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MDM2 is the principal inhibitor of p53, and MDM2 inhibitors can disrupt the

physical interaction betweenMDM2 and p53. The half-life of p53 is very short in

normal cells and tissues, and an uncontrolled increase in p53 levels has

potential harmful effects. It has been shown that p53 is frequently mutated in

most cancers; however, p53 mutations are rare in retinoblastoma. Therefore,

therapeutic strategies aimed at increasing the expression levels of wild-type

p53 are attractive. In this minireview, we discuss the potential use of nutlin-3,

the prototype small molecule inhibitor that disrupts the MDM2-p53 interaction,

for the treatment of retinoblastoma. Although p53 has pleiotropic biological

effects, the functions of p53 depend on its sub-cellular localization. In the

nucleus, p53 induces the transcription of a vast array of genes, while in

mitochondria, p53 regulates mitochondrial metabolism. This review also

discusses the relative contribution of p53-mediated gene transcription and

mitochondrial perturbation for retinoblastoma treatment.
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Introduction

Retinoblastoma is the most common intraocular pediatric cancer that arise in the

retina. In developing countries that harbor approximately 80% of patients with

retinoblastoma, the mortality rate is about 60% (1). Worldwide, the standard

incidence rate of retinoblastoma varies from 1.8 (in native Americans) to 6.0 (in

Southeast Asian population) per million person-years in children aged 0-14 years,

occurring as a bilateral or unilateral disease (2, 3). Bilateral tumors are mainly due to

new germline mutations, whereas unilateral tumors are linked to somatic mutations in
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the developing retina (3). In countries with a good health care

system, the survival rate of children with retinoblastoma is high;

however, patients at an advanced stage have a high risk of

metastasis, vision loss, and globe rupture (4). For early

diagnosed tumors, chemotherapy (combination of vincristine,

carboplatin, and etoposide (VCE) as standard of care or

topotecan, anthracyclines, and melphalan as alternative

therapies) in association with adjunctive local treatment

increases globe survival in approximately (90%) of cases when

the treatment is promptly initiated (4, 5), while plaque

radiotherapy is used as the last option (6). Enucleation is the

most common approach for preventing metastasis in patients

with advanced retinoblastoma (1). Although retinoblastoma

etiopathogenesis has been debated for a long time, recent

studies have demonstrated that retinoblastoma arises from

post-mitotic cone precursors during the development (7–9).

The proliferation of these precursors is dependent on E2F-

regulated genes and these cells strongly express both MYCN

and MDM2 (8, 9). In 95% of the cases, tumor arises due to the

biallelic loss of the tumor suppressor gene RB1, and its

development is sustained by genetic and epigenetic factors that

lead to leukocoria, a white pupillary reflex (3).

RB1 and TP53 are the main tumor suppressor genes that

regulate pathways involved in the cellular response to insults

(10). Rb and p53 interact to regulate the cell cycle via the p53-

p21-Rb axis, in which p21, a cyclin-dependent kinase inhibitor,

plays a pivotal role in regulating Rb phosphorylation (11). Loss

or inactivation of RB1, as observed in retinoblastoma, leads to

the sustained activation of E2F family proteins resulting in

uncontrolled cell proliferation. Interestingly, unlike most

cancers, mutations in TP53 are rare in retinoblastoma (3).

Nevertheless, during retinoblastoma progression, upregulation

of MDM2/4 prevents p53-mediated apoptosis, thus promoting

tumor survival and favoring uncontrolled cell proliferation by

reducing basal levels of p53 (10, 12). Under normal physiological

conditions, MDM2, an E3 ubiquitin ligase, ubiquitinates p53

leading to its subsequent degradation via the 26S proteasome,

thus maintaining the p53 levels low.

