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Abstract

Targeted neuromodulation strategies that strengthen neuronal activity are in great need for

restoring sensorimotor function after chronic spinal cord injury (SCI). In this study, we estab-

lished changes in the motoneuron output of individuals with and without SCI after repeated

noninvasive transspinal stimulation at rest over the thoracolumbar enlargement, the spinal

location of leg motor circuits. Cases of motor incomplete and complete SCI were included to

delineate potential differences when corticospinal motor drive is minimal. All 10 SCI and 10

healthy control subjects received daily monophasic transspinal stimuli of 1-ms duration at

0.2 Hz at right soleus transspinal evoked potential (TEP) subthreshold and suprathreshold

intensities at rest. Before and two days after cessation of transspinal stimulation, we deter-

mined changes in TEP recruitment input-output curves, TEP amplitude at stimulation fre-

quencies of 0.1, 0.125, 0.2, 0.33 and 1.0 Hz, and TEP postactivation depression upon

transspinal paired stimuli at interstimulus intervals of 60, 100, 300, and 500 ms. TEPs were

recorded at rest from bilateral ankle and knee flexor/extensor muscles. Repeated trans-

spinal stimulation increased the motoneuron output over multiple segments. In control and

complete SCI subjects, motoneuron output increased for knee muscles, while in motor

incomplete SCI subjects motoneuron output increased for both ankle and knee muscles. In

control subjects, TEPs homosynaptic and postactivation depression were present at base-

line, and were potentiated for the distal ankle or knee flexor muscles. TEPs homosynaptic

and postactivation depression at baseline depended on the completeness of the SCI, with

minimal changes observed after transspinal stimulation. These results indicate that

repeated transspinal stimulation increases spinal motoneuron responsiveness of ankle and

knee muscles in the injured human spinal cord, and thus can promote motor recovery. This

noninvasive neuromodulation method is a promising modality for promoting functional neu-

roplasticity after SCI.
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Introduction

Targeted neuromodulation strategies that strengthen neuronal activity are in great need for

restoring sensorimotor function after chronic spinal cord injury (SCI). Within this concept,

several therapeutic approaches promoting neuromodulation and thereby neuroplasticity have

been adapted over the last few decades [1–6]. One of these methods includes spinal cord stim-

ulation delivered epidurally or transcutaneously to the lumbar spinal region, the location of

the leg motor circuits. Evidence supports for some recovery of standing and walking ability

during or after epidural delivery of electrical current to the spinal cord of individuals with

complete SCI that received concomitantly a variable number of locomotor training sessions

[7–14]. Epidural stimulation also promoted bladder control, cardiovascular function, respira-

tion and cough in human SCI [14–18]. Similarly, transcutaneous spinal cord (termed here

transspinal) stimulation at low and high frequencies strengthens corticomotoneuronal con-

nectivity, decreases hyperreflexia, improves bladder function, seated postural control, and

autonomic cardiovascular function [19–23]. Step-like movements produced by transspinal

stimulation [24], further support its ability to modulate spinal locomotor circuits in persons

with paralysis. However, the effect of repeated low-frequency transspinal stimulation on the

responsiveness of spinal motoneurons in individuals with SCI remains largely undetermined.

At the neuronal level, transspinal stimulation induces synaptic activity and intrinsic polari-

zation of motoneurons [25], and decreases the magnitude of dendritic persistent inward cur-

rents that are related to hyperreflexia and spasms after SCI [26–28]. Further, transspinal

stimulation activates receptors required for long-term potentiation-like actions of neurotro-

phins that mediate plasticity [29,30]. At the circuitry level, single-pulse transspinal stimulation

generates transspinal evoked potentials (TEPs) simultaneously in bilateral lower limb muscles

in individuals with and without SCI with distinct neurophysiological characteristics regarding

their latency, duration, shape, and spinal integration [19,24,31–34]. TEPs exhibit a sigmoid

function at increasing stimulation intensities, which coincides with bilateral leg extension, sup-

porting the depolarization of motoneurons across multiple spinal segments that has been

linked to stimulation-induced formation and retention of motor memories [35].

Collectively, the objectives of this study were to establish the effects of daily low-frequency

transspinal stimulation on spinal motoneuron output and spinal inhibition of multiple spinal

segments. We hypothesized that low-frequency transspinal stimulation at levels that produces

motoneuron depolarization over multiple segments strengthens spinal connections and thus

increases motoneuron output. We further hypothesized that motoneuron responsiveness will

be greater in individuals with incomplete SCI compared to that observed in individuals with

complete SCI. To test our hypotheses, the TEP recruitment input-output curves, TEP depres-

sion at low stimulation frequencies, termed here homosynaptic depression, and TEP depres-

sion in response to transspinal paired stimuli, termed here postactivation depression, recorded

bilateral from ankle and knee flexor/extensor muscles were assessed at rest before and two

days after an average of 13 sessions of transspinal stimulation delivered at 0.2 Hz in people

with and without SCI.

Materials and methods

Participants

All experimental and stimulation procedures were conducted in compliance with the Declara-

tion of Helsinki after full Institutional Review Board (IRB) approval by the City University of

New York IRB committee (IRB Number: 515055). A written informed consent was obtained

from all participants before study enrollment. Participants were instructed to refrain from
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alcohol and caffeine consumption at least 24 hours before testing, and be cannabis-free for

more than one week.

