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Abstract

Background

Brucellosis is an infectious disease caused by bacteria of the genus Brucella. Although it is

the most common zoonosis worldwide, there are increasing reports of drug resistance and

cases of relapse after long term treatment with the existing drugs of choice. This study there-

fore aims at identifying possible natural inhibitors of Brucella melitensis Methionyl-tRNA syn-

thetase through an in-silico approach.

Methods

Using PyRx 0.8 virtual screening software, the target was docked against a library of natural

compounds obtained from edible African plants. The compound, 2-({3-[(3,5-dichlorobenzyl)

amino] propyl} amino) quinolin-4(1H)-one (OOU) which is a co-crystallized ligand with the

target was used as the reference compound. Screening of the molecular descriptors of the

compounds for bioavailability, pharmacokinetic properties, and bioactivity was performed

using the SWISSADME, pkCSM, and Molinspiration web servers respectively. The Fpocket

and PLIP webservers were used to perform the analyses of the binding pockets and the pro-

tein ligand interactions. Analysis of the time-resolved trajectories of the Apo and Holo forms

of the target was performed using the Galaxy and MDWeb servers.

Results

The lead compounds, Strophanthidin and Isopteropodin are present in Corchorus olitorius

and Uncaria tomentosa (Cat’s-claw) plants respectively. Isopteropodin had a binding affinity

score of -8.9 kcal / ml with the target and had 17 anti-correlating residues in Pocket 1 after

molecular dynamics simulation. The complex formed by Isopteropodin and the target had a
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total RMSD of 4.408 and a total RMSF of 9.8067. However, Strophanthidin formed 3 hydro-

gen bonds with the target at ILE21, GLY262 and LEU294, and induced a total RMSF of

5.4541 at Pocket 1.

Conclusion

Overall, Isopteropodin and Strophanthidin were found to be better drug candidates than

OOU and they showed potentials to inhibit the Brucella melitensis Methionyl-tRNA synthe-

tase at Pocket 1, hence abilities to treat brucellosis. In-vivo and in-vitro investigations are

needed to further evaluate the efficacy and toxicity of the lead compounds.

Author summary

The cure for brucellosis involves a long course of treatment with a combination of antibi-

otics. However, some of the drugs are not recommended for very young children and

pregnant women. Moreover, cases of relapse and resistance to these drugs are reported.

With the Brucella Methionyl-tRNA synthetase as a target, molecular docking and virtual

screening was used to identify possible drug candidates from a library of 1524 compounds

obtained from edible African plants. Two lead compounds, Strophanthidin and Isoptero-

podin usually present in Corchorus olitorius and Uncaria tomentosa (Cat’s claw) plants

showed potentials to inhibit the Brucella melitensis Methionyl-tRNA synthetase. Their

bioactivities were also confirmed in their molecular dynamic simulation with the target

protein. Consequently, both compounds have potentials for safety and efficacy in the

treatment of brucellosis.

Introduction

Brucellosis is an infectious disease caused by bacteria of the genus Brucella. The species are

Gram-negative intracellular coccobacilli that occur in a wide variety of animals including cat-

tle, sheep, goats, pigs, other livestock as well as humans [1]. There are 12 species of Brucella
based on specificity of host [2]. Although, Brucella species are often associated with certain

hosts, they infect others apart from their preferred hosts. Being basically a disease of animals,

most human brucellosis cases are traceable to infected animals or their products [3]. Hence, its

control in human populations is targeted at the animals. Most infections in humans are due to

contact with contaminated materials. The disease therefore has a major occupational disposi-

tion among livestock workers, veterinarians, abattoir workers, so also hides, skin and wool

workers as well as laboratory personnel [4,5]. To the general public, brucellosis is mainly trans-

mitted through the consumption of unpasteurized contaminated milk or its products [6,7]. In

few occasions, human-to-human transmissions have been recorded through sexual contact,

blood transfusion, bone marrow transplant, obstetrical manipulations during child birth and

congenital means [4,8,9]. Brucellosis however is noted as the most common zoonosis world-

wide with more than 500,000 cases recorded annually [10].

The disease is well controlled in most developed countries [11], but common in Africa,

South America, Asia, the Caribbean, Middle East and the Mediterranean basin [2,12,13]. In

livestock production, the major economic effects are due to abortion, premature birth, reduced

milk production, repeat breeding and cost of veterinary care [14]. In humans, the disease
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results in loss of manpower as well as huge costs in medical care [15]. Thus, the control of the

disease in most developed countries has resulted in significant economic gains as well as

reduction in human cases. However, in developing countries the disease is still of major eco-

nomic and public health importance. This is mainly due to lack of well-defined control policies

as well as the lifestyle of high-risk persons who are mostly uninformed about the disease [16].

In controlling brucellosis, many countries embark on or consider the actions compatible with

their tradition and resources. Methods of controlling brucellosis therefore are hinged on diag-

nosis, control, increasing the awareness of the disease and vaccination [17]. Brucellosis

remains a largely neglected disease especially in developing countries [3]. In sub-Sahara Africa,

there has been little attention paid towards the control and prevention of brucellosis except in

South Africa [18]. The control of brucellosis in Africa is hindered by many factors. The farm-

ing system is basically traditional. Nomadism which accounts for as high as 95% of cattle pro-

duction in many West African countries [3] involves uncontrolled movement of livestock: a

major risk factor in the spread of brucellosis [16]. Brucellosis is therefore noted to impact neg-

atively on human and animal health, hampers social and economic progress as well as food

security in developing economies [19].