MDM2 plays important roles in various cancers. It has been

shown that MDM2 overexpression confers resistance to

conventional chemotherapy (13, 14). Thus, pharmacological

and/or genetic interventions that could restore or reactivate

the p53 pathway by reducing the p53-MDM2 interaction, is a

rational approach that was demonstrated in vitro as well as in

vivo in xenograft models with significant tumor regression (15–

17). This review focuses on MDM2 inhibitors as p53 reactivating

agents for retinoblastoma treatment. Moreover, the review also

describes the roles of p53 in different cellular compartments:

nuclear p53 as a transcription factor and mitochondrial p53 as a

regulator of mitochondrial metabolism.
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MDM2 inhibitors

Several molecules have been developed that can inhibit the

MDM2-p53 interaction. Nutlins (nutlin-1, -2, and -3) are the

first synthetic molecules that act as potent and selective MDM2

inhibitors (18). It has been demonstrated that the active

enantiomer nutlin-3a (IC50 ~90 nM) possesses anti-tumor

activity in vitro (19). Nutlins are cis-imidazoline analogs that

interact with the p53 binding pocket of MDM2 (20). Nutlin-3a

exerts a vast array of biological effects, such as cell cycle arrest,

enhancement of senescence, and induction of apoptosis by

stabilizing p53 (21). However, the pharmacological properties

of nutlins are suboptimal for clinical application, thus, their use

is limited to preclinical studies (20).

The first clinically tested molecule is RG7112 (IC50 ~20

nM), a new member of the nutlin family (20, 22, 23).

Furthermore, idasanutlin, a second-generation molecule

(RG7388, IC50 ~6 nM), possesses better pharmacokinetic

properties, enhanced potency, better selectivity, and enhanced

bioavailability compared to the first-generation nutlins and

RG7112. Idasanutlin can be orally administrated, is relatively

well-tolerated, and dose-dependently stabilizes the p53 protein

(23, 24). Recently, idasanutlin monotherapy and combination

therapy have been proposed, and a phase III clinical study on

acute myeloid leukemia (AML) has been recently terminated

(25–27).

The imidazopyrrolidinone siremadlin is an advanced

molecule that has been tested in patients with solid tumors

and hematological malignancies harboring no p53 mutations. In

a phase I clinical study involving patients with AML, siremadlin

has demonstrated promising results (28). Moreover, siremadlin

is being investigated alone or in combination with other drugs in

five different clinical trials that are still recruiting patients (29–

34). Other MDM2-targeting molecules that have entered phase I

clinical trials for solid tumors or hematological malignancies

include ALRN-6924 (35), milademetan (36), AMG-232 (37, 38),

CGM097 (39), APG-115 (40) and BI-907828 (41, 42). Of these,

only the dual MDM2/MDM4 inhibitor, ALRN-6924 in

combination with cytarabine is under investigation in

retinoblastoma (43). This study is ongoing since 2018 and still

recruiting patients; however, no results have been published yet.
Action of MDM2 inhibitors on
nuclear gene transcription and
mitochondrial metabolism

Nutlin-3a has been shown to induce apoptosis in different

types of cancer cells, including retinoblastoma; however, the
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relative role of the p53 transcriptional activity or mitochondrial

functions, remains unclear (5, 44–46). Following nutlin-3

treatment, p53 levels increase rapidly, and p53 is either

translocated to the nucleus, where it regulates transcription, or

localized to mitochondria (Figure 1). It has been hypothesized

that the indirect effects of MDM2 inhibitors on the nuclear

transcription machinery might contribute to their cytotoxicity

by inducing the transcription of pro-apoptotic genes, such as

NFRSF10B/TRAIL-R2 (47, 48), PUMA (48–51), BAX (51–54)

and the apoptosis-related protein in TGF-b signaling pathway

ARTS (55). However, several studies have shown that inhibition

of p53 transcriptional activity (by other agents) significantly

increases MDM2 inhibitors-mediated cytotoxicity (44, 56–58).