Ten individuals with chronic SCI (Table 1) and 10 individuals without SCI (5 female;

30.9 ± 14 years, mean ± SD) were enrolled in the study. Individuals with SCI were recruited

based on the following criteria: age 18–65 years; chronic injury (more than 6 months after

injury); and able to tolerate lying supine or sitting upright for at least 1 hour. Individuals with

SCI were excluded if they presented with concomitant traumatic brain injury or stroke, cogni-

tive impairment, not medically stable, or had contraindications to spinal stimulation (presence

of an implanted object such as a pacemaker or pump). Five individuals with chronic SCI had a

neurological deficit grade D on the American Spinal Injury Association Impairment Scale

(AIS), 1 had AIS C, 2 had AIS B, and 2 had AIS A. The level of SCI ranged from C4 to T11.

Individuals with complete SCI were included in order to assess potential changes when corti-

comotoneuronal control is minimal. Individuals without SCI had no history of neurological or

musculoskeletal disorders.

Noninvasive transspinal stimulation

The T10 spinous process was identified via palpation and in consolidation with anatomical

landmarks. A single cathode electrode (Uni-PatchTM EP84169, 10.2 × 5.1 cm2, MA, USA) was

placed along the vertebrae equally between the left and right paravertebral sides. The electrode

covered from T10 to L1-L2 vertebral levels. These vertebral levels correspond to L1 and S2 spi-

nal segments and thus to the segmental innervation of the muscles from which action poten-

tials were recorded in this study. A pair of interconnected reusable self-adhered anode

electrodes (same type as the cathode), were placed on either side of the umbilicus or bilaterally

Table 1. Characteristics and demographics of individuals with spinal cord injury (SCI).

ID Gender Age

(yrs)

Post

injury

(yrs)

Level of

injury

Motor

score

Number of

sessions

List of medication

AIS Cause of injury LL RL

R01 M 51 3.5 C7 B Ocean Wave-

related

0 0 17 Baclofen 20 mg 4xD; Sertraline 60 mg 1xD; Oxybutynin 5 mg 3xD

R03 F 24 2 C6 D Fall from height 20 5 11 Nitrofurantoin 100 mg 1xD; Amitriptyline 50 mg 1xD;

Dextroamphetamine-Amphetamine 20 mg 2xD

R04 M 51 2 T5 D Calcification of

ligaments

18 18 15 Metaxalone 800 mg 4xD; Oxycodone 10–325 mg 4xD; Baclofen 200

mg 1-2xD; Diltiazem ER 240 mg 1xD; Valacyclovir 500 mg 3xW;

Oxymorphone 40 mg 2xD; Omeprazole 20 mg 1xD

R06 M 36 4 T2 A MVC 0 0 17 None

R07 F 39 16 T12 C MVC 17 5 23 Baclofen 2 mg 2xD

R08 M 27 9 C7 B MVC 0 0 18 Oxybutynin 10–15 mg 1xD

R09 F 19 5 T1 D SX 21 12 15 None

R10 M 47 28 T7 A GSW 0 0 14 None

R11 M 38 6 T9 D GSW 23 23 18 Gabapentin 800 mg 3xD; Zenflox 200 mg 2xD; Baclofen 10 mg 3xD;

Oxycodone-Acetaminophen 10 mg 3xD

R12 M 31 12 C6 D MVC 25 17 18 None

Level of SCI corresponds to neurological level of injury. The American Spinal Injury Association Impairment Scale (AIS) is indicated for each subject based on sensory

and motor evaluation per AIS guidelines. Motor scores (out of 25 maximal points for each leg) are indicated based on the manual muscle test of key muscles and

evaluated as 0 = no contraction, 1 = flicker or trace of contraction, 2 = active movement with gravity eliminated, 3 = active movement against gravity, 4 = active

movement against gravity and resistance, 5 = normal muscle power. The number of transspinal stimulation sessions given during the intervention is indicated for each

participant. Medication was taken at similar times of day. MVC = Motor vehicle crash; SX = Surgery; GSW = Gunshot wound; xD = Times daily; xW = Times weekly;

LL = left leg; RL = right leg.

https://doi.org/10.1371/journal.pone.0213696.t001
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on the iliac crests depending on the participant’s level of comfort or if the stimulation caused

bladder discomfort [31,34]. The cathode and anode electrodes were connected to a constant

current stimulator (DS7A, Digitimer, UK) that was triggered by Spike 2 scripts (Cambridge

Electronics Design Ltd., UK). Optimal electrode placement was based on presence of TEPs in

both proximal and distal lower limb muscles at low stimulation intensities, and presence of

TEP depression upon paired transspinal stimuli. Once the optimal location was identified, the

electrodes were affixed to the skin via Tegaderm transparent film (3M Healthcare, St Paul,

Minnesota, USA). After each session, the stimulated skin area was marked by non-toxic skin

pen and covered by Tegaderm film to ensure consistency of stimulation site across sessions.

During the intervention, transspinal stimulation was delivered on weekdays excluding holi-

days at 0.2 Hz with a single monophasic square-wave pulse of 1 ms duration while the partici-

pant lay supine at rest [36]. Knee and hip joints were flexed at 30˚ and ankles were supported in

a neutral position. Individuals with SCI received an average of 16.6 ± 1 sessions for an average of

60 ± 2 min per session. Individuals without SCI received a total of 10.2 ± 0.2 sessions for an aver-

age of 40 ± 0.1 min per session. Stimulus intensity was established based on the intensity needed

to determine the right soleus (SOL) TEP resting threshold at baseline. At baseline, the SOL TEP

resting threshold intensity was 96.9 ± 24 and 28.9 ± 5.7 mA for individuals with and without

SCI, respectively. Because the SOL TEP amplitude decreased after 10 to 15 min of continuous

stimulation, we alternated the suprathreshold stimulation (15-min for SCI group; 10-min for

control group) that evoked bilateral leg extension with subthreshold stimulation (5-min for both

groups), similar to a stimulation paradigm we have previously utilized [20]. During each session,

intensities ranged from 0.4 ± 0.1 to 4.3 ± 0.9 (2.2 ± 0.4) and 0.7 ± 0.1 to 10.3 ± 2.9 (6.4 ± 1.7)

times the SOL TEP resting threshold for individuals with and without SCI, respectively. Trans-

spinal stimulation was well tolerated by all participants, blood pressure remained stable, and no

adverse events were encountered during the experiments or intervention.