Brucella remains a potential bio-terroristic agent and moreover, treatment of the disease is

quite difficult in affected people because of the ability of the organism to evade the host

immune system and reside in the cell for extended periods [20]. Most drugs currently used to

treat Brucella infection have not been relatively effective. This is because Brucella activates the

cAMP/protein kinase A pathway which is crucial for the survival and establishment of Brucella
within macrophages. Inside the cells, they inhibit programmed cell death leading to long sur-

vival in the cells. Effective antimicrobial treatment for sufficient length of time with drugs

including, doxycycline in combination with rifampin or streptomycin [21] and other recom-

mended drugs for the treatment of brucellosis [22], have been hampered by relapses and thera-

peutic failures [8,23]. Also, prevalence of drug resistance genes is being reported in Brucella
species [24,25]. Resistance to these drugs of choice have been observed in Turkey [22], China

[26], Brazil [27], Kazakhstan [28], Norway [29] and Egypt [30] Such reports of antibiotic resis-

tance are rendering the use of antibiotics almost useless in treatment of brucellosis [31]. In the

same vein, doxycycline the most effective of these drugs, is contraindicated in pregnant

women and children below eight years of age [32,33] This underscores the need to search for

alternatives to the current long term chemotherapy of brucellosis with these drugs. Such new

agents need to be able to penetrate and function within the macrophage cytoplasm, inexpen-

sive, non-toxic and more effective than the drugs traditionally used to treat the disease.

Plants have long been viewed as a common source of remedies, either in the form of tradi-

tional preparations or as pure active principles. Many antibacterial compounds that may prove

to be useful leads for antibacterial drug discovery have been derived from medicinal plants

[34]. These plants have had a great influence on the daily lives of people living in developing

countries, as the population in these countries cannot generally afford the cost of Western

medicines. Hence, natural products of plant biodiversity have received considerable attention

as potential antibacterial agents since they are a proven template for the development of new

antimicrobials [35]. Natural compounds have been utilized and/or chemically modified by

humans to prevent, treat and cure diseases since 5000 BC and the WHO intends to integrate

traditional medicine into National Health Systems (NHS) globally [36]. This provides an

opportunity for building safe, affordable and effective NHS especially for Third world coun-

tries, rich in both medicinal plant resources and traditional medicine knowledge. These plants

could be relied on as sources of agents that would act on well-defined molecular bacterial tar-

gets, to improve the therapeutic effects lacking in the traditional antimicrobials.
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Availability of sequenced genome of Brucella species has offered new options in the search

for drugs targeting enzymes that could be of use due to pathogen-host physiological and bio-

chemical differences. The methionyl-tRNA synthetase, which is a member of the aminoacyl

tRNA synthetase group, has been identified as being very important for its roles in protein syn-

thesis due to its recognition of initiator tRNA and tRNA delivering methionine for protein

chain elongation [37]. According to Ojo et al. [38], methionyl-tRNA synthetase is promising

as a good target for brucellosis drug development. Therefore, lead compounds targeting the

enzyme could be useful and offer good alternatives for the treatment of brucellosis. This study

hypothesizes that compounds targeting the enzyme can be found in edible African herbs. The

aim of this study is to use in-silico method to identify compounds of plant origin that can

inhibit the activity of Brucella melitensis methionyl-tRNA synthetase and serve as remedies for

brucellosis. This will pave the way for subsequent studies testing for the effectiveness of the

identified compounds (in-vitro and in-vivo) against B. melitensis.

Method

The SWISS-MODEL homology modeling server was used to model the target protein after the

crystal structure of methionyl-tRNA synthetase MetRS from Brucella melitensis (PDB ID:

5K0S.1.A) [39,40]. The structure of the target protein was visualized using PyMOL [41], ana-

lyzed using the VADAR 1.8 server [42] and validated using the MolProbity server [43].

A library of 1,524 phytoconstituents belonging to different classes of secondary metabolites

was collected from the results of the phytochemical analyses of edible African plants found in

literature. The Structure Data File (sdf) formats of the 3D chemical structures of these com-

pounds were downloaded from the PubChem database [44]. All ligands were loaded on the

PyRx 0.8 software, their geometries were minimized and they were converted into the pdbqt

format in readiness for molecular docking [45].

Docking of all the ligands against the target was performed using the AutoDock Vina tool

of PyRx 0.8 software. The grid parameters were set at Center—x: 26.4524, y: 19.1969, z:

22.6112 and Dimensions–x: 64.4178, y: 72.5182, z: 84.2900. The setting for the docking was the

universal force field (UFF) and conjugate gradient algorithm [45]. The 2-({3-[(3,5-dichloro-

benzyl) amino] propyl} amino) quinoline-4(1H)-one (OOU) (PubChem ID 18353708) which

is the co-crystallized ligand of the target protein was used as the reference compound. From

the docking results, all docking scores higher than the binding affinity score of OOU (refer-

ence compound) with the target were screened out.

The predictions for molar refractivity, saturation and promiscuity for the front runner

compounds were obtained from the SwissADME server and screening was performed based

on established medicinal chemistry criteria [46]. Screening for absorption, distribution,

metabolism, elimination, and toxicity (ADMET) properties was performed using the pkCSM

server [47]. Further screening of the front runner compounds for bioactivity was performed

with the Molinspiration server [48]. The PLIP webserver was used to decipher the hydrogen

bonds, halogen bonds and hydrophobic interactions between residues of the target and the

lead compounds [49].

A molecular dynamic simulation study of the apo and holo forms of the target protein was

performed using the Galaxy and MDWeb servers [50,51]. Analyses of the time-resolved trajec-

tory were done using parameters such as root-mean-square deviation (RMSD), root mean

square fluctuation (RMSF), radius of gyration (RoG), B- factor, principal component analysis

(PCA), and dynamical cross-correlation matrix (DCCM) [50,51]. The LD50 of the lead com-

pounds are to be determined at the in-vivo validation of the results of this research.
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The FASTA format of the amino acid sequences of the target protein (P59078) was obtained

from the UniProtKB database [52]. Sequences were placed on the BLAST tool of the NCBI

server and the settings were, PDB protein for database, Homo sapiens (Taxid 96906) for organ-

ism, and blastp for algorithm [53].

