R and
AT2R, respectively) in the preimplantation embryos suggests that the embryos are sensitive
to A-II, which is present in the early gestational environment [19,20]. The lack of APA in
the decidual cell area supports A-II as a growth factor in postimplantation human embryos.
Once an embryo reaches the uterus, it first encounters decidual cells that lack APA. A-
II, presumably supplied from the maternal endometrium, reaches the embryo without
being exposed to degradation by APA. The lack of APA in the decidual cell area in the
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endometrium can strengthen A-II as a growth-factor-like effector after implantation. This
may be compatible with A-II-enhanced glucose uptake in ES cells [21].

2.2. Changes in EECs during Decidualization
2.2.1. Apocrine and Holocrine Secretions from EECs during the Implantation Window

EECs are essentially epithelial phenotypes, whereas downregulation of the epithelial
marker E-cadherin seems to be essential for implantation, as mentioned in Section 2. After
ovulation, the human endometrium actively secretes glycoproteins, including aminopepti-
dase (APs) and nutrients, such as peptides and amino acids, into the endometrial cavity.
The secretion is mediated by exocytosis of lysosomes, which is stimulated by progesterone
(Figure 1) to facilitate blastocyst implantation. Progesterone is also involved in the influx of
blood-derived glucose and other nutrients into EECs. The exocytosis observed in this pro-
cess is a drastic phenomenon, such as apocrine and/or holocrine secretion, and reaches its
maximal level within the implantation window. Apocrine secretion from EECs is believed
to serve as communication with the exterior fertilized ovum by the transfer of cellular
products [1].

After ovulation, intracellular Ca2+ and cyclic monophosphate (cAMP) levels are ele-
vated in EECs and ESCs, by surges in estrogen and luteinizing hormone levels. In addition,
elevated Ca2+ is known to promote lysosomal membranes to fuse with other cellular mem-
branes, resulting in the exocytosis of lysosomal contents (Figure 1). Lysosomal exocytosis
plays a major role in several physiological processes, such as cellular immune response,
bone resorption, and plasma membrane repair, and Ca2+-dependent lysosomal exocytosis
is observed in a variety of cell types [22,23]. The endolysosomal system constitutes a
set of intracellular membranous compartments: early endosomes, late endosomes, recy-
cling endosomes, and lysosomes (Figure 1), which can actively interconvert to each other.
Lysosomes were once considered the endpoint sequence of endocytosis and degradation
of macromolecules; however, they are currently recognized as dynamic organelles with
significant capabilities to fuse themselves with a variety of targets, followed by subsequent
postfusion reformation [24–26]. Lysosomes also serve as major sites for the activation
of proteolytic activities of many peptidases, even if their activities can be detected in en-
domembrane systems other than lysosomes [26]. Various APs are postulated to activate
enzymes in the endolysosomal system [1].

2.2.2. Exocytosis of Lysosomes, Exosomes, and EVs in EECs

Eukaryotic cells secrete proteins produced via their biosynthetic pathways by con-
stitutive exocytosis of secretory vesicles, and/or by the release of secretory or storage
granules upon appropriate stimulation [27]. Thus, at least two different classes of EVs,
namely, exosomes and MVs, were identified. Exosomes range in size from 30 to 100 nm
and are derived from the rerouting of multivesicular bodies (MVBs), which are a subset of
endosomes that contain membrane-bound intraluminal vesicles intended for degradation,
in the lysosome to the cell surface, where they fuse with the plasma membrane and are
released (Figure 1) [28]. Thus, exosomes are secreted in various cell types as a consequence
of the fusion of multivesicular late endosomes/lysosomes with the plasma membrane [27].
However, the distinction between late endosomes and lysosomes is not precise, and it is
speculated that MVBs belong to the category of late endosome/lysosome [27]. MVs range
in size from 0.2 to 2 µm and are also referred to as ectosomes, microparticles, and onco-
somes, in the case of cancer cells. MVs tend to be considerably larger than exosomes, and
are formed and shed directly from the plasma membrane (Figure 1) [29]. While elevated
Ca2+ levels cause lysosomal exocytosis, MVs are shed from the plasma membrane, depend-
ing on an increase in the population of cytosolic Ca2+-like lysosomes (Figure 1) [30]. The
exocytosis of lysosomes contributes to the repair of the plasma membrane [22]; therefore,
lysosomes probably constitute a part of MVs.