EMG recordings

Surface electromyographic (EMG) activity was recorded bilaterally by single bipolar differen-

tial electrodes (Motion Lab Systems Inc., Baton Rouge, Louisiana, USA) from the SOL, medial

gastrocnemius (MG), peroneus longus (PL), tibialis anterior (TA), medial hamstring (MH),

lateral hamstring (LH), rectus femoris (RF), and gracilis (GRC) muscles. EMG signals were

amplified, filtered (10–1000 Hz), sampled at 2000 Hz via a 1401 plus (Cambridge Electronics

Design Ltd., Cambridge, UK), and stored for offline analysis.

Neurophysiological assessments before and after repeated transspinal

stimulation

Measurements were performed at rest while lying supine, with transspinal stimulation elec-

trodes placed using the same procedures for the intervention described above. Neurophysio-

logical tests were performed before and two days after cessation of stimulation in individuals

with and without SCI. Changes in multisegmental spinal motoneuron output were established

based on the TEP recruitment input-output curve that was assembled at increasing intensities

from below resting motor threshold until a plateau in the response was reached. Furthermore,

TEPs from all muscles evoked at 1.3 ± 0.07 and 1.5 ± 0.16 times the SOL TEP threshold were

recorded at 0.1, 0.125, 0.2, 0.33, and 1.0 Hz in order to establish changes in TEP homosynaptic

depression in individuals with and without SCI, respectively. TEPs were also recorded upon

paired transspinal stimuli randomly at the interstimulus intervals (ISIs) of 60, 100, 300 and 500

ms at 0.2 Hz in order to establish changes in TEPs postactivation depression for both subject

groups. In all cases, 15 TEPs were recorded.
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Data analysis and statistics

Neurophysiological assessments were grouped separately for AIS C-D, AIS A-B, and healthy

control subjects based on time of testing. TEPs recorded from ankle and knee muscles were

measured as the area under the full-wave rectified waveform for identical time windows (Spike

2, CED Ltd., U.K.). The onset latency of TEPs recorded at 0.1 Hz upon single pulse at baseline

were estimated for each participant based on the cumulative sum technique [37] on the unrec-

tified waveform average and was compared between SCI and control subjects using a Student’s

t-test.

TEPs recorded upon single-pulse transspinal stimulation at increasing stimulation intensi-

ties were normalized to the associated maximal TEP (TEPmax). The normalized TEPs were

plotted against the non-normalized stimulation intensities and a Boltzmann sigmoid function

(Eq 1; SigmaPlot 11, Systat Software Inc.) was fitted to the data [38,39]. In Eq 1,m is the slope

parameter of the function, S50-TEPmax is the stimulus required to elicit a TEP equivalent to

50% of the TEPmax, and s is the TEP amplitude at a given stimulus value TEP. The TEP slope

and stimuli corresponding to TEP threshold, 50% of the TEPmax, and maximal TEP were esti-

mated based on Eqs 2, 3 and 4, respectively. The estimated parameters from the sigmoid fit

were compared before and after transspinal stimulation using a Student’s t-test.

TEP sð Þ ¼
TEPmax

ð1þ expðmðs50 � TEPmax � sÞÞÞ
Eq 1

TEPslope ¼
m� TEPmax

4
Eq 2

TEPth stim ¼
s � 2

m
Eq 3

TEPmax stim ¼
sþ 2

m
Eq 4

The predicted stimulation intensity from the sigmoid fit corresponding to S50-TEPmax

obtained before transspinal stimulation was used to normalize the stimulation intensities for

TEPs recorded before and after the intervention. Averages of normalized TEPs were calculated

in steps of 0.05 from 0.3 up to 1.3 times the S50-TEPmax. The above described offline analysis

was performed separately for each TEP input-output curve of each muscle for each participant

assembled before and after transspinal stimulation. Repeated measures analysis of variance

(rmANOVA) was then performed to the normalized TEPs grouped at multiples of S50-TEP-

max before and after transspinal stimulation to establish the main effects of time grouped

based on the normalized stimulation intensities. When a main effect was found, the Holm-

Sidak t-tests for multiple comparisons were used to test for significant interactions between

these factors.

To establish changes in homosynaptic depression, TEPs evoked at 0.125, 0.2, 0.33, and 1.0

Hz were expressed as a percentage of the mean amplitude of the homonymous TEP evoked at

0.1 Hz for each participant and muscle separately. To establish changes in postactivation

depression, the TEP evoked by the second transspinal stimulus in the paired paradigm was

normalized to the mean amplitude of the homonymous first TEP. This was done for TEPs

recorded at ISIs of 60, 100, 300 and 500 ms for each subject and muscle separately. For both

neurophysiological measures, rmANOVA was performed to establish the main effects of time.

When a significant effect was found, Holm-Sidak t-tests for multiple comparisons were
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performed to establish interactions between time and ISI or between time and stimulation fre-

quency. All values are presented as mean ± standard error of the mean unless otherwise stated.

Values were considered significant with a p< .05.

