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Abstract The traditional approaches to false discovery rate (FDR) control in multiple hypothesis testing are

usually based on the null distribution of a test statistic. However, all types of null distributions, including the

theoretical, permutation-based and empirical ones, have some inherent drawbacks. For example, the theoretical

null might fail because of improper assumptions on the sample distribution. Here, we propose a null distribution-

free approach to FDR control for multiple hypothesis testing in the case-control study. This approach, named

target-decoy procedure, simply builds on the ordering of tests by some statistic or score, the null distribution of

which is not required to be known. Competitive decoy tests are constructed from permutations of original samples

and are used to estimate the false target discoveries. We prove that this approach controls the FDR when the

score function is symmetric and the scores are independent between different tests. Simulation demonstrates that

it is more stable and powerful than two popular traditional approaches, even in the existence of dependency.

Evaluation is also made on two real datasets, including an arabidopsis genomics dataset and a COVID-19

proteomics dataset.
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1 Introduction

1.1 Traditional Approaches to FDR Control

Multiple testing has become increasingly popular in the present big-data era. For example,
a typical scenario of applying multiple testing in biomedical studies is to look for differen-
tially expressed genes/proteins, from thousands of candidates, between two groups (i.e., cases
and controls) of samples[13, 16]. Currently, controlling the false discovery rate (FDR), which is
defined as the expected proportion of incorrect rejections among all rejections[6], is the predom-
inant way to do multiple testing. FDR control procedures aim at selecting a subset of rejected
hypotheses such that the FDR is no more than a given level.

Because a p-value is typically computed from the null distribution of a test statistic in each
single test, the canonical approaches to FDR control for multiple testing at present are based
on the p-values of all tests or at least the null distribution of the test statistic. Since Benjamini
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and Hochberg[6] proposed the first p-value based sequential procedure to control the FDR (BH
procedure), many FDR control approaches have been developed, e.g., [5, 7, 8, 41, 44, 45].

A key problem faced by these approaches is how to obtain the proper null distribution. Pop-
ular null distributions, including the theoretical null, permutation null and empirical null, often
suffer one way or another[16, 17]. The theoretical null, though widely used, might fail in practice
for many reasons, such as improper mathematical assumptions or unobserved covariates[15, 16].
For example, for the Student’s t-test, if the sample distribution is not normal, the t-value will
not follow a t-distribution and the p-values calculated will not be uniform (0, 1) distributed
for true null hypotheses. The permutation null is also widely used. There are mainly two
different permutation methods, i.e., the permutation tests and the pooled permutation[31]. The
permutation tests are a class of widely used non-parametric tests to calculate p-values, and
are most useful when the information about the data distribution is insufficient. However, the
statistical power of permutation tests is limited by the sample size of a test[50]. Instead of esti-
mating a null distribution for each test individually, the pooled permutation in multiple testing
estimates an overall null distribution for all tests[19]. However, it has been found that pooling
permutation null distributions across hypotheses can produce invalid p-values, since even true
null hypotheses can have different permutation distributions[31].

To overcome the shortcomings of the theoretical and permutation null distributions, new
methods were proposed to estimate an empirical null distribution from a large number of
tests[16, 18, 19, 42]. For example, the empirical Bayes method estimates the empirical null distri-
bution by decomposing the mixture of null and alternative distributions[16]. However, decom-
posing the mixture distribution is intrinsically a difficult problem. For example, if the empirical
distribution has a strong peak, the decomposing may fail[48].

Moreover, the proportion of true null hypotheses has to be estimated either explicitly or
implicitly to apply these FDR control methods. If this null proportion is ignored (e.g., assumed
to be one as in the original BH procedure), the power of testing would be reduced. Since
Storey[44] proposed the first approach, estimation of the null proportion has become a key
component of current FDR methods to enhance the power, such as the Bayes and the empirical
Bayes methods[16, 45, 46]. More accurate estimation of the null ratio has been of great interest
in the field[32, 39, 53].

1.2 Our Approach to FDR Control

Here, we propose a new approach to FDR control in the case-control study, named target-
decoy procedure, which is free of the null distribution and the null proportion. The procedure
(simplified version) can be briefly described with the following steps. First, a target score and a
number of decoy scores are calculated for each hypothesis test. These scores are used to measure
the (dis)similarities of two groups of samples, and can be common statistics (e.g., t-value) or
other scoring functions. The target score is calculated with regard to the original samples, while
the decoy scores are calculated with regard to random permutations of the original samples.
Then, based on the target score and decoy scores, a label and a final score are calculated for
each test in a competitive manner. If the target score is more significant than half of the decoy
scores, the test is labelled as target and the final score is set as the target score. Otherwise,
the test is labelled as decoy and the final score is set as the decoy score with a specific rank
that is mapped symmetrically from the rank of the target score. Next, the tests are sorted by
their final scores in descending order (assuming larger scores are more significant), and for each
test, a ratio of (Nd +1)/Nt is calculated, where Nd and Nt represent the numbers of decoy and
target tests ranked above this test (included), respectively. At last, the lowest-ranked test that
has a (Nd + 1)/Nt ratio below the given FDR control level is localized, and all the hypotheses
of target tests ranking no lower than this test are rejected.

The addition of one (+1 correction) to the number of decoy tests is essential to our approach.
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We prove that the target-decoy procedure with such correction can rigorously control the FDR
when the score function is symmetric and the scores are independent between different tests.

Our approach is exclusively based on the scores and labels of tests. The scoring function
used is not limited to traditional p-value or test statistics which have clear null distributions, but
can be in any free forms with some symmetry property. Therefore, our approach provides great
flexibility and can be potentially more powerful than traditional approaches, the performance
of which largely relies on the precision of p-values or the sample size of each test. Monte-
Carlo simulations demonstrate that our approach effectively controls the FDR and is more
powerful than two popular methods, i.e., the Bayes method[44–46] and the empirical Bayes
method[16, 18, 19]. The performances of the three methods were also compared on two real
biological datasets, including an arabidopsis genomics dataset and a COVID-19 proteomics
dataset. Because our procedure is more straightforward and can be used with arbitrary score
functions, we believe that it will have many practical applications.

Our approach was inspired by the widely used target-decoy database search approach to es-
timating the FDR of peptide identifications in tandem mass spectrometry-based proteomics[20].
In this approach, tandem mass spectra of peptides are searched against a database consisting
of equal size of target and decoy protein sequences. The peptide-spectrum matches (PSMs) are
scored and filtered by some score threshold. The FDR of selected PSMs is estimated by the
ratio of the number of decoy matches to the number of target matches. Usually, the lowest score
threshold is taken such that the estimated FDR is below a given level. Although this empirical
target-decoy approach to FDR has been very effective in practice, its theoretical foundation
was not established until we proved that a +1 correction to the number of decoy matches leads
to rigorous FDR control under the assumption of independence between PSMs[27]. Our work
in the context of mass spectrometry was initially submitted to journals in 2013 (unpublished)
and was made public in 2015[28]. The extension to general multiple testing as presented here
was first described in an earlier manuscript[29].