Results

Analysis of the structure of the target

The modelled target protein had 507 residues with a 100% similarity identity with Brucella
melitensis methionyl-tRNA synthetase (BrMelMetRS) (PDB: 5K0S) and also a qualitative

model energy analysis (QMEAN) value of 0.76 and global model quality estimate (GMQE)

value of 0.96. Resolved by X-ray diffraction method, the crystal structure of BrMelMetRS

(PDB: 5K0S) showed a resolution of 2.45 Å and R-Value Free of 0.256 (Fig 1). The secondary

structures of the target included 49% alpha helix, 22% beta sheets and 28% coils. The total sol-

vent-accessible surface area (SASA) was 22269.0 (Å)2. Ramanchandran analysis revealed that

in terms of geometry, the target protein had 1.21% poor rotamers, 97.1% favoured rotamers of

which 99.6% were in allowed regions, 0.40% Ramachandran outliers, 98.02% ramanchandran

favoured, 0.00% Cβ deviations (>0.25Å), and Rama distribution Z-score of 1.11 ± 0.36, 0.07%

bad bonds and 0.48% bad angles (Fig 2). With regards to low-resolution criteria, there were

0.8% carbon-alpha based low-resolution annotation method (CaBLAM) outliers and 0.60%

carbon-alpha geometry outliers.

Drug-likeness properties and other molecular descriptors of ligands

For the reference and lead compounds, the drug-likeness properties such as hydrogen bond

acceptor (HBA), hydrogen bond donor (HBD), log P, molecular weight, and topological sur-

face area (TPSA) did not exceed 10, 5, 500 g/mol and 140 Å respectively (Fig 3 and Table 1).

Furthermore, the reference and lead compounds’ molar refractivity ranged from 40 to 130,

Fig 1. The cartoon structure of modeled BrMelMetRS. Beta sheets in yellow, alpha helix in red, and loops in green.

https://doi.org/10.1371/journal.pntd.0009799.g001
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despite the fact that their number of rotatable bonds did not surpass 10. In terms of bioactivity,

OOU and Strophanthidin had enzyme inhibition prediction values larger than 0.00, whereas

Isopteropodin had a value less than 0.00. All the compounds had all their bioactivity prediction

values greater than -5.00. From the bioavailability radars, all the compounds were within the

range for drug-likeness properties of size, lipophilicity, solubility, polarity and flexibility (Fig

4). While OOU was slightly unsaturated, Strophanthidin and Isopteropodin were within the

saturation range (above 0.25).

The ADMET properties of ligands

From Table 2, the water solubility values for both the leads and reference compounds were

greater than -6.0 log mol/L. The values for OOU and Isopteropodin’s Caco-2 permeability (log

Papp in 10–6 cm.s-1) were larger than 0.9, while Strophanthidin‘s value was less than 0.9. For

all of the compounds, the human intestine absorption (percentage absorbed) values were

greater than 30%. Similarly, all the compounds had skin permeability (LogKp) values less than

-2.5 (Table 2). Remarkably, OOU was predicted to be inhibitor of both P-glycoprotein I and II,

while the lead compounds were not. However, all compounds were P-glycoprotein substrates.

In terms of distribution, Strophanthidin had a CNS permeability (Log PS) value less than

-3.0, while Isopteropodin and OOU had values larger than -3.0 but less than -2.0. The OOU

and Isopteropodin had their volume of distribution steady state (Log VDss) values of more

than 0.45, although Strophanthidin had a value of less than 0.15. All compounds had their BBB

permeability (log BB) larger than -1.0 but less than 0.3. Similarly, all the compounds had their

fraction unbound values greater than 0.1. With regards to metabolism, all compounds were

non-inhibitors of cytochrome P450 2C19 and 2C9 enzymes and all substrates of cytochrome

P450 3A4. Only OOU was an inhibitor of cytochrome P450 2D6, 1A2 and 3A4 enzymes and a

substrate of cytochrome P450 2D6 (Table 2).

Fig 2. Ramachandran plot of modeled BrMelMetRS.

https://doi.org/10.1371/journal.pntd.0009799.g002
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In terms of excretion, Strophanthidin recorded the lowest total clearance (log ml/min/kg),

whereas OOU showed the highest. Strophanthidin was not a substrate of renal OCT2, only

OOU and Isopteropodin were. All the compounds showed no AMES toxicity, no dermotoxo-

city and were non-inhibitors of hERG I proteins. However, only OOU was predicted to be a

blocker of hERG II and only strophanthidin was not hepatotoxic. The values for maximum tol-

erated dose (log mg/kg/day), oral rat acute toxicity (LD50) (mol/kg) and oral rat chronic toxic-

ity (log mg/kg/day) were highest in OOU, Isopteropodin, and strophanthidin respectively. For

lead compounds and the reference, the T. Pyriformis toxicity (log g/L) values were all larger

than -0.5. Minnow toxicity (log mM) was less than 0.3 only for Isopteropodin (Table 2)

Analysis of molecular docking scores

Isopteropodin had the lowest binding score with the target protein (Table 3).

Fig 3. The stick model of the 3D structures of the reference and lead compounds (a) OOU (b) Isopteropodin (c)

Strophanthidin.

https://doi.org/10.1371/journal.pntd.0009799.g003
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Binding site analyses

The reference and two lead compounds bound at residues ILE 12, TYR 14, VAL 229, TRP 230,

ALA 233, LEU 234, GLY 262, ILE 265, PHE 268, PHE 293, and LEU 294 and could all be

found in Pocket 1 of the target (Figs 5 and 6, Tables 4 and S1 Fig). The BrMelMetRS–Stro-

phanthidin complex formed the highest number of intermolecular hydrogen bonds with the

target. In terms of bond angle, Isopteropodin and Strophanthidin each formed one bond less

than 130o at ILE12 and LEU294 respectively. The OOU, Isopteropodin, and Strophanthidin

formed one, one and two bonds respectively that were greater than 130o. With reference to the

donor to acceptor distance, OOU made no hydrogen bond within the range of 2.5–3.2 Å, none

within the range of 3.2–4.0 Å, and only one (TYR14A) above 4.0 Å with the target. Isopteropo-

din formed one hydrogen bond (at ILE12A) within the range of 2.5–3.2 Å, and one (GLY262)

within the range of 3.2–4.0 Å. Strophanthidin formed one hydrogen bond (at LEU294A)

within the range of 2.5–3.2 Å, and two (at ILE21 and GLY262) within the range of 3.2–4.0 Å
(Table 4). From Table 5, the BrMelMetRS–OOU complex had the highest number (12) of

hydrophobic interactions and it was the only one that had a halogen bond at ASP232.