Results

Characteristics of TEPs

Bilateral TEPs recorded from ankle and knee muscles from representative participants with

and without SCI are indicated in Fig 1. TEPs are indicated along with the SOL maximal M-

wave and SOL H-reflex for comparison of onset and shape between responses. Note that

despite differences in the shape of TEPs across muscles, TEPs recorded from knee muscles

have shorter latencies compared to the more distal ankle muscles, a phenomenon that was evi-

dent in both individuals with and without SCI. For individuals without SCI, TEPs were both

biphasic and triphasic in nature for ankle muscles, whilst mostly triphasic for knee muscles.

After incomplete SCI, TEPs were mostly triphasic with some polyphasic waveforms (see left

RF in subject R03 and right RF in subject R10), and more turns were present within the wave-

forms. The latency of the SOL H-reflex and all TEPs recorded bilateral from ankle and knee

muscles from all participants (N = 20) upon single pulses at 0.1 Hz are presented in Table 2.

Latencies observed in individuals without SCI are consistent to those we have previously

reported [31,34,40]. TEPs were present at similar latencies in the left and right leg muscles

between subject groups. Note that the SOL TEP latency is approximately two thirds the SOL

H-reflex latency for participants with (20.1 ± 0.5 ms; 32 ± 0.4 ms; 63%; based on grouped data)

Fig 1. Transspinal evoked potentials (TEPs) in individuals with and without spinal cord injury (SCI). Non-rectified TEP waveform averages recorded

(N = 15, elicited at 0.2 Hz) bilaterally from ankle and knee muscles (solid black lines) in a healthy control participant (N-005) and two individuals with SCI

presenting with American Spinal Injury Association Impairment Scale (AIS) D (R-003) and AIS A (R-010), respectively. Latencies of the soleus (SOL) maximal

M-wave and H-reflex (dashed lines) along with all TEPs across individuals are also presented. MG: medial gastrocnemius; PL: peroneus longus; TA: tibialis

anterior; MH: medial hamstring; LH: lateral hamstring; RF: rectus femoris; GRC: gracilis.

https://doi.org/10.1371/journal.pone.0213696.g001
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or without SCI (20.1 ± 0.4 ms; 31.5 ± 0.5 ms; 64%). These results suggest that SOL H-reflexes

and SOL TEPs appear at similar latencies in individuals with and without SCI.

Changes in multisegmental motoneuron output after repeated low-

frequency transspinal stimulation

The TEP recruitment input-output curves recorded from all muscles along with the associated

sigmoid fit for individuals with AIS C-D before and after transspinal stimulation are presented

in Fig 2A. TEPs are grouped based on stimulation intensities normalized to the S50-TEPmax

obtained at baseline. For clarity purposes, a schematic representation of muscles that changes

Table 2. Transspinal evoked potential (TEP) onset latency (ms) in individuals with and without spinal cord injury (SCI).

Control Subjects AIS C-D AIS A-B

Left Right Left Right Left Right

SOL H-reflex 31.6±0.81 31.4±0.62 31.5±0.40 31.0±0.39 33.3±1.12 33.4±0.27

SOL TEP 20.2±0.49 20.0±0.55 19.4±0.82 18.8±0.62 22.0±0.45 21.2±0.60

MG TEP 18.5±0.88 18.7±0.67 18.7±0.72 19.4±0.47 18.6±1.26 18.7±1.54

PL TEP 17.0±0.61 17.0±0.68 16.3±0.72 16.1±0.84 18.9±1.44 18.8±1.71

TA TEP 18.7±0.65 18.9±0.57 18.1±0.48 18.0±0.68 20.0±0.59 20.7±0.96

MH TEP 13.1±0.31 13.1±0.32 12.5±0.59 12.2±0.55 12.6±0.77 12.3±0.66

LH TEP 12.9±0.38 13.2±0.39 12.6±0.45 12.4±0.26 12.9±0.68 13.7±0.39

RF TEP 11.4±0.77 11.9±0.56 10.4±1.19 9.5±1.10 9.4±0.47 9.8±0.24
GRC TEP 11.6±0.49 11.5±0.45 10.4±0.79 10.4±0.73 10.7±0.55 9.8±0.28

TEP onset latencies (ms) in comparison to the soleus (SOL) H-reflex. MG: medial gastrocnemius; PL: peroneus longus; TA: tibialis anterior; MH: medial hamstring; LH:

lateral hamstring; RF: rectus femoris; GRC: gracilis. Based on Student’s t-test, italics indicate a significant difference on latencies across subject groups.

https://doi.org/10.1371/journal.pone.0213696.t002

Fig 2. Transspinal evoked potential (TEP) recruitment curves before and after transspinal stimulation in AIS C-D. (A) TEPs normalized to the

homonymous maximal TEP and plotted against normalized stimulation intensities to the S50-TEPmax obtained before transspinal stimulation training along

with the sigmoid function fitted to the data. (B) Schematic representation of changes observed in the TEP recruitment input-output curves where red
represents an increase and blue represents a decrease in the corresponding muscle from which the TEP was recorded. SOL: soleus; MG: medial gastrocnemius;

TA: tibialis anterior; PL: peroneus longus; MH: medial hamstring; LH: lateral hamstring; RF: rectus femoris; GRC: gracilis. An asterisk indicates a significant

difference before and after transspinal stimulation.

https://doi.org/10.1371/journal.pone.0213696.g002
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in the TEP recruitment input-output curves were observed is indicated in Fig 2B. In AIS C-D

participants, a significant increase in the TEP input-output curve in right SOL (F1,174 = 14.51,

p< .001), right MG (F1,189 = 7.35, p = .007), right PL (F1,131 = 8.19, p = .005), left PL (F1,144 =

4.94, p = .028), right RF (F1,138 = 12.28, p< .001), and left GRC (F1,168 = 5.19, p = .024) muscles

was found (Fig 2). These results support for increased responsiveness of ankle and knee exten-

sors motoneurons after repeated transspinal stimulation, functionally related to maintenance

of standing posture.