1.3 Related Works

The most related work to ours is the knockoff filter method proposed by Barber and Cands[2],
which aims to control the FDR of variables selected via Lasso regression for a Gaussian lin-
ear model. In this method, knockoff variables, which are not associated with the response
(conditioning on the original variables), are constructed and subjected to competition with the
original variables (covariates). The basic rationale of knockoff filter in FDR control is identical
to the target-decoy approach. First, knockoff is essentially synonymous with decoy in their
roles. Second, the method used by knockoff filter to derive the rejection region, i.e., the FDR
estimation formula with +1 correction and the procedure of selecting the score threshold, is
exactly the same as the target-decoy approach. Third, after the proof of equal probabilities of
a null variable obtaining a positive score (target label) or a negative score (decoy label), the
proof of FDR control is the same mathematical problem addressed by the knockoff filter and
the target-decoy approach, although their proving techniques are different. The main contribu-
tion of the knockoff filter is its sophisticated knockoff construction method that makes possible
the proof of the aforementioned ’equal probabilities’ for dependent variables. Knockoff filter
allows the variables to be correlated with each other, but assumes the Gaussian noise in the
linear model. In comparison, our approach (this paper) achieves FDR control for independent
variables only, but puts no assumptions on the distribution of the variables. In addition, the
original knockoff filter method required that the sample size (n) is no less than the number of
variables (p) for FDR control.

Cands et al.[9] later re-framed the knockoff procedure and proposed the so-called model-X
knockoffs method. Unlike the original linear model in which Xi,j was treated as fixed (random-
ness was from the Gaussian noise), the model-X knockoffs method treats Xi,j as random. It



238 K. HE, M.J. LI, Y. FU, F.Z. GONG, X.M. SUN

assumes knowledge of the joint distribution of the covariates, and constructs knockoffs proba-
bilistically instead of geometrically. This removes the restriction on sample size (n ≥ p) and
makes the method applicable to both linear and non-linear models. Although the construction
of model-X knockoffs does not rely on the specific distribution forms of the original variables
in principle, Gaussian distribution is the only one that can be implemented at present. Anoth-
er limitation of the knockoff method is its high computational cost on knockoff construction,
which involves complex matrix computation, such as eigenvalue computation and semidefinite
programming.

In the current knockoff methods, only one knockoff copy is constructed for each original
variable, and the probability of a null variable or its knockoff copy being selected is equal
(0.5). In our target-decoy procedure, multiple decoy permutations are constructed for each
original variable, which offers us the flexibility of setting different probabilities of producing
target or decoy tests for true null hypotheses. This kind of multiple competition can enhance
the power as we experimentally illustrated. Recently, Emery et al.[22] investigated the multiple
competition problem in more depth. They presented two methods, namely max method and
mirror method, for competition with the multiple decoys/knockoffs. The max method is most
intuitive. It selects the variable (original or knockoff) with the highest score. Gimenez and
Zou[26] also used the max method for multiple knockoffs. The mirror method is like what we
do in our standard target-decoy procedure but is more flexible. It uses two adjustable rank
cutoffs for target/decoy labelling, while we only use one adjustable cutoff for target labelling.
Emery and Keich[23] also proposed methods to construct multiple knockoffs that offer both
FDR control and enhanced power.

In recent years, the approach of FDR control using competitive decoys/knockoffs has at-
tracted much attention from the field of statistics[3, 4, 24, 25, 34, 36, 37, 40]. No doubt, this success
was owed to the publication of the knockoff method by Candes et al. However, it should be
noticed that we first proposed the FDR estimation formula with the +1 correction, which is the
key to FDR control, and gave the first proof of FDR control (in the context of mass spectrometry
and under the independence assumption)[27, 28]. We also first introduced the multiple compe-
tition strategy [29]. These have been recognized by the community, e.g., [11, 12, 21, 22, 30, 35].
Thus, despite the similarity of our approach to the well-known knockoff method which has been
published earlier[2], we still would like to introduce the target-decoy procedure to the communi-
ty with our original notations and proofs[27–29]. As far as we know, the target-decoy approach
to FDR control was first used and named in mass spectrometry-based proteomics as early as
in 2007[20]. Therefore, we use the terminology decoy instead of knockoff. Moreover, compared
to the knockoff method, our approach has different technical arguments, different motivations,
and is verified with different simulation experiments and real data here.

Other related works include that Levitsky et al.[35] proposed an interpretation to the +1
correction based on the negative binomial distribution. However, this interpretation assumes
that the number of null targets can be infinite and has uniform prior probability, and therefore, is
not a rigorous interpretation. Storey et al.[46] also had a +1 correction in their pFDR estimation
to achieve FDR control. However, this correction was made to the number of p-values greater
than a fixed threshold λ, which amounts to the total number of decoys in our case. This is very
different from the target-decoy/knockoff approach in which the +1 correction is made to the
number of decoys/knockoffs in the rejection region.

Organization. The rest of the paper is organized as follows. Section 2 describes our target-
decoy approach for FDR control. Section 2.1 discusses a general scenario of case-control study.
The simplified and standard target-decoy procedures are presented in Sections 2.2 and 2.3,
respectively. Section 2.4 provides an adaptive version of the target-decoy procedure. Section
2.5 establishes the theoretical foundation of our approach (Proofs are given in Supplementary
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Material). Numerical results on independent and dependent variables are given in Section 3.
Applications to real data are shown in Section 4. Section 5 concludes the paper and points out
some directions worthy of further study.

2 The Target-decoy Approach

2.1 Problem Formulation

Consider a two-groups (case and control) study involving m random variables, X1, X2, · · · , Xm.
For each random variableXj where 1 ≤ j ≤ m, there are n random samplesXj,1, Xj,2, · · · , Xj,n,
in which Xj,1, Xj,2, · · · , Xj,n1 are from the n1 cases and Xj,n1+1, · · · , Xj,n are from the n0 =
n − n1 controls. For simplicity, the numbers of random samples (and similarly, cases and
controls) are assumed to be the same for all random variables here, although our method does
not rely on this assumption.

