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Simple Summary: Transcription factors play essential roles in regulating gene expression, impacting
the cell phenotype and function, and in the response of cells to environmental conditions. Alterations
in transcription factors, including gene amplification or deletion, point mutations, and expression
changes, are implicated in carcinogenesis, cancer progression, metastases, and resistance to cancer
treatments. Not surprisingly, transcription factor activity is altered in numerous cancers, representing
a unique class of cancer drug targets. This review updates and integrates information on the
SALL family of transcription factors, highlighting the synergistic and/or antagonistic functions they
perform in various cancer types.

Abstract: SALL proteins are a family of four conserved C2H2 zinc finger transcription factors that
play critical roles in organogenesis during embryonic development. They regulate cell prolifera-
tion, survival, migration, and stemness; consequently, they are involved in various human genetic
disorders and cancer. SALL4 is a well-recognized oncogene; however, SALL1–3 play dual roles
depending on the cancer context and stage of the disease. Current reviews of SALLs have focused
only on SALL2 or SALL4, lacking an integrated view of the SALL family members in cancer. Here,
we update the recent advances of the SALL members in tumor development, cancer progression,
and therapy, highlighting the synergistic and/or antagonistic functions they perform in similar
cancer contexts. We identified common regulatory mechanisms, targets, and signaling pathways
in breast, brain, liver, colon, blood, and HPV-related cancers. In addition, we discuss the potential
of the SALL family members as cancer biomarkers and in the cancer cells’ response to therapies.
Understanding SALL proteins’ function and relationship will open new cancer biology, clinical
research, and therapy perspectives.

Keywords: SALL1; SALL2; SALL3; SALL4; cancer; epigenetic regulation; Wnt; PTEN; biomarker

1. Introduction

SALL proteins are transcription factors that belong to the Spalt-like (Sall) family,
broadly conserved through evolution. They are present in nematodes, flies, planarians,
bilaterians, and vertebrates. They were first identified in Drosophila melanogaster, which
harbors two paralogs: spalt major (salm) and spalt-related (salr). Both proteins play a role
in the homeotic specification of the embryonic termini, wing patterning, sensory organ
development, and photoreceptors specification [1,2]. A recent study in bilaterians suggests
an ancestral role of sall in neural development [3].

Vertebrate genomes harbor four paralogs, SALL1–SALL4, apparently originated by
several duplication events of the spalt locus and evolved from one ancestor more closely
related to Drosophila (salm ortholog) [2]. A phylogenetic analysis of SALL proteins
indicates that SALL1 and SALL3 derived from one common ancestor, and SALL4 derived
from a more distant one. SALL2 shares the least homology, being the most dissimilar
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member of the SALL family, especially in the C-terminal region [4]. They are characterized
by multiple zinc finger domains throughout the protein, a glutamine-rich (poly-Q) region
important for protein–protein interactions, and a conserved twelve-amino-acid domain at
the N-terminal region responsible for the repression activity of SALL proteins, mediated
by an interaction with the Nucleosome Remodeling and Deacetylase (NuRD) complex [5]
(Figure 1). The zinc finger domain 1 corresponds to the C2HC class, and the rest of the
domains (2–5) correspond to the C2H2 zinc fingers arranged in pairs. The second finger
from each pair contains a characteristic domain called Sal-box (FTTKGNLK), present in
other zinc finger transcription factors such as Schurri and PRDII-BF1 [3]. The third zinc
finger domain contains an associated finger also highly conserved among orthologs. The
function of SALL proteins requires nuclear localization, likely depending on the zinc
finger 1 [5] (Figure 1).

Figure 1. Schematic representation of the main SALL protein isoforms. The colors represent the differ-
ent SALL proteins; yellow, blue, green, and red for SALL1, SALL2, SALL3, and SALL4, respectively.
Dark grey rectangles at the N-terminal region represent the C2HC-type Zinc Finger Motif (ZF1).
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Light grey rectangles represent C2H2-type Zinc Finger Motifs 2–5 (ZF2–ZF5); all of them are in
SALL1-A, SALL1-B, and SALL3. SALL4 lacks ZF4, and SALL2 has a motif that differs from the others,
located between ZF4 and ZF5 (depicted as ZF4/5). The pink rectangle at the N-terminal region
represents the conserved 12-amino-acid region that binds to the NuRD complex, named repression
domain (RD). The RD is in SALL1A, SALL2 E1, SALL3, SALL4 A, B, and C. The yellow rectangle
between ZF1 and ZF2 corresponds to the conserved Glutamine-rich (Q-rich) region. The circle at
the described only for SALL2 N-terminal region shows the nuclear localization sequences (NLS)
E1A, and SALL4 A and B. The ensembl transcript ID is under each isoform name in brackets. Exon
representation is above each SALL protein, and the protein length is at the end of each isoform. ZF:
Zinc Finger; Q-rich: Glutamine-rich; RD: Repression Domain; DBD: DNA Binding Domain; NLS:
Nuclear Localization Sequence.

SALL proteins act as tumor suppressors, oncogenes, or have a dual function depending
on the tissue, genetic context, epigenetic regulation, and specific SALL isoforms implicated,
among others. SALL1, SALL2, and SALL4 cancer-related isoforms have been reported [6–10].
Considering that isoforms differ in structure and might have differential expressions and
cellular location, they could be responsible for some of the different functions of SALL
proteins in cancer (Figure 1).

