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Abstract (328 words) 

Importance. Increased intracranial pressure (ICP) is associated with adverse 
neurological outcomes, but needs invasive monitoring. 

Objective.  Development and validation of an AI approach for detecting increased ICP 
(aICP) using only non-invasive extracranial physiological waveform data. 
 
Design. Retrospective diagnostic study of AI-assisted detection of increased ICP. We 
developed an AI model using exclusively extracranial waveforms, externally validated it 
and assessed associations with clinical outcomes. 
 
Setting. MIMIC-III Waveform Database (2000-2013), a database derived from patients 
admitted to an ICU in an academic Boston hospital, was used for development of the 
aICP model, and to report association with neurologic outcomes. Data from Mount Sinai 
Hospital (2020-2022) in New York City was used for external validation. 
 
Participants. Patients were included if they were older than 18 years, and were 
monitored with electrocardiograms, arterial blood pressure, respiratory impedance 
plethysmography and pulse oximetry. Patients who additionally had intracranial 
pressure monitoring were used for development (N=157) and external validation 
(N=56). Patients without intracranial monitors were used for association with outcomes 
(N=1694). 
 
Exposures. Extracranial waveforms including electrocardiogram, arterial blood 
pressure, plethysmography and SpO2.  
 
Main Outcomes and Measures.  Intracranial pressure > 15 mmHg. Measures were 
Area under receiver operating characteristic curves (AUROCs), sensitivity, specificity, 
and accuracy at threshold of 0.5. We calculated odds ratios and p-values for phenotype 
association.                                                                     
 
Results.  The AUROC was 0.91 (95% CI, 0.90-0.91) on testing and 0.80 (95% CI, 0.80-
0.80) on external validation. aICP had accuracy, sensitivity, and specificity of 73.8% 
(95% CI, 72.0%-75.6%), 99.5% (95% CI 99.3%-99.6%), and 76.9% (95% CI, 74.0-
79.8%) on external validation. A ten-percentile increment was associated with stroke 
(OR=2.12; 95% CI, 1.27-3.13), brain malignancy (OR=1.68; 95% CI, 1.09-2.60), 
subdural hemorrhage (OR=1.66; 95% CI, 1.07-2.57), intracerebral hemorrhage 
(OR=1.18; 95% CI, 1.07-1.32), and procedures like percutaneous brain biopsy 
(OR=1.58; 95% CI, 1.15-2.18) and craniotomy (OR = 1.43; 95% CI, 1.12-1.84; P < 0.05 
for all). 
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Conclusions and Relevance.  aICP provides accurate, non-invasive estimation of 
increased ICP, and is associated with neurological outcomes and neurosurgical 
procedures in patients without intracranial monitoring. 
  

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 30, 2024. ; https://doi.org/10.1101/2024.01.30.24301974doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.30.24301974
http://creativecommons.org/licenses/by-nc/4.0/


Introduction 

Elevation in intracranial pressure (ICP) is common in severe acute brain injuries 
(SABI), such as stroke and traumatic brain injuries, contributing to secondary 
neurological damage1–3. The current gold standard for ICP monitoring is an invasive 
monitor, which carries risks of infection and hemorrhage, limiting its use4. 
 

Non-invasive ICP estimation methods, like transcranial doppler (TCD) and optic 
nerve sheath diameter (ONSD) show promise for the detection of intracranial 
hypertension1,5,6. However, their utility is constrained by limited availability of specialized 
skills and equipment settings7,8 and the requirement of high clinical suspicion to 
administer these tests, possibly overlooking subclinical ICP abnormalities. Additionally, 
there is substantial variability in accuracy and clinical relevance for ICP monitoring using 
these technologies9–11.  
 

Recognizing these limitations, recent research seeks to correlate physiological 
data with neurological conditions12. Yet, such studies are often restricted by their 
sample size, stringent data filters limiting real world application, and lack of external 
validation limiting generalizability12–15. 
 

To address these limitations, we introduce, a novel method, artificial intelligence 
derived intracranial pressure (aICP), an approach developed to predict intracranial 
hypertension. The model utilizes physiologic extracranial waveforms that are routinely 
collected in intensive care to generate a second-by-second prediction of whether 
intracranial pressure is elevated16. To train the model, we first subset to a patient cohort 
from a publicly available dataset that had these extracranial waveforms in addition to 
intraventricular catheters which directly measure intracranial pressure. Second, we use 
an independent cohort from the Mount Sinai Hospital, to externally validate this 
approach. Third, we further evaluated the model’s clinical utility in a larger cohort with 
extracranial waveforms but without invasive intracranial monitoring, examining 
associations with clinical phenotypes both a priori and via unbiased phenome-wide 
scans. In this cohort, we evaluate clinical implications of undetected intracranial 
hypertension and aICP by measuring associations with phenotypes that are either a 
cause or consequence of increased ICP. 
 