The goal is to search for random variables differently distributed between cases and controls.
The null hypothesis for random variable Xj used here is the exchangeable hypothesis Hj0: the
joint distribution of Xj,1, Xj,2, · · · , Xj,n is symmetric. In other words, the joint probability den-
sity function ofXj,1, Xj,2, · · · , Xj,n (or the joint probability mass function ifXj,1, Xj,2, · · · , Xj,n

are discrete) satisfies fXj,1,··· ,Xj,n(xj,1, · · · , xj,n) = fXj,1,··· ,Xj,n(πn(xj,1, · · · , xj,n)) for any pos-
sible xj,1, · · · , xj,n and any permutation πn of xj,1, · · · , xj,n. If Xj,1, · · · , Xj,n are independent,
this hypothesis is equivalent to that Xj,1, · · · , Xj,n are identically distributed. Here we use the
exchangeable hypothesis to deal with the case where Xj,1, · · · , Xj,n are correlated but still an
exchangeable sequence of random variables[10].

Let S(x1, x2, · · · , xn) be some scoring function satisfying

S(x1, · · · , xn) = S(πn1(x1, · · · , xn1), πn0(xn1+1, · · · , xn))

for any possible x1, · · · , xn, any permutation of n1 elements πn1(·) and that of n0 elements
πn0(·). Note that most scoring functions evaluating the difference between x1, x2, · · · , xn1

and xn1+1, xn1+2, · · · , xn have the above symmetry property, including commonly used test
statistics, e.g., the t-value as we used in this paper. Without loss of generality, we assume that
larger scores are more significant. Note that neither the null distributions of scores nor the
distributions of random variables are required to be known.

2.2 The Simplified Target-decoy Procedure

We first introduce the simplified version of our target-decoy procedure for FDR control. The
intuition of the procedure is to let each random variable Xj be labelled as target or decoy with
the same chance if the null hypothesis for Xj is true. At the same time, the chance of Xj being
labelled as decoy is expected to be negligible if its null hypothesis is false (this assumption is
not needed for FDR control). Thus, the number of target tests of the true null hypotheses
beyond a threshold can be approximated by the number of decoy ones.

Algorithm 2.1. The simplified target-decoy procedure.

1. For each 1 ≤ j ≤ m, calculate t scores including a target score and t − 1 decoy scores.
The target score is ST

j = S(Xj,1, Xj,2, · · · , Xj,n). Each decoy score is obtained by first
sampling a permutation πn ofXj,1, Xj,2, · · · , Xj,n randomly and then calculating the score
as S(πn(Xj,1, Xj,2, · · · , Xj,n)). Sort these t scores in descending order. For equal scores,
sort them randomly with equal probability.

2. For each test j, calculate a final score Sj and assign it a label Lj ∈ {T,D}, where T and D
stand for target and decoy, respectively. Assume that the rank of ST

j is i. If i < (t+1)/2,
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let Lj be T and set Sj as ST
j . If i > (t+1)/2, let Lj be D and set Sj as the score ranking

i− ⌈t/2⌉. Otherwise, i = (t+ 1)/2, let Lj be T or D randomly and set Sj as ST
j .

3. Sort the m tests in descending order of the final scores. Let i1, · · · , im be such that
Si1 ≥ · · · ≥ Sim (with tied values randomly broken). Let L(1), · · · , L(m) be the the
corresponding labels Li1 , · · · , Lim , respectively.

4. If the specified FDR control level is α, let

K = max
{
k
∣∣∣#{L(j) = D, j ≤ k}+ 1

#{L(j) = T, j ≤ k} ∨ 1
≤ α

}
(2.1)

and reject the hypothesis with rank j if L(j) = T and j ≤ K.

Note that there is a +1 correction to the number of decoy tests in the numerator of equation
(2.1), which is key to FDR control as shown in Section 2.5. This correction was first proposed in
the context of proteomics for target-decoy based FDR control of peptide identifications[27, 28].
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Figure 2.1. An example of the simplified target-decoy procedure

An example of the simplified target-decoy procedure is shown in Figure 2.1. In it,m = n = 6,
and t = 2. The first three columns of the data are from cases and the other three columns are
from controls. The scoring function is S(x1, · · · , x6) = |x1+x2+x3−x4−x5−x6|. Obviously,
the function satisfies the symmetry property defined in Section 2.1 but the null distribution is
unknown. For each row, a target score ST

j is first calculated for the original samples. Then, the
procedure performs one permutation π6 and calculates one decoy score S(π6(Xj,1, · · · , Xj,6)),
since t − 1 = 1. If ST

j > S(π6(Xj,1, · · · , Xj,6)), the final score Sj is set as ST
j and Lj is set as

T . Otherwise, if ST
j < S(π6(Xj,1, · · · , Xj,6)), Sj is set as S(π6(Xj,1, · · · , Xj,6)) and Lj is set

as D (Figure 2.1 (c)). The 6 tests are sorted in descending order of Sj to derive ij , Sij and
Lij (i.e., L(j)). For example, i1 is 4 because S4 is maximal in all the final scores. Then, with

L(1), · · · , L(6), we can calculate
#{L(j)=D,j≤k}+1

#{L(j)=T,j≤k}∨1 for each row k. If α is set as 0.25, we reject the

first four hypotheses since
#{L(j)=D,j≤4}+1

#{L(j)=T,j≤4}∨1 = 0.25 and the formula is larger than 0.25 for any
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k > 4 (Figure 2.1 (d)). For comparison, the Bayes method[46] is also applied to this example.
In our setting, λ is set as 1/2. Meanwhile, the p-values are calculated with Wilcoxon rank sum
test since the null-distributions of the random variables are unknown. If α is set as 0.25, no
hypothesis is rejected with the Bayes method (Figure 2.1 (e)). Note that this toy example is
for illustration purposes only. In most real-world applications, the Bayes method works well
and the choice of α = 0.25 is too loose.

The random permutation used in the procedure can be generated by simple random sampling
either with or without replacement, just as in the permutation tests. Similarly, with larger
sampling number t − 1, the power of our approach will become slightly stronger as shown in
Section 3. We can set t as min{

(
n
n0

)
, τ}, where τ is the maximum number of permutations we

would perform.
Unlike other FDR control methods, our approach does not depend on the null distribution.

The number of permutations, t − 1 can be much smaller than that used in permutation tests.
In our simulations, t − 1 was set as 49 or 1, while in the real data experiments, it was set as
19. Simulations demonstrate that the target-decoy approach can still control the FDR even if
t− 1 was set as 1, in which case little information was revealed about the null distribution.

2.3 The Standard Target-decoy Procedure

The +1 in the numerator of equation (2.1) is essential to accomplish FDR control. However,
it has a side effect of reducing the power. This effect can be amplified under some conditions,
e.g., when the number of false null hypotheses or the total number of hypotheses is small. To
enhance the power, we introduce a parameter r(> 1) into the procedure. The intuition is to let
each random variable Xj be labelled as target with probability 1

2r and as decoy with probability
1
2 if the null hypothesis for Xj is true. Thus, the number of decoy tests beyond a threshold is
about r times the number of target ones of the true null hypotheses, and then 1

r times the ratio
of the number (added by one) of decoy tests to the number of target ones beyond a threshold
can be used for FDR control.