Current reviews on SALL proteins’ role in cancer are available; however, they are
only focused on SALL4 or SALL2 [4,11–15], lacking an integrated view of the SALL family.
Most cancer studies relate SALL4 to an oncogenic function and SALL1–3 to a tumor
suppression role; still, there is evidence that SALL1 and SALL2 could play a dual role.
Here, we will update information and integrate studies involving the SALL proteins in
tumor development, progression, and cancer therapy, highlighting their synergistic and/or
antagonistic functions in similar cancer types. We will also discuss their potential as cancer
biomarkers and therapeutic targets. Understanding SALL proteins’ function and how they
behave in similar cellular contexts will open new perspectives in cancer biology, clinical
research, and therapies.

2. Essential Roles of SALL Genes during Development

Vertebrate SALL proteins participate in the development of extremities and organs,
including the brain, kidney, eye, and heart. Accordingly, SALL genes are implicated in
human genetic disorders [1–5,16]. Mutations of SALL1 cause the Townes–Brocks syndrome
(TBS), a rare autosomal malformation syndrome characterized by anal, renal, limb, and ear
anomalies (Reviewed in [1,2]). Similarly, SALL4 mutations cause the Okihiro/Duane-radial
ray syndrome (DRRS), an autosomal dominant condition characterized by upper-limb
anomalies, ocular anomalies, and renal anomalies in some cases [17]. Meanwhile, SALL2
deficiency causes recessive ocular coloboma [18]. SALL3 deficiency is associated with
ocular anomalies and facial dysmorphism of the human 18q deletion syndrome [19].

Functional studies using knockout mice confirmed the essential roles of Sall1, Sall3,
and Sall4 during development. Loss of function of these genes results in perinatal or
neonatal lethality due to organ alterations during embryonic development. The organ
alterations include kidney agenesis or dysgenesis, abnormal cranial nerve morphology, and
exencephaly [20–22]. Two Sall2 knockout (KO) models exist; the first Sall2KO model did
not show an essential role for Sall2 in embryonic or kidney development [23]. However, the
second Sall2KO model showed severe neural tube defects and defects in the optic fissure
closure, similar to the phenotype of coloboma patients [18,24]. Differences between the
phenotype of Sall2KO models might be related to the different genetic backgrounds of
the mice strains used [23,24]. Sall2KO did not show spontaneous tumor formation [23],
but when crossed with tumor-susceptible mice p53−/−, it exhibited significantly acceler-
ated tumorigenesis, tumor progression, and mortality rate among Sall2+/+/p53−/− mice.
The Sall2−/− or Sal2−/+/p53−/− mice showed thymus T-cell lymphoma that metasta-
sized to the liver, lung, kidney, marrow, peripheral blood, and central nervous system,
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while in most Sall2+/+/p53−/− mice, the lymphoma was limited to the thymus and ad-
jacent organs such as the lung [25]. Moreover, supporting a tumor suppressor function,
the immortalized Sall2−/− MEFs showed an enhanced growth rate, foci formation, and
anchorage-independent growth in comparison to the immortalized Sall2+/+ MEFs [26].

In development, common findings on SALL proteins include a direct interaction
with chromatin remodeling complexes, such as the SWI/SNF or NuRD complexes, and an
association with the canonical Wnt/β-catenin pathway [5,10,27–30]. Particularly relevant for
the SALLs function is their interaction with the NuRD complex. NuRD is involved in global
transcriptional repression and the regulation of specific developmental processes [29,31].
SALLs interact with the NuRD complex through the conserved 12-amino-acid motif. This
motif is not present in some SALL isoforms (Figure 1), suggesting that NuRD is essential
in differentiating their function. However, there is a lack of studies addressing this issue.
Most of the studies have focused on the functional relationship of NuRD with SALL1
or SALL4 in development and cancer. In kidney development and leukemogenesis, the
function of SALL4 through the NuRD complex relies on the repression of PTEN and
SALL1 [32]. In other contexts, the interaction between SALL4 and NuRD impacts different
genes. SALL4 was involved in spermatogonial differentiation. SALL4/NuRD repressed
the expression of the tumor suppressor genes Foxl1 and Dusp4, associating SALL4 function
with the maintenance of undifferentiated spermatogonial activity and stem cell-driven
regeneration [33]. However, in the context of pluripotent cell transcriptional programs, free
SALL4 regulates transcription independently of NuRD [34].

The SALL1/NuRD complex is also involved in kidney development, inhibiting the
premature differentiation of nephron progenitor cells. The disruption of SALL1/NuRD
interaction in vivo resulted in the accelerated differentiation of nephron progenitors and
bilateral renal hypoplasia [28]. In Xenopus embryos, SALL1 interaction with NuRD directly
repressed Gbx2, a transcription factor for cell pluripotency and differentiation in the
embryo [35]. Interestingly, SALL1 association with NuRD is disrupted by the protein
kinase C phosphorylation at serine 2 of the repression motif, suggesting that this kinase
regulates the NuRD-dependent repression function of SALL1 [35]. SALL1 phosphorylation
by PKC may also be involved in breast cancer [36]. SALL1/NuRD inhibited breast cancer
cell growth, proliferation, and metastasis, and a phosphomimetic mutation of SALL1
impaired its tumor suppressor function. Whether Gbx2 is associated with the tumor
suppressor function of SALL1 is currently unknown.

As with many genes that play essential roles in organogenesis during embryonic
development, SALL genes are involved in cancer. Developmental pathways are crucial for
the cellular processes required during embryonic stages, such as epithelial-mesenchymal
transition (EMT), coordinated migration, and cell proliferation, which are also essential
at different stages of tumor progression [37]. Increasing evidence shows an association of
SALL proteins with these processes, which are discussed below.

3. Common Cellular Functions and Targets of the SALL Proteins in Cancer

The number of identified SALL proteins’ target genes has increased in recent years.
They are associated with diverse cellular events such as proliferation, cell death, migration,
invasion, and stemness.