 
Methods 
Study Setting and datasets 
 

We used single-admission data from two distinct sources: 1) the publicly 
available MIMIC III Waveform Database Matched Subset17–19 contains waveform 
records from bedside monitors for 10,282 patients admitted to intensive care units at the 
Beth Israel Deaconess Medical Center (Boston, MA) between 2001 and 2012 
(Goldberger et al. 2000; A. E. W. Johnson et al. 2016), and 2) the MSH Bedmaster 
Matched Database, a database of waveform recordings for 50,894 patients admitted to 
the Mount Sinai Hospital (New York, NY) between 2018 and 2022 (Figure 1a i). The 
latter was derived from a deployment of the BedmasterTM software. This software is 
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engineered to extract and store real-time patient data obtained from networked General 
Electric Healthcare bedside patient multi-parameter monitors (Excel Medical 
Electronics, Jupiter, FL). 
 
 

We created three cohorts from the two data sources described above: For 
training and internal validation of aICP, we used part of the MIMIC-III waveform dataset 
consisting of hospital stays with intracranial waveform recordings (MIMIC-ICP). For 
external validation of aICP, we used a waveform dataset from Mount Sinai Hospital 
consisting of hospital stays with intracranial waveform recordings (MSH-ICP). To map 
aICP to clinical associations, we used another, non-overlapping subset from the MIMIC-
III waveform dataset consisting of patients without intracranial waveform recordings 
(MIMIC-GENERAL) (Figure 1a ii).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. a) Schema for AICP (i) Initial dataset (ii) Layer 1 filters (iii) Layer 2 filters (iv) 
Final dataset. b) Model Architecture, Training and Output.  
 
Channels and Data Types Utilized  
 

For all three cohorts, we included arterial blood pressure (ABP), EKG, 
respiratory, and photoplethysmography (PPG) waveforms. In addition, for MIMIC-ICP 
and MSH-ICP, we included intracranial pressure waveforms. 
 
Preprocessing 
 

Since intracranial pressure recordings in both data sources were recorded at 125 
Hz, we up-sampled or down-sampled the extracranial waveforms (ABP, EKG, 

a

b
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respiratory and PPG) to 125 Hz. We subsequently filtered for quality control (Figure 1a 
iii). Patient waveforms were included only if they had no missing data and had a non-
zero mean and non-zero standard deviation across all waveforms. We found that this 
procedure removed significant portions of missing or physiologically implausible data 
that occurs during calibration and setup of the various lines. We randomly subsampled 
10,000 1-second segments from each patient. 
 

After filtering, the MIMIC-ICP dataset was partitioned into subsets, with 100 
patients allocated to the training dataset, 20 patients to the validation dataset, and 37 
patients to the test dataset. The MSH-ICP dataset had 56 patients after filtering (Figure 
1a iv). MIMIC-GENERAL had 1,694 after filtering waveforms and EHR data for 
missingness. 
 
Thresholding 

We employed a threshold of 15 mm Hg to define intracranial hypertension, as 
previously described in literature20,21. 
 
Model Architecture  
 

aICP utilizes a 5D-convolutional neural network to segment time-series at a 
second-level22,23. These predictions are aggregated to form patient level predictions. 
Each input consists of the 128 data points (approximately 1 second) of each of the 5 
main perioperative waveforms (ABG, EKG leads II and V, respiratory and PPG). The 
output for each input is a prediction at each second of whether the patient has ICP>15 
mm of Hg. Implementation of the model architecture is visualized (Figure 1B). The loss 
function utilized a Tversky Loss, which is a modified DICE score accounting for the 
relative class imbalance between positive and negative samples24.  
 

Briefly, the architecture follows a modified U-Net, a popular neural network 
design for semantic segmentation tasks, with a modified focus on handling input data 
with five channels rather than the traditional two or three25. It is composed of two 
convolutional layers with batch normalization and rectified linear unit (ReLU) activation 
functions, aiming to capture non-linear temporal features within the input data. We add 
skip connections to handle the high-dimensionality and large number of channels.  
 