The TEP recruitment input-output curves recorded from all muscles along with the associ-

ated sigmoid fit for individuals with AIS A-B before and after transspinal stimulation are pre-

sented in Fig 3A. TEPs are grouped based on stimulation intensities normalized to the

S50-TEPmax obtained at baseline. For clarity purposes, a schematic representation of muscles

that changes in the TEP recruitment input-output curves were observed is indicated in Fig 3B.

In participants with AIS A-B, a significant increase in the TEP input-output curve in the right

RF (F1,121 = 11.86, p< .001), left RF (F1,100 = 31.73, p< .001), and right GRC (F1,86 = 7.56, p =

.007) muscles was found after transspinal stimulation (Fig 3A and 3B). Further, the significant

decrease in the right TA TEPs (F1,103 = 98.15, p< .001) coincided with a significant interaction

between time and normalized intensities (F24,103 = 6.40, p< .001). These results suggest that in

cases of absent volitional motor control, transspinal stimulation increased motoneuron

responsiveness mostly for proximal leg muscles.

The TEP recruitment input-output curves recorded from all muscles along with the associ-

ated sigmoid fit for healthy control subjects are indicated in Fig 4. TEPs are grouped based on

time and stimulation intensities normalized to the S50-TEPmax obtained at baseline. Two-

way rmANOVA showed that the left MH (F1,357 = 14.46, p< .001), right MH (F1,394 = 8.56,

p = .004), right RF (F1,255 = 23.99, p< .001), and left LH (F1,218 = 7.295, p = .007) TEP recruit-

ment curves and associated maximal values were significantly increased after repeated trans-

spinal stimulation (Fig 4). In contrast, a significant decrease in the right TA (F1,318 = 6.33,

Fig 3. Transspinal evoked potential (TEP) recruitment curves before and after transspinal stimulation in AIS A-B. (A) TEPs normalized to the

homonymous maximal TEP and plotted against normalized stimulation intensities to the S50-TEPmax obtained before transspinal stimulation training along

with the sigmoid function fitted to the data. (B) Schematic representation of changes observed in the TEP recruitment input-output curves where red
represents an increase and blue represents a decrease in the corresponding muscle from which the TEP was recorded. SOL: soleus; MG: medial gastrocnemius;

TA: tibialis anterior; PL: peroneus longus; MH: medial hamstring; LH: lateral hamstring; RF: rectus femoris; GRC: gracilis. An asterisk indicates a significant

difference before and after transspinal stimulation.

https://doi.org/10.1371/journal.pone.0213696.g003
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p = .012), and left RF (F1,145 = 48.2, p< .001) TEPs was found (Fig 4). A significant interaction

between time and intensities was found for the right (F21,255 = 2.17, p = .003) and left (F20,145 =

5.93, p< .001) RF TEPs. These results support for increased motoneuron output of knee flexor

and hip extensor muscles after transspinal stimulation, whilst decreasing motoneuron output

in ankle and hip flexors, and knee extensor muscles.

The predicted parameters from the sigmoid function fitted to TEPs plotted against the

actual stimulation intensities (recruitment input-output curves) for healthy control subjects

only showed a significant decrease in stimulation threshold after repeated transspinal stimula-

tion in the left PL TEP (before: 355.8 ± 73.8 mA, after: 330.5 ± 72.8 mA; p = .016), and there-

fore are not presented in detail. In contrast, for AIS C-D, them function decreased (p = .023),

the TEP slope increased (p = .017), and stimuli for the maximal TEP increased (p = .036) for

the left MG TEP (Table 3). Them function also decreased for the left TA (p = .003), suggesting

for small selective increased recruitment gains of ankle flexors and extensors in AIS C-D. For

AIS A-B, the TEP slope (p = .043), S50-TEPmax (p = .004), and predicted stimuli at threshold

and at maximal intensities decreased (p< .05) for the left GRC TEP. The predicted maximum

TEP amplitude also decreased for the right SOL (p = .022), suggesting for small selective

decreased recruitment gains of knee flexors and ankle extensors in AIS A-B.

Comparisons between subjects groups showed that before transspinal stimulation, the pre-

dicted maximum TEP amplitude was increased in SCI compared to healthy control subjects

for the right MG (SCI: 24.6 ± 2.9; controls: 9.5 ± 1.6; p< .05), left GRC (SCI: 21.9 ± 5.2; con-

trols: 7.2 ± 1.3; p = .014) and right GRC (SCI: 15.5 ± 3.6; controls: 7.0 ± 1.7; p = .037). In con-

trast, the right SOL TEP was markedly reduced (SCI: 17.5 ± 1.6; controls: 27.6 ± 4.2; p = .032)

for individuals with SCI. After transspinal stimulation, the predicted maximum TEP ampli-

tude was increased in SCI compared to healthy control subjects for the left MG (SCI:

25.6 ± 6.5 ; controls: 10.3 ± 2.7; p = .043), right TA (SCI: 9.4 ± 1.4; controls: 4.3 ± 0.9; p = .008),

left RF (SCI: 21.2 ± 3.9; controls: 4.6 ± 1.4; p = .003), left GRC (SCI: 20.2 ± 3.9; controls:

Fig 4. Transspinal evoked potential (TEP) recruitment curves before and after transspinal stimulation in healthy control subjects. (A) TEPs normalized

to the homonymous maximal TEP and plotted against normalized stimulation intensities to the S50-TEPmax obtained before transspinal stimulation training

along with the sigmoid function fitted to the data. (B) Schematic representation of changes observed in the TEP recruitment input-output curves where red
represents an increase and blue represents a decrease in the corresponding muscle from which the TEP was recorded. SOL: soleus; MG: medial gastrocnemius;

TA: tibialis anterior; PL: peroneus longus; MH: medial hamstring; LH: lateral hamstring; RF: rectus femoris; GRC: gracilis. An asterisk indicates a significant

difference before and after transspinal stimulation.

https://doi.org/10.1371/journal.pone.0213696.g004
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6.1 ± 1.1; p = .001) and right GRC (SCI: 17.6 ± 2.9; controls: 5.5 ± 1.2; p = .002) muscles. All

other predicted parameters were not significantly different from controls.