Table 1. Chemical and physical properties of reference and lead compounds.

Descriptors OOU(reference) Isopteropodin Strophanthidin

Chemical formula C19H19Cl2N3O C21H24N2O4 C23H32O6

PubChem ID 18353708 98363 6185

Molecular Weight (g/mol) 376.3 368.4 404.5

XLogP3 5 1.6 0.6

HBD count 3 1 3

HBA count 4 5 6

Rotatable bond count 7 2 2

TPSA (Å2) 56.92 67.9 104

PAIN Alerts None None None

Molar Refractivity 105.6 106.47 106.16

G-Protein CR Ligand 0.31 0.37 0.08

Ion channel modulator 0.05 0.25 0.07

Protein Kinase Inhibitor 0.27 -0.34 -0.46

Nuclear Receptor ligand -0.2 0.07 0.52

Protease Inhibitor 0.1 -0.02 0.01

Enzyme Inhibitor 0.24 -0.02 0.79

https://doi.org/10.1371/journal.pntd.0009799.t001

Fig 4. The bioavailability radars for reference and lead compounds (a) OOU (b) Isopteropodin (c) Strophanthidin.

https://doi.org/10.1371/journal.pntd.0009799.g004
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Molecular dynamics simulation

Fig 7 reveals the structures of the apo and holo forms of BrMelMetRS after a 2-nanosecond

molecular dynamics simulation. The BrMelMetRS- Isopteropodin and BrMelMetRS-OOU

Table 2. ADMET properties of reference and lead compounds.

Variables OOU (Reference) Isopteropodin Strophanthidin

Absorption

Solubility in water (log mol/L) -4.026 -3.521 -4.473

Permeabilities of Caco-2 (log Papp in 10–6 cm.s-1) 1.058 1.119 0.813

Intestinal absorption in humans (% absorbed). 89.488 96.483 73.206

Permeability of skin (log Kp) -2.739 -3.767 -3.909

P-glycoprotein substrate (Yes/No) Yes Yes Yes

P-glycoprotein I inhibitor (Yes/No) Yes No No

P-glycoprotein II inhibitor (Yes/No) Yes No No

Distribution

Volume of Distr. Steady State (human) (log L/kg) 1.347 0.845 0.143

Fraction unbound (human) 0.15 0.357 0.38

Permeability of BBB (log BB) 0.172 0.035 -0.602

Permeability of CNS (log PS) -2.108 -2.307 -3.098

Metabolism

Substrate of cytochrome P450 2D6 (Yes/No) Yes No No

Substrate of cytochrone P450 3A4 (Yes/No) Yes Yes Yes

Inhibitor of cytochrome P450 1A2 (Yes/No) Yes No No

Inhibitor of cytochrome P450 2C19 (Yes/No) No No No

Inhibitor of cytochrome P450 2C9 (Yes/No) No No No

Inhibitor of cytochrome P450 2D6 (Yes/No) Yes No No

Inhibitor of cytochrome P450 3A4 (Yes/No) Yes No No

Excretion

Total Clearance (log ml/min/kg) 0.951 0.886 0.624

Substrate of Renal OCT2 (Yes/No) Yes Yes No

Toxicity

AMES toxicity (Yes/No) No No No

Max. Tolerated dose (human) (log mg/kg/day) -0.088 -1.088 -0.487

Blocker of hERG I (Yes/No) No No No

Blocker of hERG II (Yes/No) Yes No No

Oral Rat Acute Toxicity (LD50) (mol/kg) 2.187 2.763 2.357

Oral Rat Chronic Toxicity (log mg/kg/day) 1.4 1.771 1.833

Liver toxicity (Yes/No) Yes Yes No

Sensitization of skin (Yes/No) No No No

Toxicity to T. Pyriformis (log μg/L) 0.42 0.526 0.306

Toxicity to Minnows (log mM) 0.488 -0.364 2.387

https://doi.org/10.1371/journal.pntd.0009799.t002

Table 3. Docking scores of ligands against the target.

Ligand Binding Score (Kcal/mol)

OOU (reference) -8.6

Isopteropodin -8.9

Strophanthidin -8.6

https://doi.org/10.1371/journal.pntd.0009799.t003
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complexes had the same values of average and total RMSD which were higher than that of the

BrMelMetRS- Strophanthidin complex. However, the BrMelMetRS-OOU trajectory peaked at

time frame 15 (0.235) as compared with that of the BrMelMetRS- Isopteropodin complex

which peaked at time frame 11 with a slightly lower RMSD value (0.231) (S1 Fig and Table 6).

In terms of RMSD distribution, all the 20 peaks of the apo and holo forms of the target were

found within 0.0–0.49 Å (S2 Fig and Table 6).

The BrMelMetRS-Isopteropodin complex exhibited the greatest average and total RMSF

values of all the holo structures. The least was the BrMelMetRS- Strophanthidin complex.

However, at the regional level (Pocket 1), the BrMelMetRS-Strophanthidin complex had the

highest values for average and total RMSF while that of the BrMelMetRS- Isopteropodin com-

plex was the lowest (S3 Fig and Table 6).