Slices within a given time series were labeled using the slice-level prediction model and 
then transformed into a sequence. The patient-level model aggregated these individual 
second predictions, generating a unified risk score reflecting the patient's frequency of 
dysregulation in intracranial pressure throughout their hospital stay. 
 
Model Development and Validation 
 

The aICP model has approximately 10.4 million parameters and was trained on a 
single NVIDIA A100 GPU over the span of 3 days and 30 epochs. The segmentation 
performance was optimized using a modified Dice coefficient. The optimal model was 
selected and calibrated based on its performance on the validation dataset. Additionally, 
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we employed hyperparameter optimization, early stopping and an Adam optimizer 
within the PyTorch Lightning framework.  
 
Model Performance Metrics  
 

We assessed the classification performance of time series and patient-level data 
using five key metrics: three threshold-dependent metrics: accuracy, sensitivity, 
specificity, and two threshold-independent metrics: area-under-the-receiver-operator-
curve (AUROC) and area-under-the-precision-recall curve (AUPRC). Receiver 
operating curves (ROCs) and confusion matrices evaluated the patient-level model 
performance in each classification task. The threshold was calibrated on the internal 
validation set, and then applied to the internal test set and external validation set.  
To assess the performance of our model, we conducted a benchmark comparison 
against standard time series classification models. They included Recurrent Neural 
Networks (RNNs), Long Short-Term Memory networks (LSTMs), and Temporal 
Convolutional Neural Networks (TCNs), which are state-of-the-art (Nair et al. 2023). All 
experiments were seeded, and our models underwent consistent training, validation, 
and testing on identical datasets bootstrapped 50 times (Supplemental Table 2).  
 
Association with Phenotypes and Outcomes 

To evaluate the association of aICP with relevant clinical outcomes in patients 
without intracranial pressure monitors, we used a testing set consisting of patients who 
had only extracranial waveforms (ABP, EKG, respiratory, PPG) in addition to clinical 
data from the electronic health record. aICP provided a patient level risk score for 1,694 
patients. We calculated an odds ratio with respect to a ten percentile increase increase 
in aICP. We ran a phenome-wide association and reported the P-values and as well as 
the adjusted threshold for correlated phenotypes (P < 3.33 x 10-4). We then stratified 
patients into low- and high-risk groups using the 75th percentile of predicted patient 
level risk score as the cutoff, and calculated odds ratios for pre-determined outcomes. 
P-value was calculated using the Fisher’s Exact Test. 
 
Statistical Analysis 
 

We calculated descriptive statistics for each cohort by mapping waveform IDs to 
electronic health records for available patients. To quantify the uncertainty in 
experimental results, confidence intervals were computed using via non-parametric 
bootstrapping 50 times. All evaluation and statistical metrics were computed utilizing the 
torchmetrics and statsmodels packages26,27. Odds ratios were calculated by logistic 
regression and Fisher’s Exact Test. We additionally fill out the TRIPOD reporting 
guideline and include it in the Supplement (Supplementary Figure 1).  
 
 
Results 
Cohort Description  
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Average ages were 67.7 for the MIMIC-ICP. Females accounted for 40.8% of the 
MIMIC-ICP cohort, and 60.5% identified as White. In the MIMIC-ICP cohort, 53.3% of 
patients were on Medicare, 23.3% on private insurance, and 20.0% on Medicaid. The 
MIMIC-ICP cohort exhibited an average intracranial blood pressure of 8.9 mmHg, and 
intracranial hypertension values were observed for 9.7% of total observation period in 
the MIMIC-ICP cohort. Neurological comorbidities were documented for all patients in 
both MIMIC-ICP, but only 19% of the MIMIC-ICP had documented cardiovascular 
comorbidities as defined by phecodes28. Cardiovascular comorbidities in our study 
encompassed conditions such as ischemic heart disease, valvular disease, and 
arrhythmias. Additionally, neurological comorbidities were classified into categories 
including vascular etiologies (e.g., intracerebral hemorrhage), infectious etiologies (e.g., 
abscesses), and oncological issues (e.g., tumors) (Supplementary Table 3). 
 

56 patients admitted to the Mount Sinai Hospital between 2020 and 2022 with 
intracranial monitors comprised MSH-ICP. The average age was 54.6 (SD, 31.3) with 
39.3% of patients identifying as female. 50.0% of patients identified as White, 16.1% as 
Black or African American, 17.8% as Hispanic, with the remaining 14.3% identifying as 
other. 28.6% of patients were on Medicare, 42.8% on private insurance and 28.6% on 
Medicaid. This cohort demonstrated an average intracranial pressure of 16.7 mmHg. 
Elevated ICP was observed for a total of 8% of the total observation period. All patients 
in this cohort had neurological and cardiovascular comorbidities.  
 