A possible explanation for these paradoxical findings could be

that p53 simultaneously activates the pro-apoptotic and pro-

survival pathways (59–61). The balance between these opposing

effects highly depends on the cell type and relative nuclear p53

levels. Increasing the nuclear p53 levels depletes the pool of

cytoplasmic p53, which is more effective in promoting apoptosis

by acting on the mitochondria (62). Steele et al. showed that

following nutlin-3a treatment, a major fraction of p53 remains

stably associated with the mitochondria where it binds to Bcl-2

(56). Moreover, pifithrin-a, an inhibitor of p53-mediated

transcription, blocked the up-regulation of PUMA levels.
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Surprisingly, pifithrin-a dramatically augments apoptosis

induced by molecules that increase intracellular p53 levels.

Another study showed that mono-ubiquitinated p53 preferably

translocates to the mitochondria in response to stress (44). Of

note, nutlin-3 does not interfere with the ability of MDM2 to

monoubiquitinate p53 because MDM2-p53 complexes are only

partially disrupted by nutlin-3 treatment, and nutlin-3-stabilized

MDM2 retains its E3 ubiquitin ligase activity. Blocking the

transcriptional arm of p53 using a-amanitin or pifithrin-a
greatly potentiates the nutlin-induced apoptosis (44, 56). In

summary, the direct mitochondrial program is a major

mechanism in nutlin-induced p53-mediated apoptosis.

At the mitochondrial molecular level, nutlin-3 reduces the

levels of dihydrolipoamide dehydrogenase/dihydrolipoamide

acetyltransferase protein complexes, which leads to the

disruption of the pyruvate dehydrogenase complex and

inhibition of the mitochondrial activity (58). Moreover, nutlin-

3 along with bortezomib induces dilatation of the endoplasmic

reticulum (ER) and mitochondria (63). Interestingly, it has been

shown that a negative feedback loop exists at the mitochondrial

level which prevents p53-induced apoptosis (64). Nutlin-3-

induced mitochondrial translocation of p53 stimulates ERK1/2

activation, an anti-apoptotic signal, via mitochondrial

ROS generation.
FIGURE 1

Nuclear and mitochondrial p53 destination after MDM2/4 inhibition. Schematic representation of different destination of p53 after treatment
with a MDM2/4 inhibitor. Cytoplasmatic monoubiquitinated p53 can move through nucleus or mitochondria and activate programs of gene
expression or direct apoptosis induction, with different percentage depending on cellular context. p53-mediated expression modulates live and
death pathways, resulting typically in cell cycle block and apoptosis after MDM2 inhibition. A negative-feedback control is represented by the
MDM2 p53-dependent expression. Treatment with a specific inhibitor of p53-mediated transcription, such as Pifithrin-alpha (PTFa), orients the
program to mitochondria, resulting in mitochondrial damage, membrane permeability (MOMP) and higher apoptotic levels. Created with
Biorender.com.
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When p53 is monoubiquitinated by MDM2, such as in the

presence of nutlin-3, is stabilized (44). This modification

promotes p53 translocation to mitochondria, where p53 is

deubiquitinated by herpesvirus-associated ubiquitin-specific

protease (HAUSP), and the deubiquitinated protein enhances

the mitochondrial outer membrane permeabilization by

interacting with Bcl-2 family proteins (BclXL/Bcl2 and Bax)

(65). Both in vitro as well as in vivo studies have shown that p53

induces apoptosis by altering the mitochondrial outer

membrane permeabilization, although the p53 protein lacks a

mitochondrial localization signal. It is widely accepted that

ubiquitination patterns drive the fate of proteins. For instance,

polyubiquitination of proteins at Lys48 acts as a cellular signal

for proteasomal degradation, whereas multi-(lysine)-

monoubiquitinated proteins are stable in the cytosol and this

modification acts as a signal for intracellular trafficking (65, 66).

Moreover, the second generation MDM2 inhibitor idasanutlin

has been reported to enhance the phosphorylation and

degradation of Mcl-1, promote Bak release and mitochondrial

membrane damage, and induce apoptosis (52).

In parallel, MDM2 inhibitors can directly affect

mitochondrial bioenergetics independently of p53 due to the

role of MDM2 in integrating respiration and apoptosis (67–69).