The cumulative of the first three highest principal components (PC1, PC2, and PC3) for all

the holo forms of the target represented less than 50% of the total variance (S4 Fig and

Table 6). The BrMelMetRS- Isopteropodin complex had the highest total and average global

motions of all the holo forms. At the regional level (Pocket 1), the BrMelMetRS-OOU complex

had the highest average and motions followed by the BrMelMetRS- Strophanthidin complex.

Overall, the best conformations in terms of the greatest global motions were PC3, PC2, and

PC2 for BrMelMetRS-OOU, BrMelMetRS-Isopteropodin complex, and

Fig 5. Binding site of the target showing interaction with reference and lead compounds. (a) BrMelMetRS-OOU

complex, (b) BrMelMetRS-Isopteropodin complex (c) BrMelMetRS-Strophanthidin complex.

https://doi.org/10.1371/journal.pntd.0009799.g005

Fig 6. Interactions of target with reference and lead compounds (a) BrMelMetRS-OOU complex, (b)

BrMelMetRS-Isopteropodin complex (c) BrMelMetRS-Strophanthidin complex.

https://doi.org/10.1371/journal.pntd.0009799.g006
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BrMelMetRS-Strophanthidin complexes respectively and the same for regional motions. The

PCA cosine content of the dominant motions related to PC1 for all the holo forms of the target

did not get to 1.0 (Table 6).

In terms of average radius of gyration along the trajectory, the BrMelMetRS-OOU complex

had the highest value followed by the BrMelMetRS-Isopteropodin complex. However, the

BrMelMetRS-Isopteropodin complex had the widest range of gyration (S5 Fig and Table 6). At

the global and regional (Pocket 1) levels, B-factor values were highest in the BrMelMetR-

S-OOU complex (S6 Fig and Table 6). Additionally, the dynamic cross-correlation analysis

revealed that of the 31 residues of the Pocket 1, the BrMelMetRS-OOU complex had the high-

est number of anti-correlating residues (S7 Fig and Table 6).

BLAST

The closest structures to the BrMelMetRS in the human proteome proteins were three

unnamed protein products CBX51367.1, CAE90564.1 and CAE89160.1 (Table 7). The

CBX51367.1 had a query cover of 91% while the other two showed short alignments each with

22% query cover.

Table 4. Analysis of Hydrogen bond interactions between target and ligands.

Protein-ligand Complexes No. of bonds Residues Distance (H-A) Distance (D-A) Bond angle

BrMelMetRS–OOU 1 TYR14A 3.06 4.08 166.07

BrMelMetRS—Isopteropodin 2 ILE12A 2.15 2.84 123.04

GLY262A 3.14 3.85 130.68

BrMelMetRS—Strophanthidin 3 ILE21A 3.1 3.84 132.63

GLY262A 2.48 3.21 130.82

LEU294A 2.35 2.82 107.99

https://doi.org/10.1371/journal.pntd.0009799.t004

Table 5. Hydrophobic interactions and Halogen bonds.

Protein-ligand Complexes Hydrophobic Interaction Halogen Bonds

Residue Distance Residue Distance Donor angle Acceptor angle

BrMelMetRS—OOU PHE213A 3.62 ASP232A 3.36 140.52 124.94

TYR228A 3.69

VAL229A 3.53

VAL229A 3.69

TRP230A 3.91

TRP230A 3.59

ALA233A 3.82

LEU234A 3.34

LEU234A 3.92

ILE265A 3.78

PHE268A 3.9

PHE268A 3.58

BrMelMetRS—Isopteropodin ALA233A 3.62

LEU234A 3.99

ILE265A 3.68

PHE268A 3.68

BrMelMetRS—Strophanthidin PHE293A 3.38

PHE293A 3.91

VAl308A 3.95

https://doi.org/10.1371/journal.pntd.0009799.t005
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Discussion

The target

The structure of a protein determines its biological function [54]. The qualitative model energy

analysis (QMEAN) is a composite scoring function assessing the major geometrical (global

and local) aspects of protein structures and the assessment of the model ranges from 0 to 1

(with one being perfect) [55]. With a QMEAN value of 0.76, the modelled BrMelMetRS (PDB:

5K0S.1.A) has a high structural quality. Similarly, the global model quality estimation

(GMQE) score evaluates the structural quality of models using evolutionary information and

it is expressed as a value between 0 and 1 (with one being the most reliable) [56]. A value of

0.96 suggests a high reliability of the modelled target. Also, a ramanchandran favoured value

greater than 98% and a Rama distribution Z-score less than 2 are suggestive of good stereo-

chemistry of the modeled target [43].

Drug-likeness and bioactivity

A compound’s drug-likeness is determined by how similar it is to existing drugs in terms of

structural and physicochemical properties [57]. In terms of drug-likeness, the reference and

lead compounds do not violate the Ghose, Lipinski, and Veber rules seeing that the values of

their HBA, HBD, log P, molecular weight, TPSA, molar refractivity, and number of rotatable

bonds are within accepted range [58]. Therefore, they are all predicted to have good size, polar-

ity and flexibility which positively correlate to good bioavailability. However, the bioavailabil-

ity radar of OOU suggests that it is slightly unsaturated with fraction of carbons in the sp3

hybridization (Fsp3) value less than 0.25 [59,60]. Both complexity (as assessed by Fsp3), the

presence of chiral centers, and saturation which is linked with solubility are all crucial in drug

development [59]. Therefore, OOU would be a poor drug candidate.

The biological activity profiles of possible drug candidates must take into account human

metabolism because drugs interact with several molecular targets in the body [61]. With

respect to bioactivity, Strophanthidin is predicted to have the highest enzyme inhibition activ-

ity while Isopteropodin has the lowest (Table 1).