3.1. Cell Proliferation

Several studies have established the role of SALL proteins in cell proliferation, acting as
oncogenes or tumor suppressors under different pathological contexts. For instance, ectopic
SALL2 expression inhibited SKOV3 ovarian cancer cell proliferation by a mechanism
that involves the positive transcriptional regulation of cell cycle inhibitors such as p21
and p16 [38,39]. Accordingly, SALL2 depletion increased A2780 ovarian carcinoma cell
proliferation [40]. The loss of Sall2 in mouse embryonic fibroblasts (MEF) enhanced cell
proliferation and showed faster postmitotic progression through the G1 and S phases. The
mechanism is related to the transcriptional derepression of two SALL2 targets, cyclins D1
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and E1 [26]. On the contrary, SALL4 accelerated cell cycle progression in cervical, lung, and
breast cancer cells, as well as in esophagus squamous cell carcinoma and glioma [41–45].
The opposite roles of SALL2 and SALL4 in cell proliferation agree with the regulation of
c-MYC, a transcription factor involved in cell growth and cell cycle control. SALL2 directly
binds to the nuclease hypersensitive element in the promoter of c-MYC, repressing its
expression [46]. However, SALL4 indirectly increases the levels of c-MYC by activating
the Wnt pathway. SALL4 enhanced the proliferative capacity of HeLa and SiHa cervical
cancer cells through the positive transcriptional regulation of CTNNB1 [41]. CTNNB1
encodes β-catenin, a transcriptional cofactor of TCF/LEF in the Wnt signaling pathway.
Additionally, SALL4 is directly bound to β-catenin, which activates the Wnt pathway in
AML (acute myeloid leukemia) [8]. In both studies, Wnt pathway activation by SALL4
increased c-MYC and cyclin D1, which are related to increased proliferation, survival, EMT,
and metastasis [8,41].

SALL1 is also associated with increased β-catenin expression in human primary
AML samples, and the inhibition of SALL1 resulted in decreased cell proliferation and
AML engraftment in NSG (NOD scid gamma) mice [9]. Interestingly, similar to SALL4,
SALL1 interacts with β-catenin in human kidney BOSC23 cells derived from HEK293T
cells [47], suggesting a common mechanism for Wnt pathway activation via the interaction
of β-catenin with SALL1 and/or SALL4. However, in contrast to the AML context, SALL1
over-expression in MDA breast cancer cells inhibited tumor cell growth and proliferation. It
promoted cell cycle arrest by increasing Cyclin A2, Cyclin B1, Cyclin E1, CDK2, and CDK4,
which are essential for checkpoint regulation in the G1-S transition and S phases [36]. These
findings suggest a dual role for SALL1 in cancer, depending on the cell context.

3.2. Apoptosis and Cell Survival

SALL proteins’ target genes are also associated with the regulation of apoptosis, in-
dicating that SALL2 and SALL4 play opposite roles in this process. Using chromatin
immunoprecipitation followed by microarray hybridization in the human acute promye-
locytic leukemia cell line NB4, Yang and collaborators validated the SALL4 upregulation
of anti-apoptotic genes, such as Bmi-1, BCL2, DAD1, TEGT, BIRC7, and BIRC4, and the
negative regulation of pro-apoptotic genes, such as TNF, TP53, PTEN, CARD9, CARD11,
ATF3, and LTA. Moreover, the inhibition of SALL4 induced apoptosis in NB4 cells, in-
creasing DNA fragmentation as well as caspase-3 and annexin V levels [48]. On the other
hand, the apoptotic cell response to genotoxic stress and Trichostatin A (TSA) treatment re-
quired SALL2 [49–51]. In response to doxorubicin- and etoposide-induced genotoxic stress,
SALL2 induced pro-apoptotic genes such as BAX and PMAIP1 (also known as NOXA)
in human ovarian surface epithelial (HOSE) cells and MEFs. Particularly noteworthy is
the pro-apoptotic role of SALL2, which was independent of p53 expression, suggesting
the key role of SALL2 in the response of cancer cells to therapy in p53 inactive cancer
contexts [49,50].

3.3. Cell Migration and Invasion

Migratory and invasive cell capacities increase during tumor development, which
are strongly associated with metastasis in advanced stages of cancer. There are several
mechanisms by which tumor cells acquire these characteristics of malignancy. One of the
central mechanisms is the inhibition of PTEN, a phosphatase that blocks the PI3K signaling
pathway, inhibiting cell migration, proliferation, and survival [52]. SALL4 repressed PTEN
expression through its interaction with the NuRD complex and favored the development
of AML in mice [32]. In ICC-9810 cholangiocarcinoma cells, SALL4 inhibited migratory
and invasive capacities through the repression of PTEN and the upregulation of Bmi-1 [53].
Similarly, SALL1 inhibition increased PTEN expression in AML cell lines and primary
samples and downregulated mTOR, β-catenin, and NF-қB expression [9]. SALL1 is bound
to the NuRD complex in breast cancer; thus, it is likely that SALL1 and SALL4 share
a similar repressive mechanism for PTEN regulation. However, no changes in PTEN
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expression were detected in breast cancer cells with SALL1 over-expression, suggesting
that the regulation of PTEN by SALL1 is tissue-specific [36].