For the clinical association cohort (MIMIC-GENERAL), the average age was 69.3 
years and 41% of the patients were female. 71.0% of patients identified as White, 
10.0% as Black or African American, 2.7% as Hispanic and 16.3% as other. 55.4% 
were on Medicare, 30.3% on private insurance and 10.7% on Medicaid. 52.8% of 
patients had an identifiable neurological comorbidity and 56.1% had an identified 
cardiovascular comorbidity.  
 

Table 1. Patient Characteristics  
 
 MIMIC-

ICP 
With ICP 
monitors  
(n=157) 

MIMIC-
GENERAL 
Without ICP 
monitors 
(n=1694) 

MSH-ICP 
With ICP 
monitors  
(n=56) 

P 

Mean Age, (SD) 67.7 
(13.3) 

69.3 (13.8) 54.6 
(31.3) 
 

<0.01 

Female, % 40.8 41 39.3 
 

 

Self-Reported Race/Ethnicity, % 
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White 60.5 71.0 50.0 < 
0.01 

Black / African American 3 10 16.1 

Non-White Hispanic  3 2.7 17.8 

Other 34.5 16.3 14.3 

Insurance, % 

Medicare 53.3 55.4 28.6 <0.01 

Private 23.3 30.3 42.9 

Medicaid 20.0 10.7 28.6 

Other 3.4 3.6 0 

Measured intracranial Pressure in mm 
of Hg, Mean (SD) 

8.9 (7.3) NA 16.7 
(5.2) 

<0.01 

Measured intracranial hypertension, % 9.7 NA 8.0 <0.01 

Neurological Disease, % 100 
 

52.8  100 <0.01 

Cardiovascular Disease, % 19 56.1 100 <0.01 
P values for continuous values are calculated via ANOVA, and for binary variables are 
calculated via Chi-Squared test. Neurological and Cardiovascular outcomes are defined 
by ICD-9 codes (Supplementary Table 3). 

aICP Performance 

First, we assessed the patient-level performance of aICP using the testing set 
(Table 2). The Receiver Operating Characteristic (ROC) curve was employed to 
measure the model’s ability to detect elevated intracranial pressure (ICP > 15 mm Hg), 
with overall accuracy of 0.97, and an area-under-the-curve (AUC) of 0.91. The 
sensitivity of the model at a threshold of 0.5 was 1.00 and the specificity was 0.87. 
These results outperformed existing models (Supplementary Table 2).  
 

Next, we evaluated the performance on MSH-ICP, external validation test set. 
The area-under-the-curve on the external validation test set was 0.80, with an accuracy 
of 0.74, a sensitivity of 0.99 and a specificity of 0.77. The Receiver Operating Curve and 
Precision-Recall Curves for internal and external validation testing sets showed 
discriminatory performance of aICP to identify patients with ICP values greater than 
15mmHg (Figure 2). 
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 MIMIC-ICP  MSH-ICP 

Accuracy (95% CI) 0.972 (0.971-0.973) 0.738 (0.720-
0.756) 

Area Under the Receiver Operating Curve 
(95% CI) 

0.91 (0.90-91) 0.80 (0.79-0.80) 

Area Under the Precision Recall Curve 
(95% CI) 

0.91 (0.91-0.91) 0.93 (0.93-0.93) 

Sensitivity (95% CI) 1.0 (1.0-1.0) 0.99 (0.99-0.99) 

Specificity (95% CI) 0.87 (0.86-0.87) 0.77 (0.74-0.79) 
 

Table 2. Performance of patient level classification model on internal and external 
testing set, evaluated with accuracy thresholded at 0.5, sensitivity thresholded at 0.5, 
specificity thresholded at 0.5, area under the receiving-operator-curve, and area under 
the precision-recall curve for ICP elevation.  
 

 
Figure 2. a) AUROC curve on the internal (MIMIC-ICP) and external (MSH-ICP) test 
cohorts. 
b) AUPRC curve for internal (MIMIC-ICP) and external (MSH-ICP) test cohorts.  
 