For any fixed 1 ≤ r ≤
(
n
n0

)
, the standard target-decoy procedure (we will omit the word

standard below for simplicity) is as follows.

Algorithm 2.2. The target-decoy procedure (Steps 1,3 are identical to Algorithm 2.1 and are
omitted here).

2. For each 1 ≤ j ≤ m, let Λj = i − Pj where i is the rank of ST
j in the t scores, and Pj

is a random draw from uniform[0, 1) distribution. Calculate a final score Sj and assign a
label Lj ∈ {T,D,U}, where T,D and U stand for target, decoy and unused, respectively.

If Λj ≤ t
2r , let Lj = T and Sj = ST

j . If t
2 < Λj ≤ t, let Λ

′

j be a random draw from

uniform
(
0, t

2r

]
distribution, Lj be D and Sj be the score ranking ⌈Λ′

j⌉-th. Otherwise, let
Lj be U and Sj be −∞.

4. If the specified FDR control level is α, let

K = max
{
k
∣∣∣1
r
×

#{L(j) = D, j ≤ k}+ 1

#{L(j) = T, j ≤ k} ∨ 1
≤ α

}
(2.2)

and reject the hypothesis with rank j if L(j) = T and j ≤ K.

In Step 2, we introduce Pj to make that Pr(Lj = T ) = 1
2r and Pr(Lj = D) = 1

2 if the null
hypothesis for random variable Xj is true. If Λj ≤ t

2r , Xj is labelled as target and Sj is set as
ST
j . If

t
2 < Λj ≤ t, Xj is labelled as decoy, and Sj is a random score sampled from the largest

⌈ t
2r ⌉ scores. Otherwise, we have t

2r < Λj ≤ t
2 , Xj is labelled as unused, and Sj is set as −∞

such that it is at the end of the queue after Step 3.



242 K. HE, M.J. LI, Y. FU, F.Z. GONG, X.M. SUN

Section 2.5 will show that the above target-decoy procedure controls the FDR for any fixed
r. In practice, one can set the value of r empirically or simply set r = 1, which reduces the
target-decoy procedure into its simplified version described in Section 2.2. Alternatively, an
algorithm can be used to choose r adaptively for a given dataset as discussed in Section 2.4.

2.4 The Adaptive Target-decoy Procedure

The parameter r is for adjusting the probability that a true null hypothesis is labelled as T . On
the one hand, equation (2.2) can be too conservative for a small r, e.g., 1 as in the simplified
target-decoy procedure, because of the addition of 1 in the numerator if there are only a few
false null hypotheses. For example, assume that the total number of tests is 80 and the FDR
control level is 0.01. If r is set as 1, no hypothesis will be rejected, because the numerator of
equation (2.2) is always no less than 1 and the fraction is greater than 1/80 > 0.01. On the
other hand, if r is too large, many false null hypotheses will be labelled as U or D, potentially
decreasing the power of testing. Thus, r should be set appropriately in practice to enhance the
power. Below, we provide an adaptive procedure to choose a suitable r for the given dataset
and the FDR control level. The intuition of the adaptive procedure is to split the data into two
parts, with one part used to choose r and the other for inference.

Algorithm 2.3. The adaptive target-decoy procedure.

1. Divide the samples of each random variable into two parts as follows. Choose a suitable
n2 which is smaller than n0 and n1 from some range, say 5 ≤ n2 ≤ min{⌊n0/2⌋, ⌊n1/2⌋}.
For each random variable Xj where 1 ≤ j ≤ m, randomly choose n2 samples from
Xj,1, Xj,2, · · · , Xj,n1 and Xj,n1+1, · · · , Xj,n, respectively. Let X1

j,1, X
1
j,2, · · · , X1

j,2n2
be

these samples. The rest has n1 − n2 samples from the cases and n0 − n2 samples from
the controls. Let X2

j,1, X
2
j,2, · · · , X2

j,n−2n2
be the rest samples.

2. Set t as
(
2n2

n2

)
and perform the target-decoy procedure on X1

j,1, X
1
j,2, · · · , X1

j,2n2
where

1 ≤ j ≤ m for some range of r, say R = {1, 2, 5, 10, 15, 20, 25}. Let rmax be the one such
that the most hypotheses are rejected by the target-decoy procedure.

3. Perform the target-decoy procedure on X2
j,1, X

2
j,2, · · · , X2

j,n−2n2
where 1 ≤ j ≤ m with

r = rmax and reject corresponding hypotheses.

2.5 Control Theorem

In this section, we will show that the target-decoy procedure controls the FDR. Let Hj = 0
and Hj = 1 denote that the null hypothesis for test j is true and false, respectively. Note that
H1,H2, · · · ,Hm are constants in the setting of hypothesis testing. Define Zj for 1 ≤ j ≤ m as
follows.

Lj = T Lj = D

Hj = 0 Zj = 1 Zj = −1

Hj = 1 Zj = 0 Zj = −2

Let S(1), S(2), · · · , S(m) denote the sorted scores and Z(1), Z(2), · · · , Z(m) denote the sorted

sequence of Z1, Z2, · · · , Zm. Let
#»

S and
#    »

S ̸=j denote S1, · · · , Sm and S1, · · · , Sj−1, Sj+1, · · · , Sm,

respectively. Let
#    »

S(·) and
#        »

S(̸=j) denote S(1), · · · , S(m) and S(1), · · · , S(j−1), S(j+1), · · · , S(m),
respectively. We define #»s , #    »s̸=j ,

#   »s(·) and
#       »s(̸=j) similarly. For example, we will use #   »s(·) to denote

a sequence of m constants, s(1), · · · , s(m), which is one of the observed values of S(·). We also

define
#»

L,
#»

Z,
#»

H,
#         »

L(̸=j), etc. Then we have the following three theorems.
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Theorem 2.1. In the simplified target-decoy procedure, if the m random variables are indepen-
dent, then for any fixed 1 ≤ j ≤ m and any possible #   »s(·) and #       »z( ̸=j) we have

Pr
(
Z(j) = −1

∣∣ #    »

S(·) =
#   »s(·),

#         »

Z(̸=j) =
#       »z(̸=j)

)
=Pr

(
Z(j) = 1

∣∣ #    »

S(·) =
#   »s(·),

#         »

Z( ̸=j) =
#       »z(̸=j)

)
.