Meanwhile, SALL2 induces PTEN expression. In breast cancer cells, SALL2 silencing
activated the AKT/mTOR pathway via the downregulation of PTEN. The mechanism
involves the positive regulation of PTEN through the direct binding of SALL2 to canon-
ical GC-rich consensus elements in the PTEN promoter [54]. Although this study did
not associate SALL2-dependent PTEN regulation with cell migration, previous studies
demonstrated that SALL2 expression correlated with impaired cell migration in human
ovarian and esophageal carcinoma cell lines [40,55]. Additionally, the CDH1 and VIM
genes, involved in migration, invasion, and EMT, are common targets for SALL1 and
SALL4 in breast cancer (discussed below).

3.4. Stemmess

Maintenance of stemness is another essential feature of the heterogeneous cell popula-
tion within the tumor, increasing its complexity by conferring the ability to differentiate
into many unrelated cell types.

The role of SALL proteins in stemness maintenance is relevant during embryo de-
velopment and cell fate. For instance, SALL2 and SALL4 are necessary factors for the
self-renewal of hematopoietic stem cells (HSC) [25,56,57]. Interestingly, several studies
suggest that SALL1 and SALL4 act as stemness or differentiation factors, depending on the
development stage and the cell type involved. SALL1 is required for the stem cell mainte-
nance of kidney, heart, and spermatogonial progenitors [27,58–60]. However, SALL1 also
participates in the heart and odontoblast lineage differentiation [59,61]. Similarly, SALL4
plays opposite roles in postnatal spermatogenesis and embryonic germ cells [62]. During
spermatogonia differentiation, SALL4 sequesters Plzf, a factor required to maintain adult
stemness. This interaction leads to the expression of the differentiation marker KIT and the
repression of SALL1 [62]. SALL1 expression in the germline is specific for spermatogonia
progenitor cells. It was proposed as one of the factors involved in spermatogonial stem cell
self-renewal [58].

SALL4 was proposed as a crucial factor for maintaining pluripotency in embry-
onic stem cells (ESCs) by its direct interaction with the core master regulators SOX2 and
OCT4 [63]. Recent research has revealed that SALL4 maintains the pluripotent state in
ESCs by regulating a set of AT-rich genes that promote neuronal differentiation. Worthy of
note here is that the AT-rich gene pull-down by SALL4 depends on the C2H2 zinc-finger
cluster 4 (ZFC4) domain, also found in SALL1 and SALL3, but not in SALL2 [64].

Interestingly, the putative tumor suppressor SALL2 was identified as one of the critical
transcription factors necessary for maintaining the tumor propagating cells in glioblastoma.
SALL2 interacted with SOX2, OCT4, and Nanog in this specific context, promoting stemness
and aggressive behavior [65]. Similarly, SALL1 can interact with SOX2 and Nanog, but not
with OCT4, and consequently induce an undifferentiated state. SALL1 also suppresses
ectodermal and mesodermal differentiation. Meanwhile, SALL1 overexpression was found
to inhibit the induction of gastrulation markers (T brachyury, Goosecoid, and Dkk1) and
neuroectodermal markers (Otx2 and Hand1) [66]. Recently, SALL3 was identified as part
of a small set of transcription factors, including SOX2 and SALL2, that interact with the
Mediator complex in neural stem cells [67]. Altogether, these studies identified SOX2 as a
common SALL protein partner, relevant for the maintenance of stemness.

4. Common Regulatory Mechanisms for SALL Proteins in Cancer

The regulation of SALL proteins is an open field of study and involves several differ-
ent mechanisms for each family member. These include genetic alterations and specific
transcriptional, posttranscriptional, and posttranslational regulation. However, a common
regulatory mechanism for all family members relates to epigenetic modifications, including
chromatin modifications and microRNAs (miRNAs).
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The loss of heterozygosity (LOH) was reported in overlapping regions of SALL genes in
several independent cancer studies and was associated with poor prognosis and metastatic
recurrence. These regions include SALL1 (16q12.1) [68,69], SALL2 (14q11.1–12) [70–76], and
SALL3 (18q23) [76–78]. On the other hand, chromosomal amplifications were found in the
SALL4 region (20q13.2) [79–85].

Specific transcription factors regulate the expression of SALL genes. SALL2 is transcrip-
tionally activated by AP4 and Sp1 [51,86] and repressed by WT1, p53, and FosL1 [87–89]. On the
other hand, TCF/LEF, STAT3, and CDX1 are transcriptional activators of SALL4 [10,90,91]
(Figure 2). Remarkably, SALL4 controls their expression and represses SALL1 and SALL3,
thus regulating the stemness of ES cells [63]. In murine transgenic models, SALL4 represses
SALL1 and PTEN through the NuRD repressor complex, leading to pathologies such as
cystic kidney and myeloid leukemia, respectively [32].
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Figure 2. Common upstream regulation, partners, genes, and cellular functions of the SALL family.
Epigenetic changes, including gene hypermethylation, hypomethylation, and miRs, are common mech-
anisms of SALL regulation. SALL1–3 promoters are hypermethylated in several cancers [54,55,92–97].
In contrast, the SALL4 promoter is hypomethylated in AML and MDS [98,99] and regulated by
miRNAs in multiple cancer types [100]. Additionally, SALL1 and SALL2 are regulated by miRs
(Table 1). Regulation by specific transcription factors depicted for SALL2 and SALL4. SALL proteins
interact with specific partners to perform their functions; shared protein partners among the family
include β-catenin and DNMT3. In addition, the four SALLs interact with the NuRD complex and
with SOX2. Common transcriptional targets of SALLs are associated with cell proliferation and
migration/invasion. SALL2 and SALL4 oppositely regulate CCDN1, c-MYC, and PTEN. Similarly,
SALL1 and SALL4 oppositely regulate CDH1 (E-cadherin) and VIM (vimentin). However, SALL1
and SALL4 are both negative regulators of PTEN. Moreover, apoptosis-associated genes, such as
BAX and PMAIP1 (NOXA), are regulated by SALL2. Green lines: positive regulation. Red lines:
negative regulation. Dotted lines: proposed association.
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Table 1. Summary of all microRNAs known to regulate SALLs.