To evaluate the association of aICP with relevant clinical outcomes in patients 
without intracranial pressure monitors, we used MIMIC-GENERAL, a testing set 
consisting of patients that had extracranial waveforms (ABP, EKG, respiratory and 
PPG) and linked clinical data. aICP provided a patient level risk score for 1,694 patients. 
We calculated an odds ratio with respect to a 10 percentile increase increase in aICP 
(Figure 3A). A ten-percentile increase in aICP was associated with an increased 
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likelihood of stroke (OR=2.12; 95% CI, 1.27-3.13; P=4.06x10-3), brain malignancy 
(OR=1.68; 95% CI, 1.09-2.60; P=1.93x10-2), subdural hemorrhage (OR=1.66; 95% CI, 
1.07-2.57; P=2.38x10-2), intracerebral hemorrhage (OR=1.18; 95% CI, 1.07-1.32; 
P=1.17x10-3). Moreover, when looking at patient procedures done over the course of 
admission, a ten percentile increase in aICP was associated with a percutaneous brain 
biopsy (OR=1.58; 95% CI, 1.15-2.18; P=4.58x10-3), and craniotomy and resection 
(OR=1.43; 95% CI, 1.12-1.84; P=4.10x10-3) (Figure 3A).  
 

To see if the effect of aICP was larger in high-risk groups, we then stratified 
patients into low and high-risk groups, using the 75th percentile of predicted patient level 
risk score as the cutoff. We calculated odds ratios and P-values via the Fisher’s Exact 
Test for pre-determined outcomes. Patients in the top quartile demonstrated increased 
risk of subdural hemorrhage (OR=24.2; P=3.01x10-2), traumatic brain injury (OR=6.04; 
P=3.8 x10-2), intracerebral hemorrhage (OR=1.85; P=1.32x10-3), and receiving a 
craniectomy (OR=7.55; P=1.58x10-2) or a percutaneous brain biopsy (OR=5.03; 
P=2.72x10-2). 
 
 

Phenome-wide association discovery  

Finally, we sought to discover whether elevated aICP was correlated with other 
pathologies. We mapped ICD-9 codes to phenotypic groups via PheCodes28. We ran a 
phenotype-wide association scan and demonstrated that belonging to the top quartile of 
an aICP-derived risk score was strongly associated with circulatory pathologies (N=13), 
acute liver failure (N=9), metabolic abnormalities and chronic kidney disease (N=6). For 
example, an elevated aICP was linked to myocardial infarction (OR=1.75; P=2.65x10-3), 
valvular disease (OR=2.07; P=2.88x10-2), and peripheral vascular disease with 
claudication (OR=4.24; P=1.39x10-2). In the context of liver failure, an aICP-related risk 
stratification demonstrated associations with ascites (OR=1.93; P=5.68x10-3), 
esophageal varices (OR=2.99; P=1.22x10-3), and portal vein thrombosis (OR=4.05; 
P=4.00x10-2). In the context of metabolic abnormalities and acute renal failure, aICP is 
associated with diabetes mellitus without complications (OR=1.34; P=1.62x10-2), 
diabetes mellitus with renal involvement (OR=2.08; P=2.88x10-2), and with malignant 
hypertension from kidney failure with uncontrolled diabetes (OR=18.2; P=1.32x10-3). 
Finally, other notable associations with elevated aICP include glaucoma (OR=2.72; 
P=4.68x10-3) and changes in vision (OR=1.73; P=1.32x10-3) (Supplementary Table 4).  
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Figure 3. a) Schema depicting the phenotype wide association scan between aICP and 
phenotypes. b) A decile increase in aICP is associated with various increases in odds 
ratios of having been previously or currently being diagnosed with a neurovascular 
condition. c) Unadjusted P-values from a phenome wide scan of aICP across different 
categories colored and sized by odds ratio with the red dashed line representing the 
unadjusted threshold and the orange dashed line representing the adjusted threshold.  
 