Theorem 2.2. In the target-decoy procedure, if the m random variables are independent, then
for any fixed 1 ≤ j ≤ m and any possible #   »s(·) and #       »z(̸=j) we have

Pr
(
Z(j) = −1

∣∣ #    »

S(·) =
#   »s(·),

#         »

Z(̸=j) =
#       »z(̸=j)

)
= rPr

(
Z(j) = 1

∣∣ #    »

S(·) =
#   »s(·),

#         »

Z( ̸=j) =
#       »z(̸=j)

)
.

Theorem 2.3. Suppose that S(1), S(2), · · · , S(m),Z(1), Z(2), · · · , Z(m) are random variables sat-
isfying S(1) ≥ S(2) ≥ · · · ≥ S(m) and Z(1), Z(2), · · · , Z(m) ∈ {−2,−1, 0, 1}, and r is a positive
constant. For any α ∈ (0, 1], define

K = max
{
k
∣∣∣1
r
×

#{Z(j) < 0, j ≤ k}+ 1

#{Z(j) ≥ 0, j ≤ k} ∨ 1
≤ α

}
.

If there is no such k, let K = 0. If for any fixed j and any possible #   »s(·) and #       »z(̸=j),

Pr
(
Z(j) = −1

∣∣ #    »

S(·) =
#   »s(·),

#         »

Z(̸=j) =
#       »z(̸=j)

)
= rPr

(
Z(j) = 1

∣∣ #    »

S(·) =
#   »s(·),

#         »

Z( ̸=j) =
#       »z(̸=j)

)
,

then we have

E
( #{Z(j) = 1, j ≤ K}
#{Z(j) ≥ 0, j ≤ K} ∨ 1

)
< α.

The proofs of these theorems are given in the Supplementary Materials. Theorem 2.3
indicates that the target-decoy procedure controls the FDR if the m random variables are
independent.

Specially, all of the above theorems hold for the adaptive target-decoy procedure. Recall that
the null hypothesis for random variable Xj used here is the exchangeable hypothesis Hj0: the
joint probability density function of Xj,1, Xj,2, · · · , Xj,n satisfies fXj,1,··· ,Xj,n

(xj,1, · · · , xj,n) =
fXj,1,··· ,Xj,n(πn(xj,1, · · · , xj,n)) for any possible xj,1, · · · , xj,n and any permutation πn of xj,1,
· · · , xj,n. If Hj0 is true, it is easy to see that X2

j,1, X
2
j,2, · · · , X2

j,n−2n2
are also exchangeable.

3 Simulation Studies

We used Monte-Carlo simulations to study the performance of our approach. The target-decoy
procedure were compared with two popular traditional multiple testing methods, including the
Bayes method[44–46] and the empirical Bayes method[16, 18, 19]. Simulations were conducted for
both independent and dependent random variables. We mainly evaluated the performance of
the simplified target-decoy procedure. To show the effectiveness of adjusting r, we also did
a simulation on a small dataset and compared the adaptive target-decoy procedure with the
simplified target-decoy procedure.

3.1 Simulation Setup

In the simulation, we considered the case-control studies in which the random variables follow
the normal distribution or the gamma distribution. In addition to the normal distribution,
we did simulation experiments for the gamma distribution because many random variables in
real world are gamma-distributed. Recall that the case-control study consists of m random
variables. For each random variable, there are n random samples, n1 of which are from the
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cases and the other n0 = n−n1 are from the controls. Let Xj,1, Xj,2, · · · , Xj,n be the n random
samples for random variable Xj .

The observation values from the normal distribution were generated in a way similar to
[7]. First, let ζ0, ζ11, · · · , ζ1n, · · · , ζm1, · · · , ζmn be independent and identically distributed ran-
dom variables following the N(0, 1) distribution. Next, let Xj,i =

√
ρζ0 +

√
1− ρζji + µji

for j = 1, · · · ,m and i = 1, · · · , n. We used ρ = 0, 0.4 and 0.8, with ρ = 0 corresponding
to independence and ρ = 0.4 and 0.8 corresponding to typical moderate and high correlation
values estimated from real microarray data, respectively[1]. The values of µji are zero for
i = n1 + 1, n1 + 2, · · · , n, the n0 controls. For the n1 cases where i = 1, 2, · · · , n1, the values
of µji are also zero for j = 1, 2, · · · ,m0, the m0 hypotheses that are true null. The values of
µji for i = 1, 2, · · · , n1 and j = m0 + 1, · · · ,m are set as follows. We let µji = 1, 2, 3 and
4 for j = m0 + 1,m0 + 2,m0 + 3,m0 + 4, respectively. Similarly, we let µji = 1, 2, 3 and
4 for j = m0 + 5,m0 + 6,m0 + 7,m0 + 8, respectively. This cycle was repeated to produce
µ(m0+1)1, · · · , µ(m0+1)n1

, · · · , µm1, · · · , µmn1 for the false null hypotheses.
The observation values from the gamma distribution, which is characterized using shape

and scale, were generated in the following way. First, let Γ0,Γ11, · · · ,Γ1n, · · · ,Γm1, · · · ,Γmn

be independent random variables where Γ0 follows the Γ(k0, 1) distribution and Γji follows
the Γ(kji, 1) distribution for any j = 1, · · · ,m and i = 1, · · · , n. Next, let Xj,i = Γji for
j = 1, · · · ,m and i = 1, · · · , n in the simulation study for independent random variables and
let Xj,i = Γ0 + Γji for dependent random variables. To obtain reasonable correlation values,
k0 was set as 4 and kji was set as 1 for i = n1 + 1, n1 + 2, · · · , n, the n0 controls. For the n1

cases where i = 1, 2, · · · , n1, kji was set as 1 for j = 1, · · · ,m0, the m0 hypotheses that are
true null. The values of kji for i = 1, 2, · · · , n1 and j = m0 + 1, · · · ,m are set as follows. We
let kji = 2, 3, 4 and 5 for j = m0 + 1,m0 + 2,m0 + 3,m0 + 4, respectively. Similarly, we let
kji = 2, 3, 4 and 5 for j = m0 +5,m0 +6,m0 +7,m0 +8, respectively. This cycle was repeated
to produce k(m0+1)1, · · · , k(m0+1)n1

, · · · , km1, · · · , kmn1 for the false null hypotheses.
The specified FDR control level α was set as 5% or 10%. The total number of tests, m, was

set as 10000. The proportion of false null hypotheses was 1% or 10%. The total sample size,
n, was set as 20, consisting of the same numbers of cases and controls.