Cytosolic MDM2 can translocate to the mitochondria and

suppress the transcription of NADH-dehydrogenase 6 (MT-

ND6), which is present in the mitochondrial genome, thus,

inhibiting respiration and inducing ROS (53). Localization of

MDM2 to mitochondria is accompanied by ultrastructural

changes in the organelle, such as reduction in matrix electron

density and misoriented and reduced cristae, and these changes

are not associated with increased apoptosis (53). Interestingly,

this type of mitochondrial morphology is observed in

retinoblastoma (described in the next section), which leads to

the hypothesis that a large fraction of MDM2 could localize to

the mitochondria and induce changes in its morphology and

functions. These specific features of MDM2 can enhance the

p53-mediated effects of MDM2 inhibitors and help induce

cytotoxicity in cancer cells, even in the presence of mutated or

altered p53.
Mitochondrial morphology and
metabolism in retinoblastoma

Several common ocular diseases, such as glaucoma and

diabetic retinopathy are characterized by mitochondrial

dysfunction in the neural retina and retinal pigment

epithelium (RPE). For such diseases, recent studies have
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focused on improving mitochondrial functions to restore

vision, with therapeutic approaches directed to ameliorate

mitochondrial membrane potential and stability, ROS

production, mitochondrial fusion and fission, mitochondrial

biogenesis, mitophagy, apoptosis, and mitochondrial DNA

(mtDNA) transcription (70). Retinoblastoma is not classified

as a mitochondrial disease; however, evidence suggests that

mitochondria are affected in this disease (Figure 2). In normal

retinal cone cells, mitochondria exhibit a specific distribution

and organization. These organelles are present in the inner

segments parallel to the orientation of the cell that helps in

concentrating light onto the outer segment of the photoreceptors

(71, 72). Since the original morphology of the cone cell is lost in

the tumor, the mitochondria appear disorganized in the

cytoplasm of the ret inoblas toma ce l l s . Moreover ,

ultrastructural analyses of poorly differentiated retinoblastoma

revealed reduced mitochondrial number and morphological

aberrations. These mitochondria appear swollen or elongated

due to fusion-fission phenomena, and partial or complete

alteration of cristae is evident, with membrane loss in some

mitochondria (73). Some of these features, particularly

aberrations in cristae with partial or complete cristolysis, have

also been observed in retinal cell organoids and are associated

with the tumor phenotype (7).

Clearly, altered mitochondrial structure in retinoblastoma

cells indicates some degree of mitochondrial dysfunction.

Furthermore, Nicolay et al. reported that in RB1KO RPE cells,

mitochondrial respiration associated with proton leakage is

reduced during the electron transfer (74). Defective electron

transfer to oxygen increases the production of superoxide ions,

which act as a growth signal (75). Simultaneously, free reactive

species promote lipid peroxidation and tumor invasiveness to

the choroid, optic nerves, and orbit (76). Despite the increase

in ROS production, the oxidative balance is maintained,

preventing cell death. Indeed, it has been shown that levels of

the antioxidant enzymes, such as superoxide dismutase,

catalase, and glutathione peroxidase, are increased in Y79

cells following peroxide stimulation (77). Moreover, in the

serum of retinoblastoma patients, the GSH/GSSG ratio is

reportedly high, suggesting the abundance of reduced form,

which acts as a cellular antioxidant (78). Conversely, high

levels of the mitochondrial-associated protein LRPPRC

inhibit autophagy, and in Y79 and WERI-Rb-1 cells, high

levels of LRPPRC activate ROS production and promote

tumor progression (79).

In addition, Singh et al. published a detailed investigation of

the mtDNA, analyzing the mutations in the displacement loop

(D-loop) region in 60 Rb tumors (80). The authors

demonstrated that high-frequency mutations in the mtDNA
frontiersin.org
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D-loop correlate with altered mitochondrial structure, as

described previously, indicating the possible role of these

mutations in the etiopathogenesis of retinoblastoma.