ADMET

The ADMET properties of candidate compounds are the main reason of high attrition rates in

drug discovery [62]. Aqueous solubility is a critical physicochemical feature that influences

pharmacokinetic properties and drug formulations [63]. From Table 2, Isopteropodin is the

Fig 7. Cartoon model of the apo and holo forms of the target (after MDS). (a) BrMelMetRS (b) BrMelMetRS-OOU

complex (c) BrMelMetRS-Isopteropodin complex (d) BrMelMetRS-Strophanthidin complex.

https://doi.org/10.1371/journal.pntd.0009799.g007
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Table 6. MDS of the apo and holo forms of the target (a summary).

MDS Parameters BrMelMetRS-Apo BrMelMetRS—OOU BrMelMetRS—Isopteropodin BrMelMetRS—Strophanthidin

RMSD

Total RMSD 4.437 4.408 4.408 4.356

Average RMSD 0.2112 0.2099 0.2099 0.2074

Highest RMSD 0.234 0.235 0.231 0.23

Lowest RMSD 0 0 0 0

Time Frame of Highest RMSD 16 15 11 3

Time Frame of Lowest RMSD 1 1 1 1

RMSD Peak Distribution

0.00–0.49A 20 20 20 20

0.50–0.99A 0 0 0 0

1.00–1.49A 0 0 0 0

1.50–1.99A 0 0 0 0

2.00–2.49A 0 0 0 0

2.50–2.99A 0 0 0 0

3.00–3.49A 0 0 0 0

RMSF

Total Global RMSF 91.8492 91.5704 91.8067 91.0109

Average Global RMSF 0.1812 0.1806 0.1811 0.1795

Total Regional RMSF(Pocket 1) 5.4497 5.3549 5.3004 5.4541

Average Regional RMSF(Pocket 1) 0.1758 0.1727 0.171 0.1759

Highest Fluctuation 0.3149 0.2809 0.309 0.2884

Least Fluctuation 0.1038 0.1244 0.1183 0.122

Range of RMSF 0.2111 0.1565 0.1907 0.1664

PCA (motions)

Total global (mean of PC1, PC2 & PC3) 20.3527 20.5002 20.5907 20.4168

Average global (mean of PC1, PC2 & PC3) 0.0401 0.0404 0.0406 0.0403

Total Regional (mean of PC1, PC2 & PC3) 1.3102 1.2451 1.1877 1.2211

Average Regional (mean of PC1, PC2 & PC3) 0.0423 0.0402 0.0383 0.0394

Best global Conformation PC3 PC3 PC2 PC2

Best regional Conformation (Pocket 1) PC3 PC3 PC2 PC2

PC1 Eigenvalue 6.74 6.76 6.59 6.7

PC2 Eigenvalue 6.43 6.36 6.36 6.43

PC3 Eigenvalue 6.31 6.12 6.11 6.15

Total 19.48 19.24 19.06 19.28

B-Factor

Global average B factor 12.2297 27.7477 10.4732 15.6061

Regional average B factor 5.611 11.234 5.6169 7.1471

Radius of Gyration

Average Gyration 5.6951 5.6966 5.6951 5.6941

Minimum Gyration 5.693 5.6943 5.6908 5.6915

Maximum Gyration 5.6965 5.6984 5.6998 5.6966

Range Gyration 0.0035 0.0041 0.009 0.0051

% Gyration 0.061 0.072 0.158 0.09

Time Frame of Maximum Gyration 19 15 7 14

Time Frame of Minimum Gyration 13 12 3 20

DCCM

Anti-correlating residues 16 19 17 17

https://doi.org/10.1371/journal.pntd.0009799.t006
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most soluble of the compounds. With water solubility values less than -4.0 log mol/L, OOU

and Strophanthidin are poorly soluble [47]. Oral administration remains the primary method

of drug administration, making in-vitro permeability studies useful for predicting oral bio-

availability. The Caco-2 cell monolayers, which produce tight connections between cells, are

employed as a model of human intestinal absorption because they closely resemble the human

intestinal epithelium in many ways [64]. Isopteropodin showed the highest Caco-2 permeabil-

ity. The OOU also has high Caco-2 permeability while that of Strophanthidin is low [47]. Simi-

larly, the determination of human intestinal absorption (HIA) is a very important aspect in the

creation of novel pharmacological compounds [65]. Though all the compounds have high per-

centage HIA, Isopteropodin has the highest value [47]. For effective transdermal delivery, it is

necessary to assess drug penetration through the skin [66]. While all the compounds had skin

permeability (LogKp) values less than 2.5, Strophanthidin has the best dermal permeability

value.

The P-glycoprotein (Pgp) which has an influence on ADMET properties is a unidirectional

efflux pump that removes its substrate such as drugs, pollutants, and other xenobiotics from

inside to outside of the cells [67]. All the compounds are Pgp substrates and this implies that

their oral bioavailabilities would be reduced by Pgp. Unlike the lead compounds, OOU is pre-

dicted to be Pgp I and II inhibitors suggesting that it would facilitate the intracellular accumu-

lation of substrates leading to toxicity [68].

The volume of distribution steady state (VDSS) is an important pharmacokinetic property

that determines the dosing frequency and half-life of a drug [69]. The VDSS for OOU is

extremely high requiring about 8.41l/kg; the VDSS of Isopteropodin is high requiring about

5.28 l/kg; and the VDSS of Strophanthidin is low requiring about 0.89 l/kg to maintain uni-

form distribution to give the same concentration in the plasma [47]. The degree to which a

drug binds to plasma proteins has an impact on its efficacy [47]. Though they all exceeded 0.1,

the values of fraction unbound (human) for OOU suggests that it is the least available for bio-

activity. Though Isopteropodin and Strophanthidin have similar values, Strophanthidin is

more available [47]. The blood–brain barrier (BBB) prevents the uptake of most drugs. How-

ever, certain drugs with unique chemical properties are able to cross the BBB through lipid-

mediated free diffusion [70]. From Table 2, all compounds have their BBB permeability (log

BB) larger than -1.0 but less than 0.3 suggesting that they are all moderately distributed in the

brain. The OOU is predicted to have the best brain distribution while Strophanthidin has the

poorest [47]. Similarly, Strophanthidin is also unable to permeate the CNS, while Isopteropo-

din and OOU can moderately permeate it [47]. In-vivo study may be needed to determine if

this moderate permeability may be effective in the treatment of neurobrucellosis which is a

complication due to chronic brucellosis.