The pancreatic exocrine acinar cells transport lysosomal enzymes from the Golgi
apparatus to the acinar lumen, suggesting the direct exocytosis of lysosomes [31]. Similarly,
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we have postulated the progesterone-induced apocrine secretion of lysosomes, i.e., the
direct exocytosis of lysosomes in EECs [1]. The size of lysosomes varies from 0.1 to 1.2 µm,
with the largest being more than 10 times that of the smallest. The size of lysosomes in
EECs increases dramatically after ovulation [1].

3. Implantation
3.1. Fibronectin in Blastocysts

After the egg is successfully fertilized in the fallopian tube, the egg travels through
the fallopian tube toward the uterus, during which the fertilized egg divides and develops
into a multicellular structure called a blastocyst. Following migration and shedding of
the zona pellucida, the trophectoderm of the implanting blastocyst must be prepared for
implantation prior to attachment to the maternal endometrium. Blastocysts are composed
of an inner cell mass (comprising ES cells) and the surrounding epithelial trophectoderm.

Integrins are expressed in the endometrium and are suggested to be involved in
implantation [32]. The ligands for integrins include fibronectin, which is expressed in the
early embryo [33]. Our previous study showed that fibronectin mRNA is detected at the
blastocyst stage, but not at the morula stage in human embryos, and its existence on the
cell surface in human hatched blastocysts was verified via immunefluorostaining [6]. The
interaction of various integrins with large proteins in the maternal endometrial epithelium
may mediate the adhesion of blastocysts [34]. This may be compatible with the previous
finding that the trophectoderm in humans may initially attach to the glycocalyx in the
maternal endometrial epithelium, in which adhesion molecules, such as integrins, are
highly expressed [7]. Thus, fibronectin in blastocysts probably plays an essential role in
implantation by binding to large molecules in EECs.

3.2. Dynamic Aspects of EECs during the Implantation Window and Their Relation to APs

The surface areas of EECs show dynamic changes, mainly with rest to apocrine secre-
tion, in addition to lysosomal exocytosis, which are considered to serve as communications
with the exterior fertilized ovum via the transfer of cellular products [1]. Scanning electron
microscopy confirmed that during the implantation window, the epithelia of both surface
and glandular EECs are composed of four cell types: microvilli-rich cells, pinopode cells,
vesiculated cells, and ciliated cells. Dynamic vesicular transport, which includes endocy-
tosis, transcytosis, and exocytosis, was evident in these cells, implying that they actively
communicate with the external environment and neighboring cells.

The surface and glandular epithelia in pinopode cells are morphologically different;
on the surface epithelium, pinopodes occupy the entire luminal cell surface, with poor
cytoplasm in organelles, whereas in the glandular epithelium, pinopodes tend to be thinner
and irregularly shaped, with their cytoplasm frequently filled with secretory material. In
addition, the glandular epithelium in pinopode cells showed apocrine secretion, which
is scarce in the surface epithelium. Such differences in morphological features may be
associated with different functions between the surface and glandular pinopodes, while
the surface pinopodes appear to be important in blastocyst implantation, and the glandular
pinopodes participate in secretion.

Pinopode cells are characterized by large cytoplasmic apical protrusions, whereas
the cytoplasm of pinopodes is composed of coated vesicles, secondary lysosomes, lipid
droplets, and glycogen aggregates. This morphology might be consistent with the secretion
features of EECs that exhibit merocrine, apocrine, and holocrine secretions during the
implantation window [35]. The elevated intracellular Ca2+ and cAMP levels stimulate
exocytosis of the lysosomal contents, which is accompanied by an increase in progesterone,
leading to an increase in the permeability of both lysosomal and cell membranes; moreover,
exocytosis of lysosomes is exaggerated, resulting in apocrine and holocrine secretions in
EECs [1]. In the liver, lysosomal enzymes are discharged into the bile canaliculus after
glucagon stimulation. This process is accompanied by an increase in the pericanalicular
distribution of secondary lysosomes, as observed in pinopode cells [36].
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3.3. Interaction of Blastocyst Fibronectin with the Molecules in EVs/Lysosomes Derived from EECs

Pinopode cells in EECs are considered to constitute the site of blastocyst adhesion [37].
The cell surface in the human body is generally covered with a dense layer of glycosamino-
glycans and proteoglycans, termed as the “glycocalyx” [8]. The initial attachment of the
trophectoderm may occur on the glycocalyx on pinopode cells in EECs [7].