Cancer
Type/Cellular

Model
microRNA Target SALL Status/Key Findings Experimental Approach Ref.

Glioma/Glioblastoma miR-302/367 cluster SALL2

miR-302/367 cluster can reprogram tumor
cells, generating more benign phenotypes

by suppressing OCT3/4, SOX2, KLF4,
c-MYC, POU3F2, OLIG2, and SALL2

qRT-PCR, cytokine array
analysis [101]

Glioma/Glioblastoma miR-16 SALL4
miR-16 inhibits proliferation, migration,
and invasion in glioma cells by directly

targeting SALL4

qRT-PCR and Luciferase
reporter assay [102]

Glioma/Glioblastoma miR-103/miR-
195/miR-15-B SALL4

miR-103, miR-195, and miR-15-B inhibit
proliferation, migration, and invasion and
promote apoptosis in glioma by directly

targeting SALL4

qRT-PCR, Western blot, and
Luciferase reporter assay [103]

Glioma/Glioblastoma miR-107 SALL4
miR-107 inhibits proliferation and

promotes apoptosis in glioma cells by
directly targeting SALL4

qRT-PCR, Western blot, and
Luciferase reporter assay [104]

Glioma/Glioblastoma miR-181b SALL4
miR-181b inhibits proliferation, migration,
and invasion and promotes apoptosis in

glioma by directly targeting SALL4

qRT-PCR, Western blot, and
Luciferase reporter assay [105]

Gastric cancer miR188-5p SALL4

miR-188-5p promotes proliferation and
migration by upregulating SALL4

expression, nuclear translocation, and
transcription

qRT-PCR, Western blot, and
Luciferase reporter assay [106]

Gastric cancer miR-16 SALL4
miR-16 inhibits proliferation and

migration in GC by directly targeting
SALL4

qRT-PCR and Luciferase
reporter assay [107]

Colorectal cancer miR-181a-2 * SALL1
miR-181a-2 * correlates with a trend of

repression of SALL1 and high methylation
status of the SALL1 promoter

qRT-PCR and bisulfite
modification followed by
quantitative methylation-

specific PCR (qMSP)

[108]

Colorectal cancer miR-219-5p SALL4

miR-219-5p inhibits proliferation,
migration, and invasion, reduces drug
resistance, and promotes apoptosis in

CRC by directly targeting SALL4

qRT-PCR, Western blot, and
Luciferase reporter assay [109]

Colorectal cancer miR-3622a-3p SALL4

miR-3622a-3p inhibits proliferation, cell
cycle, migration, invasion, and stemness

features and promotes apoptosis by
targeting SALL4

qRT-PCR, Luciferase assay,
RNA immunoprecipitation
(RIP) assay, and pull-down

assay

[110]

Embryonic stem cell miR15-B SALL4 Anti-miR-15b enhances expansion of HSC
in vitro by targeting SALL4 qRT-PCR [111]

Embryonic stem cell miR-294 and let-7
miRNAs SALL4

Let-7 miR family inhibits self-renewal
genes, and miR-294 indirectly induces
self-renewal genes, including SALL4

qRT-PCR, Western blot, and
Luciferase reporter assay [112]

Oral squamous cell
carcinoma miR-103 SALL4

miR-103 inhibits cell proliferation and
invasion by downregulating SALL4

mRNA in Tca8113 cells
Luciferase reporter assay [113]

Breast cancer SNHG12 and
miR-15a-5p SALL4

Long non-coding RNA (lncRNA) small
nucleolar RNA host gene 12 (SNHG12)
promotes proliferation, migration, and

invasion and inhibits apoptosis in breast
cancer by upregulating SALL4 expression

via sponging miR-15a-5p; SALL4 is a
direct target of miR-15a-5p

qRT-PCR, Western blot, and
Luciferase reporter assay [114]

Renal cell carcinoma miR-942 SALL1
miR-942 affects survival of patients with

renal cell carcinoma by negatively
regulating the expression of SALL1

RNA-seq and qRT-PCR [115]

Prostate cancer miR-4286 SALL1
miR-4286 regulates proliferation and

apoptosis in PCa cells by directly targeting
the 3′UTR of SALL1 mRNA

qRT-PCR and Luciferase
reporter assay [116]

Lung cancer HOXA11-AS and
miR-3619-5p SALL4

lncRNA homeobox A11 antisense
(HOXA11-AS) promotes proliferation,
migration, invasion, and glycolysis in

non-small cell lung cancer (NSCLC) cells
by upregulating SALL4 expression via

sponging miR-3619-5p; SALL4 is a direct
target of miR-3619-5p

qRT-PCR, Western blot, and
Luciferase reporter assay [117]
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Table 1. Cont.

Cancer
Type/Cellular

Model
microRNA Target SALL Status/Key Findings Experimental Approach Ref.