Cytochromes P450 (CYP) is responsible for the biotransformation of most drugs and is a

primary cause of variability in drug pharmacokinetics. The CYPs 3A4, 2C9, and 1A2 are the

most prevalent in the liver, while 2D6 and 2C19 are less abundant [71]. All compounds are

substrates of CYP450 3A4 and only OOU is a substrate of CYP450 2D6. This suggests that

these metabolic enzymes facilitate the biotransformation of these compounds making them

Table 7. BLAST result for the homologues of the target protein in the human specie.

Accession Name Accession length Max Score Total Score Query cover E-value % identity

CBX51367.1 unnamed protein product 900 148 148 91% 4.00E-38 25.83%

CAE90564.1 unnamed protein product 567 47 47 22% 1.00E-05 34.43%

CAE89160.1 unnamed protein product 764 45.1 45.1 22% 5.00E-05 35.25%

https://doi.org/10.1371/journal.pntd.0009799.t007
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available for excretion. Remarkably, OOU is an inhibitor of CYP450, P450 2D6, 1A2, and 3A4

causing the accumulation of the substrate of these enzymes [47].

The total clearance of a drug from the bloodstream is the sum of the renal clearance, the

hepatic clearance, and the clearance from all other tissues [72]. Depending on the functionality

of the organs involved and several other factors, the total clearance ranges from 0 to 1.0. The

results as indicated in Table 2 show that OOU followed by Isopteropodin have a very high rate

of elimination from the plasma while that of Strophanthidin is slowest.

The renal organic cation transporter 2 (OCT2) protein is found in the basolateral mem-

brane of proximal epithelial cells and it is involved in cationic drug uptake and secretion [73].

Only Strophanthidin, as shown in Table 2, will not be carried from the plasma into the cells of

the proximal convoluted tubule by the renal OCT2 and will also have no deleterious interac-

tions when co-administered with renal OCT2 inhibitors [47].

The potassium channel protein expressed by the human ether-a-go-go related gene (hERG)

is important for cardiac repolarization and arrhythmias caused by long QT wave [74]. The

study also found that only OOU is predicted to be an inhibitor of hERG II protein showing its

potential cardiotoxic property [47]. However, all the compounds are neither genotoxic nor

dermato-toxic.

As established by early-stage human clinical trials, the maximum tolerated dose (MTD) of a

drug is the highest dose of that drug that does not induce overt toxicity or undesirable side effects

within a set time frame [75]. In the present study, all the compounds have low MTD being lower

than 0.477 log (mg/kg/day) [47]. The oral rat chronic toxicity is the lowest dose of a drug that

results in an observed adverse effect over a time period, while the oral rat acute toxicity or LD50 is

the measurement of how much of a drug is required to kill 50% of rats in a test [47]. In terms of

acute toxicity, Isopteropodin is the safest, while Strophanthidin is safest in terms of chronic toxic-

ity. Similarly for toxicity to Tetrahymena pyriformis, Isopteropodin is the safest while for toxicity

to Minnows, Strophanthidin is the safest. Despite the fact that the liver is the most common target

organ for drug candidates in animal toxicity tests, hepatotoxicity seldom causes drug development

to be halted during the preclinical stage. When a drug has great therapeutic promise, hepatotoxic-

ity in humans may be tolerable due to the fact that it is frequently reversible and dose dependent

[76]. In this study, only Strophanthidin is predicted to be non-hepatotoxic.

Analyses of time-resolved trajectories

The RMSD calculates the differences in distances between atoms in two stacked protein struc-

tures (the reference and target) with a result of 0.0 indicating perfect overlap [77]. Over the

2-nanosecond trajectory, the BrMelMetRS-OOU and BrMelMetRS-Isopteropodin complexes

showed marginally greater distortion than the BrMelMetRS-Strophanthidin complex in terms

of variations in the RMSD of the Cα atomic coordinates. This is evidenced by the values of

highest RMSD peak, the total RMSD, and the average RMSD. All the RMSD slopes induced by

the holo forms show a gentle upward trend suggesting greater values with more simulation

time. In this study, as it concerns RMSD peaks distribution patterns, all the holo forms show

similar stability [78]. The structure and dynamics of proteins also play a big role in how well

they work. The Root mean square fluctuation (RMSF) measures the structural flexibility of the

protein by calculating the fluctuations of residues during molecular dynamics simulation

[79,80]. While BrMelMetRS- Isopteropodin complex showed the greatest fluctuations amongst

the holo structures at the global level, the BrMelMetRS-Strophanthidin complex showed the

greatest fluctuations at the regional level (Pocket 1).

The PCA is used to statistically evaluate the various structural conformations of a protein

generated during trajectories [81]. This study found that the BrucMetRS—Isopteropodin
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complex has the greatest global (total and average) motions of any holo structures, closely fol-

lowed by the BrMelMetRS-OOU complex. At Pocket 1, the BrMelMetRS-OOU complex

showed the highest regional (total and average) motions whereas, the BrMelMetRS-Stro-

phanthidin complex showed greater regional motions than the BrucMetRS-Isopteropodin

complex. Specifically, based on the highest motions, the best global and regional conforma-

tions are PC3, PC2, and PC2 for the BrMelMetRS-OOU, BrucMetRS–Isopteropodin, and the

BrMelMetRS-Strophanthidin complexes respectively.