In women, EVs are present in the uterine fluid and the corresponding mucus [38],
which increases the likelihood of retention and/or sequestration of EVs secreted from
the luminal epithelium within the endometrial glycocalyx [39]. Importantly, proteomic
analysis of EVs secreted in primary cultured EECs revealed that EVs containing proteins
(EVs’ protein cargo) are regulated by estradiol and progesterone [40]. EVs were identified
in the uterine fluid of women across the different phases of the menstrual cycle, suggesting
that EVs are under the control of both steroidal hormones [38]. EVs’ protein cargo includes
basement membrane peptidases, such as APN/CD13 and DPPIII, wherein the level of
APN/CD13 exceeds that of DPPIII [40].

Pretreatment of rat blastocysts and Ishikawa cells (a well-differentiated human en-
dometrial adenocarcinoma cell line) with RGD-blocking peptide significantly reduced
blastocyst attachment to Ishikawa cells, suggesting an essential role of the interaction
between RGD-containing proteins and fibronectin for implantation [4]. However, in fi-
bronectin knockout mice, implantation appeared to be normal [41], indicating that other
adhesion molecules may compensate for the role of fibronectin in blastocysts.

3.4. DPPIV/CD26 in Implantation

DPPIV/CD26, a 110-kDa type II transmembrane glycoprotein that acts as a serine
exopeptidase and is expressed in various epithelial tissues, is highly expressed on EECs
in the implantation window [5]. Moreover, DPPIV/CD 26 is known to be a marker of
the implantation-phase endometrium and accounts for a variety of regulatory processes,
including glucose and chemokine homeostasis [42,43]. Another function of DPPIV/CD 26
is its ability to bind to the extracellular matrix; specifically, lung endothelial DPPIV/CD26
is known to be a vascular address for cancer cells decorated with cell-surface fibronectin.
Fibronectin contains multiple CD26-binding sites, and CD26/DPPIV-binding sites in fi-
bronectin have the following consensus motif: T(I/L)TGLX(P/R)G(T/V)X [44]. Human
blastocysts efficiently adhere to DPPIV/CD26-overexpressing monolayer cell cultures;
furthermore, DPPIV/CD26-mediated adhesion increased the trophectoderm spreading,
suggesting that human blastocyst implantation involves an adhesion mechanism mediated
by endometrial DPPIV/CD26 and embryonal fibronectin [6].

3.5. APN/CD13 in Implantation

APN/CD13 is a type II 150-kDa membrane metalloprotease with an extracellular-
oriented catalytic domain. APN cleaves the N-terminal neutral residue of physiological
peptides, and ubiquitously functions in various peptide metabolism pathways [45]. While
DPPIV was detected in EECs, APN/CD13 was detected in ESCs and decidual cells [5].

Recent studies have shown that the formation of isoaspartyl residues (isoAsp) in
integrin/fibronectin ligands by asparagine deamidation or aspartate isomerization could
represent a mechanism for the regulation of integrin/fibronectin recognition. This spon-
taneous post-translational modification results in the NGR motif, which mimics RGD, a
common integrin/fibronectin binding motif [46]. APN has been shown to mediate the
intercellular adhesion process by binding to the signature NGR motif in extracellular ma-
trix proteins and on the surface of other cells [47]. APN/CD13 also promotes β1 integrin
recycling and subsequent cellular migration [48]. Given that β 1-integrin is highly ex-
pressed in the decidua [32], APN/CD13 may be involved in implantation and/or invasion
of blastocysts.