Discussion 

We introduce a novel deep learning system named aICP, that serves as a digital 
biomarker of intracranial hypertension. We developed and validated aICP both internally 
and externally for ICP greater than 15 mmHg in patients with invasive ICP monitors. In 
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patients without ICP monitoring, we show that aICP is strongly associated with relevant 
neurological phenotypes, indicating that it may be able to serve as a screening tool in 
patients not subjected to intracranial monitoring but who have extracranial monitors.   
 

aICP demonstrated an AUROC of 80% in MSH-ICP, the external validation 
cohort. It demonstrated promise as a screening tool, with high sensitivity (99.5%) in the 
external validation dataset (99.5%) at a threshold of 0.5. The slight drop in performance 
compared to internal validation cohort may be related to the demographic differences in 
the cohorts, as well as differences in monitoring devices and neurosurgical practices. 
The training and validation cohorts exhibited comparable distributions of sex and 
prevalence of neurological disorders. However, there were significant differences in 
racial, ethnic and insurance distributions across the cohorts. Additionally, patients in 
MSH-ICP demonstrated more disease severity, indicated by a significantly higher 
average intracranial blood pressure compared to patients in MIMIC-ICP. Moreover, all 
patients in the MSH-ICP had documented circulatory disorders, in contrast to the 
MIMIC-ICP cohort, where only 20% of patients had recorded cardiovascular 
phenotypes. Despite these differences, which may influence EKG and arterial line 
signals, the performance remained robust in the external validation cohort.   
 

In patients who did not have ICP monitors, aICP demonstrated associations with 
specific neurologic pathologies and neurosurgical procedures. These associations 
suggest aICP's clinical value in identifying high-risk patients who may benefit from 
enhanced monitoring. Notably, patients in the top quartile exhibited significantly 
elevated risks for subdural hemorrhage, traumatic brain injury, intracerebral 
hemorrhage, craniectomy, and percutaneous brain biopsy, indicating the tool's potential 
to guide tailored interventions. 
 

Thus, we provide two specific potential clinical use cases for aICP. First, aICP 
can provide intracranial monitoring to patients that have contraindications to invasive 
monitoring. For example, external ventricular drain placement is contraindicated in 
patients on anticoagulation due to bleeding risk. In patients on anticoagulation, aICP 
can be used in place of an external ventricular drain to monitor for ischemic-to-
hemorrhagic conversion of a stroke. Second, because aICP needs only data from 
routine extracranial monitors, it could be utilized as early as arrival to the emergency 
department in the context of traumatic brain injury.  
 

A comprehensive exploration across non-neurological phenotypes revealed 
associations of aICP with renal failure and acute liver failure, which may provide insight 
into the etiology of hepatic and uremic encephalopathy and consequently increased 
ICP29,30. Additionally, aICP demonstrated associations with glaucoma, as evidenced by 
significant correlations between elevated intracranial and intraocular pressures31. These 
findings highlight the multifaceted potential of aICP in providing clinical insights through 
diverse associations beyond neurovascular domains, making it an asset for 
comprehensive patient assessment. 
 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 30, 2024. ; https://doi.org/10.1101/2024.01.30.24301974doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.30.24301974
http://creativecommons.org/licenses/by-nc/4.0/


As with all clinical tools, our method also has limitations. This is, to our 
knowledge, one of the largest clinical datasets used to train a deep learning algorithm 
for intracranial pressure estimation. While our clinical validation cohort (MSH-ICP) is 
very diverse in race and ethnicity, as it is reflective of the current diversity of New York 
City, it has fewer patients than the MIMIC-ICP (training) cohort. The significant 
difference in sample distribution between MIMIC-III and MSH-ICP may affect the 
interpretation of our results. However, awareness of disparities in racial, ethnic, and 
socioeconomic backgrounds is crucial for understanding how results may generalize to 
different patient populations. Some patients had to be excluded when we encountered 
significant patient drift in the measured variables. Prospective studies with large, diverse 
patient cohorts will be necessary to explore the practical implementation of aICP.  
 

In summary, we developed aICP to detect intracranial pressure abnormalities 
demonstrating both strong performance and clinical significance. aICP does not have 
any non-standard hardware requirements, and consequently, implementation of aICP 
as a tool for point-of-care bedside monitoring at the start of admission can occur on 
routine bedside monitors. Moreover, an aICP-generated risk score for each patient over 
the course of a patient’s hospital stay, could reduce detection times, and improve 
outcomes, especially given the time-sensitive nature of neurological diseases such as 
stroke and hemorrhage. Finally, we anticipate that aICP has the potential to detect 
pathophysiological conditions like hepatic encephalopathy and glaucoma, which are 
associated with intracranial pressure changes but do not have clear neurovascular 
etiologies.   