Three different approaches to FDRs were compared, including the Bayes method[44–46], the
empirical Bayes method[16, 18, 19] and our target-decoy approach. The Bayes method and the
empirical Bayes method are among the most remarkable multiple testing methods. To compare
the power of these methods, we rejected the hypotheses against the specified FDR control level
α. The rejection threshold, s, for the Bayes method was set as the largest p-value such that
q-value(s) is no more than α[44, 45]. The rejection threshold, s, for the empirical Bayes method
was set as the minimum z-value such that Efdr(s) is no more than α, where Efdr(s) is the
expected fdr (local false discovery rate) of hypotheses with z-values no smaller than s[14, 15].
Specifically, the R packages “locfdr” version 1.1-8[14], and “qvalue” version 2.4.2[47] were used.
Each simulation experiment was repeated for 1000 times. We calculated the mean number
of rejected hypotheses to evaluate the power of each method. The realized FDR of rejected
hypotheses was calculated as the mean of observed false discovery proportions (FDPs) in all
repetitions. Note that the variance of the mean of FDPs of 1000 repetitions is one thousandth
of the variance of FDPs. We also estimated the standard deviation of the mean of FDPs from
the sample standard deviation of FDPs.

The p-values of the Bayes method and the z-values of the empirical Bayes method were
calculated with the Student’s t-test, Wilcoxon rank sum test or the Student’s t-test with per-
mutation. For the Student’s t-test, we used the Welch’s t-test, a two-sample unequal variances
t-test, which is defined as follows,

t =
X1 −X2√

s21/N1 + s22/N2

.
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Here, Xi, si, and Ni are the i-th sample mean, sample standard deviation and sample size,
respectively. For the Student’s t-test with permutation, we sampled the cases and the controls
for each test, calculated the z-values for sampled data by t-test, and calculated the p-values
with the null distribution of pooled z-values[38, 52]. The sampling number of permutations was
set as 10[17].

For our target-decoy approach, the cases and the controls of each test were permuted for
49 times or only once, and the t-values and the test statistics of the Wilcoxon rank sum test
were used. We did the one-permutation experiments where little information about the null
distributions was revealed to demonstrate that our approach does not rely on the null distribu-
tion. Because the permutation is performed inherently in our target-decoy approach, the extra
permutation is unnecessary.

We will use abbreviations to represent the experiments. For example, Bayes,permutation,
Normal, 10%, ρ = 0.8 represents the simulation experiment where the Bayes method combined
with the pooled permutation is used, the random variables follow the normal distribution, the
proportion of false null hypotheses is 10% and the correlation values are 0.8. For our target-
decoy approach, t-value, 49, Gamma, 1% represents the simulation experiment where the t-value
is used as the score, 49 permutations are performed for each test, the random variables follow
the gamma distribution and the proportion of false null hypotheses is as low as 1%.

3.2 Results on Independent Random Variables

Table 3.1. Realized FDRs with independent random variables. The realized FDRs were
calculated as the means of FDPs and the standard deviations of the means are
less than 0.0020. All the cases where realized FDRs exceed the control level α
are labelled with ∗.

Normal,1% Normal,10% Gamma,1% Gamma,10%

α 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10

Bayes

t-test 0.050 0.100 0.050 0.100 0.023 0.048 0.031 0.072

permutation 0.048 0.099 0.048 0.098 0.027 0.068 0.047 0.103∗

rank-sum 0.039 0.088 0.039 0.087 0.045 0.087 0.042 0.083

Empirical Bayes

t-test 0.044 0.092 0.040 0.084 0.006 0.013 0.008 0.023

permutation 0.039 0.078 0.039 0.086 0.048 0.124∗ 0.055∗ 0.119∗

rank-sum 0.046 0.092 0.037 0.078 0.046 0.091 0.037 0.077

Target-decoy

t-value,49 0.041 0.094 0.049 0.099 0.043 0.094 0.050 0.100

t-value,1 0.044 0.093 0.048 0.097 0.042 0.092 0.047 0.096

rank-sum,49 0.042 0.096 0.049 0.099 0.042 0.096 0.050 0.100

rank-sum,1 0.042 0.093 0.048 0.097 0.042 0.096 0.048 0.097

Figure 3.1 shows the realized FDRs of different methods with independent random variables
while the specified FDR control level α was no more than 10%. Table 3.1 gives the realized FDRs
while the specified FDR control level α was 5% or 10%. In all cases, the target-decoy approach
controlled the FDR, and the realized FDRs were favourably close to α. The empirical Bayes
and Bayes methods performed well when the random variables followed the normal distribution.
However, they considerably overestimated the FDRs with t-test for the gamma distribution.
With the pooled permutation, some of the realized FDRs exceeded α for the gamma distribution
as marked by asterisks in the table. Of course, some small exceedances are not necessarily the
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evidence of a fail of FDR control but may be due to Monte Carlo error. At last, the Wilcoxon
rank-sum test coupled with Bayes or empirical Bayes occasionally overestimated the FDRs.

Figure 3.1. Realized FDRs with independent random variables. The realized FDRs were
calculated as the means of FDPs

Table 3.2 shows the statistical powers of different methods with independent random vari-
ables. When the random variables followed the normal distribution, the powers of the three
methods were overall comparable with each other. In the case of gamma distribution, the
target-decoy approach was much more powerful than Bayes and empirical Bayes when t-test
was used. Permutation based Bayes and empirical Bayes had higher power but at the cost
of uncontrolled FDR. When the Wilcoxon rank-sum test was used, our approach was more
powerful than the other two methods except the only case of Gamma, 1% and α=0.05.

In all the above experiments, the target-decoy approach successfully controlled the FDR and
meanwhile it was remarkably powerful. Notably, the results obtained with 49 permutations or
1 permutation in the target-decoy approach were quite similar, indicating that the proposed
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approach is not sensitive to the number of permutations.

Table 3.2. Power with independent random variables. All the cases where realized FDRs
exceed α as shown in Table 3.1 are labelled with ∗.

Normal,1% Normal,10% Gamma,1% Gamma,10%

α 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10

Bayes

t-test 71 80 845 937 40 50 687 798

permutation 71 80 842 933 41 55 737 861∗

rank-sum 67 76 813 906 48 59 734 836

Empirical Bayes

t-test 70 78 823 909 23 32 534 650

permutation 69 76 821 913 49 66∗ 755∗ 891∗

rank-sum 69 77 806 889 47 59 715 823

Target-decoy

t-value,49 69 79 843 935 45 60 743 853

t-value,1 69 79 841 931 45 60 736 845

rank-sum,49 67 77 834 926 42 60 755 872

rank-sum,1 66 77 831 922 42 60 751 865

3.3 Results on Dependent Random Variables

Table 3.3. Realized FDRs with dependent random variables. The realized FDRs were cal-
culated as the means of FDPs and the standard deviations of the means of FDPs
are less than 0.0021. All the cases where realized FDRs exceed α are labelled
with ∗.