Some alternative mechanisms of blastocyst attachment on the endometrial cell surface
were shown as follows [49]: mucin1, a highly glycosylated polymeric protein contributes
to cellular adhesive properties, which may function to facilitate blastocyst binding to
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the endometrial cell surface, but its action is through the L-selectin/sialyl-Lewis x adhe-
sion system, and is not directly involved in binding between blastocyst and endometrial
cells [50]. Integrins are transmembrane glycoproteins, which mediate cell-to-cell and cell-to-
extracellular matrix (ECM) adhesion. The localization of ąvß3 integrin on the pinopods, on
the apical surface of the luminal epithelium at the time of uterine receptivity, may suggest a
role of this integrin subtype in initial implantation [51]. The interaction between fibronectin
and integrin is mediated, as follows: cells bind to fibronectin through transmembrane
receptor proteins of the integrin family, which mechanically couple the actin cytoskeleton
to the ECM via an elaborate adhesion complex. Therefore, fibronectin is essential for
understanding the role of integrin. Osteopontin is a glycoprotein produced by endometrial
epithelia and secreted into the uterine lumen at the time of implantation, where it binds
to the ąvß3 integrin present on the surface of uterine luminal epithelia [52]. Osteopontin
is an integrin-binding secreted protein that contains an Arg-Gly-Asp (RGD) amino acid
sequence, and binds to various cell types via RGD-mediated interaction with the ąvß3
integrin [53]. Osteopontin is present in the glycocalyx, apical cytoplasmic vesicles, and
multicompartment granules in human gastric mucous cells. In human gastric mucosa, the
localization of osteopontin in subcompartment granules may be important for the secretion
of osteopontin [54]. In addition, osteopontin is also present in the phagolysosome of gut
macrophages, and this was proposed to originate internally by transport of synthetic trans-
port vesicles to the lysosome or externally by phagocytosis [54]. Thus, such dynamic traffic
of osteopontin between cytoplasmic vesicles and external space might be quite similar to
that observed in the several proteins localized in endometrial epithelium in the role of
blastocyst implantation. Heparin-binding epidermal growth factor-like growth factor (HB-
EGF) is expressed in a cyclic-dependent manner by luminal epithelial cells of the human
endometrium, in response to both estrogen and progesterone [55]. HB-EGF is expressed at
increasing amounts in the secretory-phase endometrium and is considered to be important
for blastocyst implantation. Although the transmembrane form of HB-EGF may play an
important role in cell adhesion and cell migration [56], maternal HB-EGF possibly binds to
the blastocyst through a juxtacrine mechanism involving the EGF receptor, ErbB4. Thus,
HB-EGF may not be involved in direct binding between blastocyst and endometrial cells.

3.6. Blastocyst’s EV Uptake in EECs after Interaction of Blastocyst Fibronectin with two
Peptidases, EVs Derived from EECs and ES cells, and Blastocyst Attachment

In the human endometrium, a drastic change in exocytosis occurs; its peak coincides
with the blastocyst arrival, whereas endocytosis ceases with implantation [35]. EVs are
released into the uterine lumen to interact with blastocysts, possibly via their uptake. Thus,
understanding EVs’ internalization and subsequent transfer of their cargo is essential for
human blastocyst implantation.

It is speculated that EVs undergo fusion with MVBs in recipient cells to release their
cargo. Recently, Joshi et al. [57] supported this speculation using green fluorescent protein
and electron microscopy, revealing the release of EVs’ cargo in endosomes/lysosomes.
They showed that internalized EVs fuse the membrane close to MVBs, composed of
late endosomes and lysosomes in an acidification-dependent manner, resulting in cargo
exposure to the cytosol. Localization of EVs in endosomes and lysosomes confirmed their
uptake via endocytosis, but direct fusion of EVs with the plasma membrane was also noted
to be possible [57]. Thus, EVs can enter cells via endocytosis and/or fusion.

Exosomes secreted by cancer cells carry a variety of molecules; therefore, they are
used as delivery systems for tumor malignancy. An acidic microenvironment is a key factor
in increasing exosome release and entry into melanoma cells [58]. It has also been argued
that viruses may have adopted existing EV-mediated communication pathways for their
infection [59].