Other mitochondrial functions that are altered in

retinoblastoma include energy metabolism. In a recent

comparison of retinoblastoma tumors to pediatric retina, it has

been observed that advanced retinoblastoma have lower expression

of glycolytic genes, particularly HK1, and altered expression of

Krebs cycle-related genes, suggesting reduced dependence on

glycolysis and altered Krebs cycle, together with a preference for

fatty acid metabolism when compared to the average of all pediatric

retinal cells (81). Moreover, in the same comparison, these tumors

exhibit lower expression of FOXO3, a protein that regulates

apoptosis and autophagy under normal conditions. FOXO3

triggers apoptosis in the absence of survival factors, and low

expression of FOXO3 in advanced retinoblastoma indicates the

tumor strategy to escape apoptosis. However, further studies are

required for a detailed understanding of how differences between

retinoblastoma cells versus total pediatric retina relates to

retinoblastoma tumorigenesis.
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In summary, although mitochondria are dysmorphic in

retinoblastoma cells, their functions are maintained to ensure

tumor cell proliferation. At the molecular level, rapid

proliferation of the retinoblastoma cells is due to the loss of

Rb, which leads to sustained and high levels of free E2F family

proteins. Simultaneously, p53 levels are maintained low in these

cells due to high MDM2 and MDM4 expression.
Preclinical studies of MDM2
inhibitors in retinoblastoma
Despite encouraging in vitro results of nutlin-3 in

retinoblastoma cell lines and primary cells with TP53wild-type/

RB1mutated background (10, 46, 82), results of the in vivo

experiments are not very promising. Animal models receiving

systemic intravenous and oral nutlin-3 administration failed to

achieve IC50 in the vitreous and retina due to the low

permeability of the blood-ocular barrier (83).
FIGURE 2

Altered mitochondria in retinoblastoma. Schematic representation of the altered mitochondria and cellular environment in retinoblastoma tumoral
cell respect to a normal cone photoreceptor, as proposed by recent literature data discussed in paragraph 4. In the normal cell (left), basal levels
of p53 can regulated both nuclear and mitochondrial effects and maintain the intracellular homeostasis. The presence of Rb protein guarantees
both the cell cycle inhibition as well as the ROS control. In the retinoblastoma tumoral cell (right), Rb is lost and high levels of MDM2, E2F-1 and
MYCN favorite p53 degradation and uncontrolled cell cycling. Mitochondria metabolism is deregulated with predominance of fatty acids instead
of glucose consume, DNA mutations in the D-loop region and ROS hyper-production compensated by anti-ROS hyper-induction. Therefore,
mitochondria appear dysmorphic and aberrant but functional for survival and apoptosis escape. Created with Biorender.com.
frontiersin.org
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To overcome this limitation, local delivery of nutlin-3a through

subconjunctival injection has been performed in an orthotopic

retinoblastoma xenograft model; however, the reduction in tumor

volume was low, but the results were significantly improved with

topotecan combination (10). Brennan et al. developed an ocular

formulation of nutlin-3a (nutlin-3aoc) for subconjunctival

administration, and using this formulation, 2000- and 20000-fold

higher intravitreal nutlin-3a levels can be achieved compared to oral

and intravenous administration (45). This formulation has been

validated in combination with systemic topotecan in two mouse

models of retinoblastoma: MDMX mice (constitutively expressing

MDMX, Chx10-Cre; Rblox/lox; p107-/-; MDMXTg background) and

p53TKO mice (Chx10-Cre; Rblox/lox; p107-/-; p53lox/lox background).