Normal, ρ = 0.4 Normal,ρ = 0.8 Gamma

1% 10% 1% 10% 1% 10%

α 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10

Bayes

t-test 0.052∗ 0.102∗ 0.050 0.100 0.050 0.101∗ 0.050 0.100 0.023 0.048 0.031 0.072

permutation 0.050 0.100 0.048 0.098 0.049 0.099 0.047 0.098 0.026 0.067 0.047 0.103∗

rank-sum 0.046 0.088 0.044 0.085 0.038 0.092 0.039 0.083 0.043 0.085 0.042 0.082

Empirical Bayes

t-test 0.047 0.097 0.044 0.090 0.048 0.100 0.047 0.097 0.006 0.013 0.008 0.023

permutation 0.042 0.083 0.043 0.093 0.041 0.084 0.045 0.099 0.048 0.123∗ 0.055∗ 0.121∗

rank-sum 0.049 0.095 0.042 0.086 0.048 0.094 0.046 0.095 0.045 0.090 0.037 0.077

Target-decoy

t-value,49 0.047 0.097 0.050 0.100 0.047 0.095 0.049 0.100 0.043 0.094 0.048 0.099

t-value,1 0.046 0.096 0.048 0.098 0.045 0.096 0.049 0.100 0.042 0.092 0.047 0.096

rank-sum,49 0.049 0.099 0.049 0.099 0.045 0.096 0.050 0.100 0.042 0.090 0.050 0.100

rank-sum,1 0.048 0.100 0.049 0.099 0.048 0.097 0.050 0.100 0.040 0.089 0.047 0.096

In this part, we present the simulation results for the simplified target-decoy procedure
on dependent random variables. Table 3.3 shows the realized FDRs of different methods with
dependent random variables while the specified FDR control level α was 5% or 10%. The results
show that the t-test with empirical Bayes overestimated the FDRs for the gamma distribution.
The realized FDRs of pooled permutation significantly exceeded α when the random variables



248 K. HE, M.J. LI, Y. FU, F.Z. GONG, X.M. SUN

followed the gamma distribution. The Wilcoxon rank-sum test with Bayes or empirical Bayes
overestimated the FDRs. The target-decoy approach controlled the FDR in all cases.

Table 3.4. Power with dependent random variables. The sample size is 20. All the cases
where realized FDRs exceed α as shown in Table 3.3 are labelled with ∗.

Normal,ρ = 0.4 Normal,ρ = 0.8 Gamma

1% 10% 1% 10% 1% 10%

α 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10

Bayes

t-test 82∗ 90∗ 927 1016 101 108∗ 1047 1109 40 50 687 797

permutation 82 90 922 1012 101 108 1043 1106 42 55 737 861∗

rank-sum 80 87 907 983 98 106 1031 1086 47 59 735 836

Empirical Bayes

t-test 81 90 914 999 100 108 1043 1105 23 32 536 652

permutation 81 87 912 1003 99 106 1041 1108 49 66∗ 757∗ 893∗

rank-sum 80 88 900 984 99 107 1040 1102 47 59 716 823

Target-decoy

t-value,49 81 90 926 1015 100 108 1046 1109 44 60 741 852

t-value,1 81 89 923 1013 100 108 1046 1109 45 60 735 845

rank-sum,49 80 89 917 1007 99 107 1045 1108 42 59 756 870

rank-sum,1 80 89 916 1005 99 107 1044 1108 41 59 749 863

Table 3.4 shows the statistical power of different methods with dependent random vari-
ables. When the random variables followed the normal distribution, the Bayes method was less
powerful than the target-decoy approach while the Wilcoxon rank-sum test was used. Though
the Bayes method seems to be a little more powerful than the target-decoy approach while
the t-test was used, the realized FDR of this method exceeded the specified FDR control level.
The empirical Bayes method was less powerful than the Bayes method and our target-decoy
approach in the Normal,10%, ρ = 0.4 experiments.

When the random variables followed the gamma distribution, the target-decoy approach was
much more powerful than the Bayes and empirical Bayes methods, even if only one permutation
was performed. Though the pooled permutation seems to be powerful, the FDRs were not
controlled.

Similar to the results for independent random variables, the target-decoy approach per-
formed significantly better than other methods for dependent random variables. It controlled
the FDR in all cases without loss of statistical power.

3.4 Simulation for the Adaptive Procedure

To show the effectiveness of the adaptive target-decoy procedure for small datasets, a case-
control study involving 200 random variables was simulated. The null hypotheses of 20 random
variables were true and the others were false. For each random variable, there were 20 ran-
dom samples, 10 of which were from the cases and the other 10 were from the controls. The
observation values from the cases where the null hypotheses were false followed the N(4, 1)
distribution, and all the other observation values followed the N(0, 1) distribution. All the
observation values were independent. In the simulation, the cases and the controls of each test
were permuted for 49 times and the t-values were used.

As shown in Table 3.5, the adaptive procedure controlled the FDR for all values of α, and
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Table 3.5. Realized FDRs and power of the adaptive target-decoy procedure. The realized
FDRs were calculated as the means of FDPs.

α 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

Simplified target-decoy procedure

FDR 0 0 0 0.006 0.044 0.044 0.044 0.055 0.070 0.087

Power 0 0 0 1 21 21 21 21 22 22

Adaptive target-decoy procedure

FDR 0.007 0.018 0.026 0.032 0.044 0.049 0.058 0.069 0.079 0.093

Power 13 18 18 19 18 20 21 21 21 22

its power was much larger than the simplified target-decoy procedure for small α.

4 Applications to Real Data

Table 4.1. Power of different methods for Arabidopsis microarray data

α 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

Bayes

t-test 0 5 5 171 322 712 1108 1469 1875 2208

permutation 0 0 0 0 251 1266 2035 2816 3499 4150

rank-sum test 0 0 0 0 0 0 0 0 0 0

Empirical Bayes

t-test 0 0 0 0 0 0 0 0 0 0

permutation 0 0 0 0 0 0 0 0 0 0

rank-sum test ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
Target-decoy

t-value 0 0 0 1026 1481 1824 2204 2951 3506 3820

rank-sum test 0 0 0 0 0 0 0 0 0 0

∗The R package, ‘locfdr’, crashed while the Wilcoxon rank-sum test is used.

We applied the target-decoy approach to two real biological datasets, including an ara-
bidopsis genomics dataset and a COVID-19 proteomics dataset. Similar to the simulation ex-
periments, the Bayes method, the empirical Bayes method and our target-decoy approach (the
simplified procedure) are compared here. The p-values in the Bayes method and the z-values
in the empirical Bayes method were calculated with the Student’s t-test, Wilcoxon rank sum
test, and the Student’s t-test with permutation, respectively. For the Bayes method, two-tailed
tests were used. For the empirical Bayes method, we first transformed the FDR control level to
the threshold of local fdr and then identified differentially expressed genes/proteins according
to the threshold. For the target-decoy approach, the absolute t-values and the test statistics of
the Wilcoxon rank sum test were used.