Data Sharing 

Data can be obtained via the MIMIC-III online repository. MSH-ICP data is from 
the Mount Sinai Data Warehouse but contains private health information. We do not 
make this data publicly available due to concerns for healthcare data privacy.  
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Supplementary Table 1. Comparison of Various Methods 

Supplementary Table 1 

Model Sample 
Size 

Data Reported 
AUROC 

External  Clinical  
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RF 4 110 BOOST-2 0.84 No Yes 

B4C 5 40 Sao Paulo 0.90 No No 

TCD 6 262 IMPRESSIT-2 0.76 No No 

TCD 7 11 Columbia  N/A No No 

EKG+ART 8 10 MIMIC N/A No No 

ONSD 
9 
 

100 University of Libre 
Bruxelles 

0.85 (0.77-
0.93) 

No No 

JVP 10 11 VGH 0.75 (0.56-
0.94) 

No No 

ONSD+JVP 10 
 

11 VGH 0.91 
(0.84-0.97) 

No No 

aICP 212 MIMIC 0.91 (0.90, 
0.92) 

Yes 1,694 

 

Supplementary Table 2. Benchmarking against other ML methods. 

Model Dataset Accuracy (95% CI) 

RNN MIMIC 0.87 (0.84, 0.90) 

LSTM MIMIC 0.91 (0.91, 0.91) 

TCN MIMIC 0.90 (0.90, 0.91) 

aICP MIMIC 0.97 (0.96, 0.98) 
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Supplementary Table 3. Categorization of Phenotypes for Demographic Analysis.  

 

Supplementary Table 4. Phenome Wide Scan 

Phenotype 

P-
valu
e 

odds 
ratio 

Lowe
r CI 

Uppe
r CI Group 

Atrioventricular block, complete 
0.00

0 1.35 1.14 1.59 Circulatory 
Malignant neoplasm of rectum, 
rectosigmoid junction, and anus 

0.00
1 1.73 1.27 2.36 Neoplasms 

Congestive Heart Failure 
0.00

1 1.12 1.05 1.20 Circulatory 

Small Bowel Obstruction 
0.00

1 1.44 1.16 1.79 Digestive 

Gastroenterostomy 
0.00

1 1.27 1.10 1.46 Digestive 

Intracerebral hemorrhage 
0.00

1 1.19 1.07 1.32 Neurological 
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Atherosclerosis of native arteries of the 
extremities with intermittent 
claudication 

0.00
2 1.53 1.17 2.00 Circulatory 

Subendocardial Infarction 
0.00

2 1.17 1.06 1.30 Circulatory 

Glaucoma 
0.00

4 1.31 1.09 1.57 
Ophthalmolog
ical 

Cholesterol Embolism 
0.00

4 2.12 1.27 3.55 Circulatory 

Pacemaker 
0.00

4 1.14 1.04 1.25 Circulatory 

Incision uterine septum 
0.00

5 0.40 0.21 0.76 Circulatory 

Ascites (non malignant) 
0.00

5 0.80 0.68 0.93 Digestive 

Aromatic Analgesic Poisoning 
0.00

5 0.00 0.00 0.01 
Injury and 
Poison 

Epilepsy, recurrent seizures, 
convulsions 

0.00
6 1.28 1.07 1.53 Neurological 

Partial esophagectomy 
0.00

7 1.19 1.05 1.35 Digestive 

Anxiety 
0.00

8 0.76 0.61 0.93 Psychiatric 

Atrial fibrillation 
0.00

9 1.09 1.02 1.17 Circulatory 

CABG 
0.01

0 1.30 1.07 1.58 Circulatory 

Truncal vagotomy 
0.01

1 1.47 1.09 1.98 Digestive 

Disturbances of vision 
0.01

3 1.73 1.12 2.67 
Ophthalmolog
ical 

Postoperative infection 
0.01

4 0.76 0.61 0.95 Infectious 

Heart Failure 
0.01

5 1.40 1.07 1.84 Circulatory 

Diabetes without Complications 
0.01

5 1.09 1.02 1.17 Endocrine 

Other tests 
0.01

5 0.00 0.00 0.04 Digestive 

Anticoagulants causing adverse effects 
0.01

6 1.22 1.04 1.43 Circulatory 
Methicillin resistant Staphylococcus 
aureus 

0.01
6 1.45 1.07 1.96 Infectious 
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Atherosclerosis of the extremities 
0.01