Osteosarcoma ZEB2-AS1 and
miR-107 SALL4

lncRNA ZEB2-AS1 (ZEB2-AS1) promotes
proliferation, invasion, and metastasis and
inhibits apoptosis in osteosarcoma cells by

upregulating SALL4 expression via
sponging miR-107; SALL4 is a direct

target of miR-107

qRT-PCR, Luciferase assay,
and RNA pull-down assay [118]

Hepatocellular
carcinoma miR-296-5p SALL4

miR-296-5p inhibits stemness potency of
hepatocellular carcinoma (HCC) cells via

the Brg1/Sall4 axis; Brg1 binds to the
SALL4 promoter

qRT-PCR, Western blot,
Luciferase reporter assay,

and Chromatin
immunoprecipitation

(ChIP) assay

[119]

Hepatocellular
carcinoma miR-15a SALL4

Exosomal miR-15a reduces proliferation,
migration, invasion, and survival by

directly targeting SALL4

qRT-PCR, Western blot, and
Luciferase reporter assay [120]

Promoter hypermethylation is frequent for SALL1, SALL2, and SALL3, and the regu-
lation of 3′UTR by miRNAs appears as a typical regulatory mechanism for SALL4. Epi-
genetic modifications on SALL genes are consistent with their prominent roles as tumor
suppressors or oncogenes. For instance, associated with their tumor suppressor role, the
hypermethylation of the SALL1 and SALL2 promoters were described in breast cancer and
esophageal squamous cell carcinoma (ESCC) [54,55,92,93]. The hypermethylation of the
SALL2 promoter was associated with aggressive and tamoxifen-resistant breast cancer phe-
notypes [54]. In oral squamous cell carcinoma (OSCC), SALL2 promoter hypermethylation
positively correlates with SALL1 and SALL3 promoter methylation status and aggressive
tumor behavior [94].

The SALL promoters are also aberrantly methylated in HPV-related cancers. Several
studies indicate that the hypermethylation of SALL1 and SALL3 promoters correlates with
poor outcomes and recurrence in head and neck squamous cell carcinoma (HNSCC) [95–97].
However, SALL4 is upregulated in this type of cancer, and its expression correlates with
disease recurrence and decreased disease-free survival. High SALL4 expression positively
correlated with DNA methyltransferase 3 alpha (DNMT3A) expression and the increased
methylation rate of 11 tumor suppressor genes. Still, there was no significant correlation
between SALL4 expression and SALL1, SALL2, and SALL3 methylation status [121]. Aber-
rant hypomethylation of the SALL4 promoter is described as a common event in AML and
myelodysplastic syndrome (MDS) [98,99].

Table 1 shows the repertory of miRNAs regulating SALL1, SALL2, and SALL4 in
different cancer types. Most of them target SALL4, and some miRNAs are common among
cancers. More specifically for SALL4, miR-16 is common in glioma and gastric cancer, miR-
103 in glioma and oral squamous cell carcinoma, and miR-107 in glioma and osteosarcoma.
For more comprehensive information on SALL4 and miRNAs and the strategies targeting
the miR/SALL4 axis in cancer, see a recent review by Liu J and collaborators [100].

These studies identified common upstream regulation, targets, and cellular functions.
However, their effects seem to be opposite or synergic, depending on the tumor context
and the implicated SALL protein. Concerning the role of SALL3 in cancer development
and progression, the available information is still scarce, but we will discuss recent studies
on SALL3 by cancer subtype in the next section. In Figure 2, we illustrate SALL proteins’
shared targets, partners, cellular functions, and regulatory mechanisms.



Cancers 2021, 13, 6292 10 of 26

5. SALL Proteins in Cancer

SALL proteins are altered in various cancer types (Table 2 and Figure 3). Alterations
include deregulation in gene expression, isoform expression, and genetic aberrations. We
focused our analysis on those cancer types with the most considerable data on SALL
family members.

Table 2. Deregulation of SALLs in other cancers.

Cancer Type SALL
Member

Expression
Levels

Genetic Alter-
ation/Regulation

Association With
Cancer/Biological Process

Proposed
Cancer Role Ref.

Lung SALL1 High Undescribed Expression correlated with lower overall
survival of NSCLC patients Oncogene [122]

Lung SALL2 Low LOH Undescribed Undescribed [71]

Lung SALL4 High Undescribed
Expressed in 88% of the lung cancer

samples
May be used as a diagnostic marker

Oncogene [123]

Lung SALL4 High Undescribed

SALL4 knockdown inhibits cell
proliferation by cell cycle arrest at the

GO/G1 phase
Loss of SALL4 function inhibits migration,

invasion and reduces the transplanted
tumors size in an in vivo model

Oncogene [43]

Lung SALL4 High Undescribed SALL4 silencing sensitizes cells to cisplatin,
carboplatin, and paclitaxel treatment Oncogene [124]

Esophageal SALL1 Low Hypermethylation
SALL1, ADHFE1, EOMES, and TFPI2 are
proposed as part of a tumor suppressors

panel with diagnostic relevance

Tumor
suppressor

[93,
125]

Esophageal SALL2
Low in

radioresistant
ESCC cell lines

Hypermethylation

SALL2 overexpression enhances apoptosis
after radiation and decreases migration,

viability, and cisplatin resistance in TE-1/R
and Eca-109/R cell lines

Tumor
suppressor [55]

Esophageal SALL4 High Undescribed

SALL4 silencing in ESCC cells is associated
with suppressing cell migration, invasion,

viability, and drug resistance in vivo
SALL4 knockdown reduces

epithelial-mesenchymal transition by
targeting the Wnt/β-catenin signaling

pathway

Oncogene [42,
126]

Bladder SALL2 Low LOH Undescribed Tumor
suppressor [70]

Bladder SALL3 Low Hypermethylation SALL3, CFTR, and TWIST1 are proposed as
disease recurrence predictors

Tumor
suppressor

[127,
128]

Testicular
tumors SALL4 High Undescribed SALL4 is a novel sensitive and specific

marker for testicular germ cell tumors Oncogene [129]

Kidney SALL1 Low miR-942 SALL1 inhibition plays a potential role in
sunitinib resistance in RCC patients

Tumor
suppressor [115]