Changes in homosynaptic and postactivation TEP depression after

repeated low-frequency transspinal stimulation

The average amplitude of normalized TEPs recorded from the left and right leg muscles at dif-

ferent stimulation frequencies grouped for AIS C-D and AIS A-B before and after repeated

transspinal stimulation are presented in Fig 5. One-way rmANOVA in AIS C-D for the left

SOL TEP recorded at baseline showed a decrease in amplitude as stimulation frequency

decreased (F3,20 = 8.49, p< .001). The same result was also found for TEPs recorded from

the left/right TA and left PL muscles, while no significance for the remaining TEPs was found

(p> .05). This resulted in 4 out of 16 muscles that homosynaptic TEP depression was evident

in AIS C-D. In a similar manner, homosynaptic TEP depression was evident in 4 out of 16

muscles in AIS A-B subjects, with TEPs recorded from the left SOL (F3,10 = 5.51, p = .017),

right SOL (F3,10 = 4.04, p = .04), right TA (F3,10 = 6.21, p = .012), and right PL (F3,10 = 4.62, p =

.028) muscles to display depression that varied as a function of stimulation frequency at base-

line (Fig 5). After transspinal stimulation, homosynaptic TEP depression decreased in the left

MG (F1,36 = 9.038, p = .005) and remained unaltered in the remaining TEPs (Fig 5) in AIS C-D

subjects, while homosynaptic TEP depression increased in the left SOL TEP (F1,21 = 7.44, p =

.013) and right RF TEP (F1,19 = 6.71, p = .018) in AIS A-B subjects.

The average amplitude of TEPs recorded from left and right leg muscles upon paired trans-

spinal stimuli grouped for AIS C-D and AIS A-B before and after transspinal stimulation are

presented in Fig 6. One-way rmANOVA in AIS C-D for the right LH TEP recorded at baseline

showed that the amount of depression varied significantly as a function of the ISI tested (H3 =

10.38, p = .016), while in the remaining TEPs the amount of depression did not vary signifi-

cantly as a function of the ISI. Similarly, one-way rmANOVA in AIS A-B showed that the

amount of depression upon paired transspinal stimuli at baseline varied significantly as a func-

tion of ISI only for the left MH TEP (F3,10 = 4.67, p = .027). After transspinal stimulation, TEP

depression upon transspinal paired stimuli remained unaltered in AIS C-D (Fig 6A), and was

decreased only in the right GRC TEP (F1,14 = 8.31, p = .012) in AIS A-B (Fig 6B), suggesting

for minimal changes of postactivation depression after transspinal stimulation in individuals

with SCI.

The group amplitude of normalized TEPs recorded from left and right leg muscles at differ-

ent stimulation frequencies and upon paired pulses before and after transspinal stimulation in

healthy control subjects are indicated in Fig 7. One-way rmANOVA for the left SOL TEP

recorded at baseline showed a decrease in amplitude as stimulation frequency decreased (H3 =

16.19, p = .001). The same result was also found for TEPs recorded from the remaining mus-

cles, except for the left TA (H3 = 6.41, p = .09) and left RF (H3 = 3.99, p = .26), suggesting for a

generalized susceptibility of TEPs to homosynaptic depression in healthy control subjects.

After transspinal stimulation, the amount of homosynaptic depression differed between time

(F1,65 = 8.70, p = .004) and ISI (F3,65 = 18.61, p< .001) only for the left LH TEP, while no sig-

nificant changes in the remaining TEPs were found (Fig 7A).

The amount of TEP depression upon paired transspinal stimuli recorded at baseline in

healthy control subjects (Fig 7B) did not vary based on the ISI for the left SOL TEP (H3 = 5.39,

p = .15). The same result was found for the left/right MG, left/right TA, right PL, left MH/LH,

right RF, and left/right GRC TEPs, and thus resulting in TEPs postactivation depression inde-

pendent of the ISI used. After repeated transspinal stimulation, the amount of postactivation

depression decreased in the left TA (F1,55 = 9.997, p = .003), right TA (F1,62 = 6.03, p = .017),

Transspinal stimulation increases motoneuron output in human SCI
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Fig 5. Homosynaptic transspinal evoked potential (TEP) depression before and after transspinal stimulation in spinal cord injury (SCI). Overall percent

change of TEPs recorded at 0.125, 0.2, 0.33 and 1.0 Hz from the associated TEP recorded at 0.1 Hz before (black lines) and after (green lines) transspinal

stimulation training in individuals with (A) AIS C-D and (B) AIS A-B. SOL: soleus; MG: medial gastrocnemius; TA: tibialis anterior; PL: peroneus longus; MH:

Transspinal stimulation increases motoneuron output in human SCI
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and left RF (F1,47 = 6.43, p = .015) TEPs. These results support that repeated transspinal stimu-

lation affects TEPs homosynaptic and postactivation depression differently in healthy control

subjects.