6 1.32 1.05 1.65 Circulatory 

Perforated Intestine 
0.01

7 0.36 0.16 0.83 Digestive 

Bladder Obstruction 
0.01

8 0.80 0.67 0.96 Genitourinary 

Secondary malignancy of brain/spine 
0.01

9 1.68 1.09 2.61 Neoplasms 

Hypopotassemia 
0.02

0 0.80 0.66 0.97 Endocrine 
Hemorrhage or hematoma 
complicating a procedure 

0.02
0 0.81 0.68 0.97 Circulatory 

Long-Term Antibiotics 
0.02

1 1.67 1.08 2.59 Infectious 

Peptic Ulcer 
0.02

2 1.59 1.07 2.38 Digestive 

Proctosigmoidoscopy 
0.02

3 1.33 1.04 1.69 Digestive 

Dental scaling & debride 
0.02

3 0.01 0.00 0.53 Neurological 

Cannabis Use 
0.02

4 0.00 0.00 0.15 Psychiatric 

Subdural Hemorrhage 
0.02

4 1.66 1.07 2.57 Neurological 

Disease of tricuspid valve 
0.02

4 1.24 1.03 1.49 Circulatory 

Calcaneal spur; Exostosis NOS 
0.02

5 0.00 0.00 0.17 
Musculoskelet
al 

Vascular Grat 
0.02

5 1.28 1.03 1.59 Circulatory 

Alcohol Use Disorder 
0.02

5 0.67 0.47 0.95 Psychiatric 

Vocal Cord Paralysis 
0.02

5 1.58 1.06 2.36 Neurological 

Essential thrombocythemia 
0.02

5 0.57 0.35 0.93 Hematological 

Fluid overload 
0.02

6 0.76 0.60 0.97 Digestive 

Systolic Heart Failure 
0.02

7 1.17 1.02 1.34 Circulatory 

Vesicostomy 
0.03

1 0.78 0.62 0.98 Genitourinary 
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Shortness of breath 
0.03

1 0.00 0.00 0.45 Respiratory 

Fever of unknown origin 
0.03

1 1.25 1.02 1.54 Infectious 
Acute Congestive Heart Failure 
Exacerbation 

0.03
2 1.15 1.01 1.32 Circulatory 

Osteoclasis 
0.03

2 1.95 1.06 3.59 
Musculoskelet
al 

Disorders of muscle, ligament, and 
fascia 

0.03
3 1.42 1.03 1.96 

Musculoskelet
al 

Ptosis 
0.03

3 1.62 1.04 2.52 Neurological 

Lung Collapse 
0.03

3 1.55 1.04 2.33 Respiratory 

Diverticulitis 
0.03

3 0.46 0.23 0.94 Digestive 

Painful respiration 
0.03

4 1.94 1.05 3.56 Respiratory 
Esophageal bleeding 
(varices/hemorrhage) 

0.03
4 0.73 0.55 0.98 Digestive 

Urinary incontinence 
0.03

5 1.93 1.05 3.54 Genitourinary 

Fracture of ribs 
0.03

5 1.71 1.04 2.83 
Musculoskelet
al 

Colostomy 
0.03

6 1.36 1.02 1.82 Digestive 

Deep Vein Thrombosis 
0.03

6 1.39 1.02 1.90 Hematological 

Vagotomy 
0.03

6 1.39 1.02 1.90 Digestive 

Hematemesis 
0.03

8 0.46 0.22 0.96 Digestive 

Intertrochanteric Fracture 
0.03

8 1.41 1.02 1.94 
Musculoskelet
al 

Uretheral Stricture 
0.03

9 1.70 1.03 2.81 Genitourinary 

Phlebitis and thrombophlebitis 
0.03

9 1.53 1.02 2.31 Hematological 
Inferoposterior Acute Myocardial 
Infarction 

0.04
1 0.00 0.00 0.63 Circulatory 

Thoracic Esophagocenteresis 
0.04

1 1.14 1.01 1.28 Digestive 
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Tracheostomy 
0.04

1 0.87 0.76 0.99 Respiratory 

Peritoneal Injury 
0.04

3 1.87 1.02 3.44 Digestive 

Cardiac Catheterization 
0.04

4 1.18 1.00 1.40 Circulatory 

Sphenoidotomy 
0.04

4 0.72 0.53 0.99 Neurological 

Urinary Retention 
0.04

6 1.17 1.00 1.37 Genitourinary 

Down Syndrome 
0.04

6 1.52 1.01 2.29 Congenital 

Hypertensive chronic kidney disease 
0.04

6 1.44 1.01 2.06 Endocrine 
Peritonitis and retroperitoneal 
infections 

0.04
7 0.69 0.48 0.99 Digestive 

Dysthymic disorder 
0.04

7 0.79 0.63 1.00 Endocrine 
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Supplementary Figure 1. TRIPOD Checklist 
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