Wilms’ tumor SALL1 High Undescribed Undescribed Oncogene [130,
131]

Wilms’ tumor SALL2 High Undescribed

SALL2 was identified as one of the 27
signature genes highly expressed by

comparing tumor samples with normal
fetal kidneys

Oncogene [132]

Kidney SALL3 Low Methylation SALL3 downregulation may contribute to
genome hypermethylation similar to VHL

Tumor
suppressor [133]

Wilms’ tumor SALL4 High Undescribed Undescribed Oncogene [134]
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5.1. Breast Cancer

Breast cancer is the most diagnosed tumor and the leading cause of cancer death
among women worldwide. Thus, understanding its molecular mechanisms has become
necessary for early diagnosis and successful treatment. The intrinsic classification of breast
cancer distinguishes four subtypes: luminal A, luminal B, basal-like, and HER2-positive.
This classification allows for the development of specific types of clinical management for
breast cancer patients. In this line, the expression of the estrogen receptor (ER), progesterone
receptor (PR), and HER2 biomarkers are related to a better prognosis and response to
therapy in breast cancer patients than those with the absence of these biomarkers [135].
Several independent studies suggest that SALL1, SALL2, and SALL4 play a role in the
origin, progression, and response to breast cancer therapy.

SALL2 is a putative target gene of MYB, a transcription factor predicted as a prognostic
gene signature across molecular breast cancer subtypes. More importantly, MYB and
SALL2 were suggested to attenuate histological grade promotion and prevent breast cancer
progression [136]. In addition, a differentially weighted graphical LASSO analysis showed
SALL2 to be among the top 10 genes that are highly relevant in studies on the discovery
of breast cancer biomarkers [137]. In addition, a transcription profiling analysis identified
SALL2 to have been significantly reduced during tamoxifen therapy by a mechanism that
involves the hypermethylation of the SALL2 promoter. SALL2 transcriptionally upregulates
estrogen receptor-alfa (ESR1) and PTEN, and directly binds to their promoters. Accordingly,
the depletion of SALL2 decreased ESR1 and PTEN expression, activated the Akt/mTOR
signaling, and resulted in estrogen-independent growth and tamoxifen resistance in ERα-
positive breast cancer. Of relevance here is 5-azacitidine, a DNMTi (DNA methyltransferase
inhibitor), which triggered SALL2 restoration and sensitized tamoxifen-resistant breast
cancer to tamoxifen therapy in vivo [54]. Consistent with the negative regulation of cell
proliferation by SALL2 [26,38], bioinformatic studies using public data and R2 software
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showed a negative correlation between SALL2 and CCNE1 in breast cancer samples [26].
The studies above suggest that SALL2 behaves as a tumor suppressor in breast cancer.

Similar to SALL2, SALL1 is downregulated in human breast cancer cells and tissues
and correlates with ESR1 expression. An immunohistochemistry analysis of 17 tissues
indicated that the number of SALL1 positive cells is significantly higher in estrogen receptor-
positive (ER+) than in estrogen receptor-negative (ER−) patients [36]. Five-azacitidine
also restored SALL1 expression on methylated breast cancer cell lines [92]. Consistent
with its tumor suppressor role in breast cancer, SALL1 inhibited tumor growth, metastasis
in the lung and liver, and promoted cell cycle arrest and senescence. Mechanistically,
SALL1-dependent growth inhibition and senescence involved the recruitment of the NuRD
complex and the activation of the p38 MAPK, ERK1/2, and mTOR signaling pathways [36].
Similarly, SALL1 knockdown led to the differential expression of EMT markers, such as
E-cadherin and vimentin in SUM149 breast cancer cells, leading to increased cell migration
in vitro. Moreover, SALL1-knockdown SUM149 cells xenografted into immunodeficient
NSG mice resulted in a significantly decreased tumor-free survival [138].

Unlike SALL1 and SALL2, studies showed higher SALL4 expression in breast cancer
cell lines and primary tissues than their non-tumoral counterparts [45,90,139]. This high
expression of SALL4 positively correlated with tumor size and lymphatic metastasis [45].
Functionally, SALL4 knockdown inhibited cell proliferation and induced the G0/G1 cell
cycle arrest of MDA breast cancer cells, an effect explained by the SALL4 positive regu-
lation of the Wnt/β-catenin pathway in breast tumors [45]. In addition, in vitro SALL4
knockdown decreased migratory cell ability and promoted focal adhesion dynamics by the
negative regulation of EMT-related markers (ZEB1, vimentin, and integrin α6β1), which
was directly associated with E-cadherin recovery [140,141]. Consistent with the previous
results, in vivo studies indicated that vimentin regulation by SALL4 enhances EMT, mam-
mosphere formation, and tumorigenicity. SALL4 deficiency reduced lung colonization in
MDA-MB-231 cells [142] and was associated with triple-negative (ER-, PR-, and HER2-)
phenotypes [143]. Nevertheless, a recent study from 371 breast cancer patients showed
that SALL4 expression positively correlates with PR protein level. PR was related to breast
cancer stemness in vitro, similar to SALL4 [142]. For an extensive review on SALL4 and
breast cancer, refer to [143].

Altogether, studies suggest that in breast cancer, SALL1 and SALL4 are involved in mi-
gration, invasion, and EMT by regulating common targets such as E-cadherin and vimentin,
but in an opposite manner. Moreover, SALL1 and SALL2 act as tumor suppressors and are
associated with proliferation arrest, ESR1 expression, and good prognosis. SALL1, SALL2,
and ESR1 expression analyses could help to categorize breast cancer patients who may
benefit from combined therapies: tamoxifen and DNMTi. The restoration of SALL2 and
SALL1 expression with DNMTi may directly impact breast cancer treatment, increasing
tamoxifen sensitivity in tamoxifen-resistant breast cancers.