Discussion

Neuromodulatory noninvasive therapeutic approaches that can strengthen motoneuron depo-

larization are in great need to promote recovery of motor function after SCI. Here we show for

the first time that repeated low-frequency transspinal stimulation over the thoracolumbar

enlargement, the location of leg motor circuits, increases the responsiveness of motoneurons

over multiple segments in individuals with chronic motor incomplete and complete SCI.

While transspinal stimulation induced mixed effects on homosynaptic and postactivation TEP

depression, this intervention may be used to functionally improve the neural control of stand-

ing and walking.

TEPs had similar latencies and shapes in left and right legs among all subject groups (Fig 1),

but more turns within the shape were present in people with SCI, possibly due to less synchro-

nous firing of motor fibers represented by phase cancellation and temporal dispersion in

demyelinated nerves [41]. In individuals with SCI, the orderly sigmoidal TEP excitability

altered significantly after repeated transspinal stimulation. TEPs recorded mostly at intermedi-

ate and maximal intensities were significantly increased largely for the ankle and knee exten-

sors in AIS C-D (Fig 2), while in AIS A-B the increased TEP excitability of knee extensors

coincided with decreased excitability of ankle flexors (Fig 3). An increased motoneuron output

was also evident for the GRC muscle in the left leg of AIS C-D and right leg in AIS A-B. In the

latter case, a significant decrease in the slope of the recruitment curve was evident (Table 3)

suggesting altered motoneuronal gain after repeated transspinal stimulation.

While we do not know whether maximal TEPs correspond to the recruitment of the whole

motoneuron pool, repeated transspinal stimulation increased the responsiveness of motoneu-

rons that are critical for standing and maintenance of upright posture. This potentiation may

have resulted from an increased excitability state enabling alpha motoneurons to produce a

more synchronized depolarization. It is possible that the discharge zone of alpha motoneurons

residing within the subliminal fringe was expanded after repetitive stimulation of afferents

over multiple segments, making motoneurons more easily depolarized to a given input. This is

supported by the well-described reversal of subliminal fringe of Renshaw cells upon conver-

gent excitatory inputs [42]. While decreases in threshold intensities based on the sigmoid func-

tion were present only in the left GRC TEP in AIS A-B subjects (Table 3), a shift of the TEP

recruitment curve to the left was present for the left PL/SOL and right/left MH in AIC C-D

(Fig 2A), and right RF and left MH in AIS A-B (Fig 2B). The shift of TEP excitability to the left

suggests that repeated low-frequency transspinal stimulation delivered at intensities that moto-

neuronal depolarization results in bilateral leg extensions followed by subthreshold intensities

that may excite interneurons and synapses without direct efferent activity renders the spinal

neuronal networks more excitable. A possible mechanism underlying these changes is facilita-

tion of excitatory synapses resulting in long-term potentiation (LTP)-like mechanisms [43].

Because of anatomical and physiological cytoarchitecture differences between the brain and

spinal cord, especially after SCI [44], we should be cautious with the general assumption that

LTP-mediated plasticity for the spinal cord requires high-frequency stimulation [45,46]. This

mechanism is supported by the LTP-induced following low frequency (0.2 Hz) stimulation

medial hamstring; LH: lateral hamstring; RF: rectus femoris; GRC: gracilis. Error bars indicate SE. An asterisk indicates a significant difference before and after

transspinal stimulation.

https://doi.org/10.1371/journal.pone.0213696.g005
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Fig 6. Postactivation transspinal evoked potential (TEP) depression upon paired transspinal stimuli before and after transspinal

stimulation in spinal cord injury (SCI). Overall amplitude of the second TEP (TEP2) as a percentage of the first mean homonymous TEP

amplitude (TEP1) evoked at interstimulus intervals of 500, 300, 100 and 60 ms at a constant stimulation frequency of 0.2 Hz for participants

with (A) AIS C-D and (B) AIS A-B. SOL: soleus; MG: medial gastrocnemius; TA: tibialis anterior; PL: peroneus longus; MH: medial hamstring;

LH: lateral hamstring; RF: rectus femoris; GRC: gracilis. Error bars indicate SE. An asterisk indicates a significant difference before and after

the transspinal stimulation.

https://doi.org/10.1371/journal.pone.0213696.g006
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Fig 7. Homosynaptic and postactivation transspinal evoked potential (TEP) depression before and after transspinal stimulation in healthy control

subjects. (A) Overall percent change of TEPs recorded at 0.125, 0.2, 0.33 and 1.0 Hz from the associated TEP recorded at 0.1 Hz before (black lines) and after

Transspinal stimulation increases motoneuron output in human SCI
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[47], similar to the frequency we used in this study. Additional evidence supports for LTP-like

facilitation mechanisms. For example, transspinal stimulation in midthoracic lateral hemi-

sected rats for 50 min at 0.2 Hz increased the response amplitude of lateral white matter or

dorsal corticospinal tracts, and this increase required the activation of N-methyl-D-aspartate

(NMDA) receptors [29]. Activity of NMDA receptors is known to affect AMPA/kainate recep-

tors which play a crucial role in LTP induction [48–50]. It is possible that, similar to the role

described for the silent synapses in LTP [48], repeated transspinal stimulation could have

affected the number of motoneurons failing to discharge by raising the firing threshold and

thus increasing the size of motoneuronal depolarization [51,52]. Because transspinal stimula-

tion can excite several types of afferents and efferents over multiple segments, it is possible that

presynaptic activity may coincide with postsynaptic excitation, which is required for Hebbian

LTP [49]. In conclusion, the increased motoneuron output in individuals with chronic motor

incomplete and complete SCI after repeated low-frequency transspinal stimulation may be the

result of strengthening of spinal synapses via LTP-like mechanisms or via changes in the

intrinsic properties of motoneurons. Regardless the underlying mechanism, it is apparent that

functionally the increased responsiveness from multiple motoneuron pools can contribute to

recovery of motor function, and especially improve standing and walking ability, as reported

after epidural stimulation [8,12].