Results showed that the activation of p53 was higher and the

response was overall better in mice constitutively expressing

MDMX than in mice lacking p53, confirming that nutlin-3a

activates p53 in cells with high MDMX levels (45). In an

orthotopic and more aggressive model of retinoblastoma,

subconjunctival nutlin-3aoc administration combined with

systemic topotecan, showed significant improvement in survival

due to tumor necrosis and activation of the p53 pathway compared

to that observed using multimodal chemotherapeutic regimens

(VCE or carboplatin/topotecan) (45)
Discussion and future perspectives

Clinical applications of MDM2 inhibitors are limited due to

drug resistance as a result of mutations in MDM2, p53, or other

proteins involved in the response pathways, or due to the off-

target effects (22). To reduce the selection pressure, innovative

therapeutic approaches are needed, such as MDM-2 inhibitors

in combination with other drugs and genetic tools targeting

different molecular pathways or targeting/activating other cell

types present within the tumor microenvironment.

Indeed, new synergistic therapies for retinoblastoma have

recently been developed by combining DNA-damaging drugs

(topotecan and etoposide) with inhibitors of DNA repair agents

(B02), and this combination has synergic effects on p53-

dependent cell death leading to a reduction in Y79 or RB1021

cell-derived tumors, but not in WERI-Rb1 cell-derived tumors in

xenograft models (84). This drug resistance of WERI-Rb1 cell-

derived tumors is due to the preference for p21 rather than Bax

following p53 activation, which can be prevented by using

navitoclax, a Bcl2/Bcl-XL inhibitor. Navitoclax/topotecan,

navitoclax/B02, or navitoclax/topotecan/B02 combination act

synergistically to promote apoptosis in WERI-Rb1 cells by

inducing Bax activation in the mitochondria via the p53

pathway (84). These results represent another proof of concept

that the activation of the p53 pathway is beneficial in
Frontiers in Oncology 06
retinoblastoma and support the possibility that MDM2

inhibitors, the non-genotoxic activators of p53, may be used in

combination with other drugs targeting intracellular pathways to

overcome drug resistance. Another strategy for retinoblastoma

treatment could be MDM2 inhibitors in combination with gene

therapy using the oncolytic adenovirus CVN-01, which selectively

replicates in tumor cells with high levels of free E2F-1. CVN-01

has been used successfully in primary retinoblastoma cells,

xenografts, and in a preliminary phase I trial that reported a

reduction in vitreous tumor seeds in one patient (85). Another

approach could be modifying the tumor microenvironment by

targeting angiogenesis. In retinal vasculature, nutlin-3 possesses

anti-neoangiogenic activity and does not affect mature blood

vessels (86). However, the issue of drug resistance while using a

single agent remains a constrain, and combination with known

antiangiogenic drugs, such as bevacizumab, could attenuate the

selective pressure leading to the inhibition of angiogenesis and

tumor cell death, as observed in a xenograft model of

neuroblastoma (87). Moreover, nanoparticles, such as trans-

ethosomes, have recently been proposed as ophthalmic

formulations (88), with local noninvasive methods of treatment.

Recently, retinal organoids have been generated from patient-

specific induced pluripotent stem cells (iPSC), which may help in

further advancement of the preclinical research (7, 89, 90). These

organoids represent a unique tool for investigating novel

therapeutics and their impact on the differentiation, proliferation,

morphology, and metabolism of tumors. Retinal organoids can be

used to study the effects of MDM2 inhibitors on mitochondria

within the original tumor since these organoids have a 3D

architecture that permits full cell-to-cell contact. Indeed, in the

normal retina, the plasma membrane contact between the adjacent

inner segment of photoreceptors, together with the correct

alignment of the mitochondria inside the cell, seems fundamental

for mitochondrial functions, photoreceptor homeostasis, and correct

visual capacity (71). Since retinoblastoma cells have alterations in the

number, localization, and morphology of mitochondria (73), retinal

organoids can be used to study the effects of MDM2 inhibitors,

either alone or in combination, on p53-dependent mitochondrial

metabolism in a close-to-real setting, including that observed during

the early phases of tumor development.

We believe that the development of new preclinical models

together with recent results from clinical trials, may open new

opportunities for the treatment of retinoblastoma and encourage

the use of MDM2 inhibitors.
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