The main characteristic of EVs is the enclosure and transfer of molecules with a
lipid bilayer [60]. We have proposed that Aps, such as APN and APA, are not only
present in plasma membranes, but also in lysosomes in EECs [1]. In addition, it was
reported that, while the subset of the endosomal/lysosomal proteins contain cell-surface
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peptidases, such as DPPIV/CD26 and APN/CD13, exosomes do not contain any lysosomal
APs [28,61]. Therefore, it can be speculated that the cargo in which both APs are present
comprises lysosomes and/or MVs, rather than exosomes. After the binding of fibronectin
in blastocysts to both DPPIV/CD26 and APN/CD13 in MVs/lysosomes, the MV/lysosome
cargo attaches to the blastocyst, and then the blastocysts adhere to the EECs (Figure 2). The
MV/lysosome cargo is attached to the pinopodes on the surface epithelium. Given that
pinopodes are known to be quite stable due to poor apocrine secretion, pinopodes might
be appropriate locations for blastocyst attachment.
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EVs derived from EECs and treated with both estradiol and progesterone were taken
up by the first-trimester human trophoblast cell line HTR8/SV neo, and subsequently
induced a rapid increase in the adhesive capacity of HTR8/SV neo [40]. This may imply
that EVs derived from the endometrium may potentially affect the cell adhesion capacity
of blastocysts, thereby contributing to the interaction of blastocysts and EECs for successful
implantation. Moreover, EVs derived from endometrial cells have recently been suggested
to act on trophectoderm cells to promote implantation [62].

It was also shown that EVs derived from the ES cells of preimplantation embryos
play active roles in implantation [9]. Given that the preparation of EVs derived from ES
cells was devoid of exosomes, but mainly included MVs, the size of the EVs ranged from
approximately 350 to 800 nm in diameter. When E3.5 blastocysts were isolated from the
uteri of mice postcoital day 3.5, followed by culturing with ES cell MVs, they showed
enhanced migration, significantly forming outgrowths. On the other hand, MVs secreted
by HTR8/SV neo trophoblasts (a first-trimester human trophoblast cell line) failed to
activate migration [9]. MVs derived from ES cells were shown to transfer their cargo to
the trophectoderm layer, leading to MV-mediated intercellular communication between
ES cells and trophoblasts, which positively affected the ability of trophoblasts to undergo
implantation [9]. This was further supported by the fact that injecting E3.5 blastocysts with
MVs isolated from ES cells resulted in a significant enhancement of blastocyst implantation
by placing the blastocysts into the uteri of mice [9].

Both fibronectin and laminin were reported to be involved in the attachment and
outgrowth of blastocysts in vitro; attachment and outgrowth of mouse blastocysts on
tissue culture plates was significantly increased when the culture plates were individually
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precoated with fibronectin and laminin [63]. Given that fibronectin [6] and laminin [64]
are present in human embryos during implantation, it is likely that they contribute to
blastocyst attachment and outgrowth via MVs derived from ES cells, as proposed by
Desrochers et al. [9].

Implantation is initiated within the microenvironment of uterine fluid, which con-
tains a rich array of nutrients, proteins, lipids, and other molecules, arising from the
endometrium stimulated by selective signal transduction from the blood side and, in the
conception cycle, secretions of MVs from the blastocyst. In humans, initial attachment
of the blastocyst occurs to the glycocalyx, as mentioned above [7]. EV bodies released
from the endometrium (and possibly the embryo) are present in uterine fluid. It is, thus,
reasonable that EVs provide an alternative means of exchange between blastocyst and
endometrial epithelial cells for implantation. Therefore, we proposed that lysosomes are
some of these EVs.

4. Conclusions

Implantation of the human blastocyst is a biological paradox that cannot be easily
explained [65]. It is unclear how two epithelial cells (the trophectoderm cells of blastocysts
and EECs) can make contact through their apical membranes [66]. This review provides a
holistic overview of novel findings about the interaction of the blastocyst with two pepti-
dases (DPPIV/CD26 and APN/CD13) in MVs/lysosomes derived from EECs, wherein
the MV/lysosome cargo attached to the blastocyst undergoes back-fusion at the MVBs,
possibly on the surface of pinopode cells, for implantation (Figure 2) [57]. Furthermore,
the review discussed the possibility of blastocysts being involved in implantation via MVs
secreted from ES cells. Thus, the microenvironment within the uterine cavity is critical
during the final preimplantation stages of blastocyst development and for the success-
ful establishment of pregnancy. Basic and clinical elucidation of the steroidal regulation
and the function of APs in EVs/lysosomes for blastocyst implantation is necessary in the
near future.
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