In SCI, a notable contradiction is that although hyperreflexia can produce significant mus-

cle force output it coincides with decreased motoneuronal excitability and volitional motor

control [53]. The lack of neuromodulation prevents motoneurons from firing at a frequency

sufficient to generate volitional muscle contractions at adequate forces. These results thus

strongly support our overall hypothesis that transspinal stimulation alters motoneuron excit-

ability over multiple segments by bringing motoneurons closer to threshold, which is a pre-

requisite for functioning descending and local inputs. Additionally, in several cases of com-

plete or incomplete SCI, a single session of transspinal stimulation decreased spasticity, hyper-

reflexia, and ankle clonus [19,54]. Collectively, repeated transspinal stimulation may be an

optimal therapeutic neuromodulation intervention to concomitantly increase motoneuron

responsiveness and decrease spasticity. However, spasticity and hyperreflexia over the course

of transspinal stimulation requires to be established by neuromechanical studies. Lastly, we

should note that repeated transspinal stimulation may be utilized as an adjunct to physical

therapy. This proposal is consistent with the reduced spasticity reported after combined inter-

ventions including locomotor training and transcranial or transspinal direct current stimula-

tion [55,56].

In individuals with chronic motor complete and incomplete SCI, only 4 out of 16 TEPs por-

trayed homosynaptic depression (Fig 5) in contrast to the 14 out of 16 TEPs that were suscepti-

ble to homosynaptic depression in healthy control subjects (Fig 7A). Based on these results, we

suggest that the susceptibility of TEPs to homosynaptic depression depends on presence of

volitional motor activity. The soleus H-reflex homosynaptic depression is mediated by conse-

quent activation of the same muscle spindle group Ia afferents, and occurs at the same Ia/

motoneuron synapses with absent contribution from spinal inhibitory interneurons or motor

axons [57,58]. In the case of TEPs, the decrease of response amplitude as stimulation frequency

decreases likely involves spinal inhibitory interneurons spanning multiple segments since

(green lines) transspinal stimulation training. (B) Overall amplitude of the second TEP (TEP2) as a percentage of the first homonymous mean TEP (TEP1)

evoked at interstimulus intervals of 500, 300, 100 and 60 ms at a constant stimulation frequency of 0.2 Hz. SOL: soleus; MG: medial gastrocnemius; TA: tibialis

anterior; PL: peroneus longus; MH: medial hamstring; LH: lateral hamstring; RF: rectus femoris; GRC: gracilis. Error bars indicate SE. An asterisk indicates a

significant difference before and after transspinal stimulation.

https://doi.org/10.1371/journal.pone.0213696.g007
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TEPs coincide with bilateral muscle contractions resulting in excitation of various afferent

types and motor axons [59]. Furthermore, paired transspinal stimuli at ISIs ranging from 60 to

500 ms produced a significant TEP depression. This postactivation depression was similar

between subject groups, and was present at baseline in nearly all of TEPs in individuals with

chronic motor complete and incomplete SCI (Fig 6) and in healthy control subjects (Fig 7).

Repeated low-frequency transspinal stimulation resulted in mixed changes on TEP homosy-

naptic depression, with both decreases (left MG TEP in AIS C-D; Fig 5A) and increases (left

SOL TEP in AIS A-B, Fig 5A and left LH TEP in controls, Fig 7A) being present. Similarly,

mixed changes were observed in the TEP postactivation depression, which remained unaltered

in AIS C-D (Fig 6A), increased only for one muscle in AIS A-B (right GRC TEP; Fig 6B), and

decreased for two muscles in healthy control subjects (left and right TA TEP; Fig 7B). Postacti-

vation depression affects synaptic actions of group I and group II afferents, and low threshold

cutaneous afferents synapsing onto intermediate spinal interneurons differently [60]. Based on

the mixed changes we observed, different susceptibility of afferents to postactivation depres-

sion, and multiple transynaptic actions on spinal neurons as a result of transspinal stimulation,

we theorize that in order to postulate changes of homosynaptic and postactivation depression

in TEPs recorded bilaterally from knee and ankle muscles, a widespread synaptic plasticity is

required, likely related to the number of stimulation sessions.

Limitations

Transspinal stimulation was delivered with a single, 1-ms square pulse at 0.2 Hz based on pre-

vious studies [31,34,36]. We did not use medium or high stimulation frequencies, as we were

particularly interested to establish neuroplasticity with low-frequency single pulse stimulation

based on its powerful effects on cortical and subcortical neuronal circuits [20,61–63]. Further,

we did not perform neurophysiological tests at multiple time points after cessation of stimula-

tion. Thus we are unable to comment on the sustainability of neuroplasticity beyond two days.

Lastly, given our sample size and the heterogeneity of SCI [64] we cannot conclude that

repeated low-frequency transspinal stimulation is effective for increasing motoneuron respon-

siveness in all patients. Future studies are warranted to examine different stimulation parame-

ters and time course of neuroplasticity.

Conclusions

This study provides evidence that repeated transspinal stimulation increases the responsive-

ness of motoneuron pools over multiple spinal segments, and produces mixed effects in spinal

inhibitory mechanisms after motor paralysis or paresis. From a functional perspective,

increased motoneuron output may contribute to better motor control and improved tasks

such as standing and walking. We propose that noninvasive low-frequency transspinal stimu-

lation can be used to strengthen spinal synapses and depolarization of alpha motoneurons in

individuals with chronic motor paralysis or paresis.
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