The B-factor is a measurement of a protein’s thermal stability based on the variation in

atom locations in relation to average atomic coordinates [82]. Of all the holo structures, the

BrMelMetRS-OOU complex showed the highest B-factor suggesting the greatest thermal insta-

bility. However, BrMelMetRS- Strophanthidin complex showed greater thermal instability

than the BrucMetRS—Isopteropodin complex as seen by the global and regional average B fac-

tor values. The radius of gyration is the determinant of the compactness of the apo or holo pro-

tein during molecular dynamics simulation [83]. In terms of RoG along the trajectory,

Isopteropodin induced the least compactness on the target (S4 Fig, Table 6)

The dynamic cross-correlation map depicts the atomic correlation pattern in protein

dynamics [84]. Of the 31 residues of the Pocket 1, the BrMelMetRS-OOU complex showed the

highest number of anti-correlating residues. The BrMelMetRS- Strophanthidin and the Bruc-

MetRS—Isopteropodin complexes have the same number of anti-correlating residues. The net

values for all the residues in the Pocket 1 reveal that the Strophanthidin had the greatest anti-

correlation effect on the target protein suggesting the greatest inhibitory activity at that site

[58].

BLAST

Many drugs are quite promiscuous and they would bind to several targets with structural simi-

larity [85]. Fortunately, the bacterial methionyl-tRNA synthetase (MetRS) enzyme, which is

required for protein synthesis, differs significantly from the human cytoplasmic equivalent

(HCE) and therefore the HCE would not be inhibited by the lead compounds [86]. However,

there is a possibility that the lead compounds interact with the unnamed protein product,

CBX51367.1 which though has less than 30% identity, but has an E value less than 10−6 sharing

significant similarity with BrucMetRS [87].

Taken together, this study demonstrates the potential antibacterial effect of the reference

compound OOU, and the leads compounds, Isopteropodin and Strophanthidin. However,

OOU is slightly unsaturated therefore showing poor drug likeness and the ability to inhibit P-

glycoprotein I and II proteins. Both Isopteropodin and Strophanthidin have shown acceptable

pharmacokinetic properties with Isopteropodin showing superior oral absorbability. In terms

of time-resolved trajectory of the apo and holo structures of the target, Strophanthidin induced

the greatest molecular distortion at Pocket 1 as seen with the RMSF, PCA, B-factor and

DCCM results.

Strophantidin is a cardiac glycoside found in the seed of edible plant, Corchorus olitorius,
and has been used in the treatment of congestive heart failure. It functions by inhibiting the

membrane bound Na+/ K+ ATPase in the cardiac muscles [88,89]. This blockage leads to

influx of calcium ions leading to an inotropic effect. This mechanism of action is dose-depen-

dent (0.1 μmol/L and 0.5 μmol/L), as Strophanthidin can be potentially cardiotoxic through

Ca2+ overload, diastolic dysfunction, and arrhythmias when administered above maximum

dose [88]. The anticancer potential of Strophanthidin has also been identified as it inhibits the

MAPK, PI3K/AKT/mTOR, and Wnt/β-Catenin signaling Pathways [90]. Further experiments
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are required to ascertain whether sub-therapeutic doses of Strophanthidin can induce signifi-

cant antibacterial effect in-vivo.

Isopteropodin is an oxindole alkaloid isolated from the Cat’s claw plant (Uncaria tomen-
tosa) whose water-soluble extract significantly enhanced immune function by increasing

Phytohemagglutinin (PHA) stimulated lymphocyte proliferation in splenocytes of rats [91,92]

The findings of this study suggest that the plants, Corchorus olitorius, and Uncaria tomentosa
containing the lead compounds, Strophantidin and Isopteropodin respectively could be

exploited to make antibiotics for the treatment of brucellosis.

Limitations of the study

The study did not test the effectiveness of the compounds in-vitro and in-vivo against B. meli-
tensis and therefore, the LD50 was not determined.

Conclusion

This study indicates that Isopteropodin and Strophanthidin have the capacity to block the Bru-
cella mellitensis Methionyl-tRNA synthetase at Pocket 1. Therefore, they could be possible

drug candidates for the treatment of brucellosis and hence have a high potential for clinical

development. This paves the way for subsequent in-vitro and in-vivo studies using animal

models to determine the effectiveness and toxicity of the lead compounds.

Supporting information

S1 Fig. Root mean square deviations of the apo and holo forms of the target.

(TIF)

S2 Fig. RMSD histogram of the apo and holo forms of the target. (a) BrMelMetRS (b)

BrMelMetRS-OOU complex (c) BrMelMetRS-Isopteropodin complex (d) BrMelMetRS-Stro-

phanthidin complex.

(TIF)

S3 Fig. RMSF of the apo and holo forms of the target. (a) BrMelMetRS (b) BrMelMetR-

S-OOU complex (c) BrMelMetRS-Isopteropodin complex (d) BrMelMetRS-Strophanthidin

complex.

(TIF)

S4 Fig. PCA: Cluster plots of the apo and holo forms of the target. The trajectory projection

onto the first three eigenvectors for: (a) BrMelMetRS (b) BrMelMetRS-OOU complex (c)

BrMelMetRS-Isopteropodin complex (d) BrMelMetRS-Strophanthidin complex.

(TIF)

S5 Fig. Radius of Gyration for the apo and holo forms of the target. (a) BrMelMetRS (b)

BrMelMetRS-OOU complex (c) BrMelMetRS-Isopteropodin complex (d) BrMelMetRS-Stro-

phanthidin complex.

(TIF)

S6 Fig. B-factor of the apo and holo forms of the target. (a) BrMelMetRS (b) BrMelMetR-

S-OOU complex (c) BrMelMetRS-Isopteropodin complex (d) BrMelMetRS-Strophanthidin

complex.

(TIF)

S7 Fig. Dynamic cross correlation matrix of the apo and holo forms of the target. Dark

cyan represents fully correlated motion, purple represents anti-correlated motion, while white
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