4.1 An Application to Arabidopsis

To determine whether Arabidopsis genes respond to oncogenes encoded by the transfer-DNA
(T-DNA) or to bacterial effector proteins codelivered by Agrobacteria into the plant cells, Lee
et al.[33] conducted microarray experiments at 3 h and 6 d after inoculating wounded young
Arabidopsis plants with two different Agrobacterium strains, C58 and GV3101. Strain GV3101
is a cognate of strain C58, which only lacks T-DNA, but possesses proteinaceous virulence (Vir)
factors such as VirD2, VirE2, VirE3 and VirF[51]. Wounded, but uninfected, stalks were served
as control. Here we just use the 6-d postinoculation data as an example (downloaded from
http://www.ncbi.nlm.nih.gov/geo/, GEO accession: GSE14106). The data consisting of 22810
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genes were obtained from the C58 infected and control stalks. Both infected and control stalks
were with three replicates.

Because it is unknown which genes were really differentially expressed, the realized FDRs
cannot be computed here. The power of these methods are compared. In fairness, the sampling
numbers were set as 19 =

(
6
3

)
− 1 in all the experiments, including the pooled permutation and

the target-decoy approach. That is, all possible permutations were generated for each gene.

As shown in Table 4.1, no differentially expressed genes were found by the empirical Bayes
method or the Wilcoxon rank-sum test. For the Bayes method, the t-test was more powerful
than the pooled permutation for small α (≤ 0.05) while the pooled permutation was more
powerful for large α (≥ 0.06). The target-decoy approach with t-test was most powerful for
0.04 ≤ α ≤ 0.09. The additional genes identified by the target-decoy approach are reliable,
because similar numbers of genes, i.e., 785 genes for FDR 0.034, 1427 genes for FDR 0.050 and
2071 genes for FDR 0.065, were reported by a more specific analysis[49].

4.2 An Application to COVID-19

In a study to discover differentially expressed proteins that correlate with the COVID-19 disease,
the serums of 118 subjects were sampled, including 28 severe COVID-19 patients, 37 nonse-
vere COVID-19 patients, 25 non-COVID-19 patients and 28 healthy subjects[43]. The proteins
from these serum samples were analyzed with tandem mass spectrometry. From the resulting
mass spectra, 791 proteins were successfully identified and quantified, and were subjected to
subsequent statistical analysis.

To find differentially expressed proteins specific to the COVID-19 patients, the healthy
subjects were first served as the control group and were compared with the other three groups,
respectively. The FDR control level of 0.05 was used. The numbers of differentially expressed
proteins found by the three FDR methods (Bayes, empirical Bayes and target-decoy) are listed
in columns 2 to 4 of Table 4.2. Then, those proteins found in the severe or nonsevere COVID-19
patients but not in the non-COVID-19 patients were regarded as the final set of differentially
expressed proteins related to the COVID-19 disease. The numbers of them are listed in column
5 of Table 4.2. As shown, the target-decoy method using t-test had reported 132 proteins, more
than those reported by other methods.

Table 4.2. Power of different methods for COVID-19 data

Severe Nonsevere Non-COVID-19 Final Consistent

Bayes

t-test 136 49 29 118 104

permutation 48 14 0 50 33

rank-sum test 154 65 66 115 84

Empirical Bayes

t-test 129 70 36 121 91

permutation 101 67 69 121 27

rank-sum test 6 3 0 9 2

Target-decoy

t-test 142 62 24 132 104

rank-sum test 0 0 0 0 0

In the original study by [43], 105 COVID-19 related proteins were reported with FDR
controlled at 0.05 using the BH method[6]. Here, we compared the proteins found by the three
methods with the 105 proteins. The numbers of consistent proteins were listed in column
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6 of Table 4.2. Higher numbers probably indicate higher sensitivity and precision. It can
be seen that both the target-decoy method and the Bayes method found 104 out of the 105
originally reported proteins when t-test was used. Moreover, the target-decoy method reported
28 additional proteins, which could also be COVID-19 related ones.

5 Conclusion

In this paper, we presented the target-decoy approach to FDR control for multiple hypothesis
testing. This approach is free of estimating the null distribution or the null proportion, and
can rigorously control the FDR for independent variables. Simulation studies demonstrated
its ability in FDR control and higher power than two representative traditional methods. The
higher power of the approach was also illustrated by two applications to real biomedical data.

In the target-decoy approach, the scores are only used to determine the labels and ranks
of tests, and the statistical meaning of the scores is not required. Therefore, any test statistic
can be used, regardless of whether or not its null distribution is known. This flexibility brings
the potential to increase the power of multiple testing. In this paper, we only used the t-value
and the test statistic of the Wilcoxon rank sum test for a fair comparison with the traditional
FDR control methods. In the simulation study, the t-value is more powerful than the statistic
of the Wilcoxon rank sum test for the normal distribution and is less powerful for the Gamma
distribution. In the applications to real data, no differentially expressed genes or proteins were
found by the Wilcoxon rank-sum test, but the t-value performed pretty well. Overall, the t-
value is a good choice for the target-decoy procedure. Trying other statistics or engineering
specific scoring functions for different types of data is a topic worthy of future research. For
example, machine learning-derived feature importance scores can in principle be directly used
in our approach.

The adaptive target-decoy procedure chooses an r by data splitting and thus reduces the
size of the data used for inference. As shown in Section 3.4, the impact of size reduction is
insignificant if the sample size of each variable is moderate. In this case, the adaptive target-
decoy procedure can be much more powerful than the simplified procedure. However, if the
sample size is very small, the size reduction may diminish the power greatly. How to choose r
properly in that case deserves further study.

In this paper, FDR control was proved for independent variables, and only simulation
evaluation was performed for dependent variables. The theoretic analysis under dependency
will be our future work. Especially, whether permutation-based decoys can lead to FDR control
under some kind of dependency is an interesting problem that needs to be addressed.

Moreover, our control theorem is based on the exchangeable hypothesis. This null hypothesis
is stronger than the more popular hypothesis that the two groups have the same means. The
performance of our approach for the ‘equality of means’ hypothesis needs further studies.

Finally, our approach can be extended to the pair-matched case-control study by adjusting
Step 1 of the target-decoy procedure, i.e., randomly exchange the paired observed values just
as the permutation tests for pair-matched study instead of permuting them. The other steps
and analyses are the same.

Supplementary Materials. The supplementary material provides the proofs of theorems in
the main text.

Software package. The R package for the target-decoy procedure can be downloaded from
http://fugroup.amss.ac.cn/software/TDFDR/TDFDR.html.
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