5.2. Brain Tumors

Glioma refers to a primary brain or spinal tumor that derives from the neuroglial stem
or progenitor cells. Glioblastoma multiforme (GBM) is the most malignant and frequently
occurring type of brain cancer. Despite advances in treatment approaches, it remains
incurable [144]. To date, all studies regarding the role of SALL proteins in brain tumors are
focused on GBM.

Unlike its tumor suppressor role in breast and ovarian cancer [4,38,145,146], SALL2 is
part of the four-core neurodevelopmental transcription factors (including POU3F2, SOX2,
and OLIG2) in GBM, which are sufficient to fully reprogram differentiated glioblastoma
cells (DGCs) into stem-like tumor propagating cells (TPCs). In this context, SALL2 binds
and activates TPC-specific regulatory elements. However, its interaction with the DNA
is not associated with the previously CG-rich consensus motif identified by Gu and col-
laborators, found in cell cycle and pro-apoptotic gene promoters [49,65]. Instead, in the
GBM context, SALL2 interacts with SOX2, which could explain the binding of SALL2 to
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SOX-like AT-rich elements [6]. Loss of function experiments through the induction of the
miR-302/367 cluster in U87 cells revealed the importance of SALL2 and the other three
transcription factors in brain tumor malignancy [101]. It was further supported by using
lipopolymeric nanoparticle-containing combo siRNA (OLIG2, POU3F2, SALL2, and SOX2)
targeting brain tumor-initiating cells (BTICs) in a mouse brain tumor model. The combo
siRNA downregulated the PI3K/AKT and the STAT3 signaling, decreasing tumorigenicity
and providing survival benefits [147]. These results opened possible avenues for future
therapies that target brain tumor-initiating cells.

SALL4 has also been associated with increased tumorigenicity due to higher expres-
sion levels in GBM human samples as compared with normal brain tissue. The analysis of
524 GBM patients from the TCGA database showed a robust negative correlation between
SALL4 expression and overall survival [148]. Furthermore, SALL4 silencing in the U87
and U251 GBM cell lines reduced cell proliferation by increasing PTEN expression and
decreasing the PI3K/AKT pathway activity, triggering G1 cell cycle arrest [44].

On the other hand, SALL1 downregulation has been described in cerebral glioma
tissues, correlating with higher tumor grade and lower survival. The overexpression
of SALL1 in the U87 and U251 GBM cell lines induced a decrease in the expression of
β-catenin, c-MYC, cyclin D1, and EMT markers, impairing migratory and invasive cell
capacity. It also increased p21 and p27 expression, leading to G0/G1 cell cycle arrest [149].

In summary, SALL1 functions as a putative tumor suppressor in GBM, but SALL2
and SALL4 are crucial for tumor development and progression, which is associated with
PI3K/AKT pathway activation and the maintenance of an undifferentiated aggressive
phenotype.

5.3. Blood Cancers

Hematological malignancies correspond to a heterogeneous group of lymphoid and
myeloid neoplasms caused by the deregulation of normal hematopoietic processes. They
include leukemias, lymphoma, and multiple myelomas and are classified based on genetics,
immunophenotype, morphology, and molecular and clinical characteristics [150]. SALL1,
SALL2, and SALL4 were associated with hematological malignancies.

Two independent genome-wide analyses confirmed the hypermethylation of the
aberrant SALL1 promoter in human samples of acute lymphocytic leukemia (ALL) and
chronic lymphocytic leukemia (CLL). SALL1 hypermethylation correlated with worse
overall survival in patients [151,152]. Furthermore, SALL1 seems to have an oncogenic role
in acute myeloid leukemia (AML). SALL1 silencing decreased human primary AML cell
proliferation, resulted in low AML engraftment into NSG mice, and correlated with the
upregulation of PTEN and the downregulation of mTOR, β-catenin, and NF-қB expression.
This oncogenic role of SALL1 in AML may be associated with the expression of SALL1
isoform 2, characterized by the loss of exon 1 (Figure 1). SALL1 isoform 2 is expressed in
AML but not in normal bone marrow, suggesting that this isoform has a different behavior
than other SALL1 isoforms [9]. Thus, depending on the hematological malignancy, SALL1
could play different roles, as a tumor suppressor in lymphoid progenitor-derived leukemia
(ALL-CLL) and as an oncogene in myeloid progenitor-derived leukemia (AML). Identifying
the SALL1 isoform deregulated in ALL and CLL could help define the role and mechanisms
of SALL1 in leukemia.

SALL2 is expressed in normal bone marrow but absent or weak in AML samples,
suggesting that lost or reduced SALL2 expression is related to myeloid leukemogenesis.
Moreover, Sall2−/− or Sall2−/+/p53−/− mice showed enhanced tumorigenesis, lymphoma
progression, metastasis, and mortality rate compared with the Sall2+/+/p53−/− mice [25].
Interestingly, Histone Deacetylase Inhibitor (HDACi) TSA treatment induced SALL2-
dependent apoptosis in Jurkat T cells. The genomic deletion of SALL2 suppressed PARP
cleavage, decreased apoptotic cell population, and increased cell viability under TSA
treatment. In contrast, the overexpression of SALL2 decreased cell viability. These data



Cancers 2021, 13, 6292 14 of 26

indicate that SALL2 is required for the apoptotic response in Jurkat T cells, an acute T cell
leukemia model, thus supporting its role as a tumor suppressor [51].

SALL4 is highly expressed in hematopoietic malignancies and is associated with
deteriorated disease status in patients [153]. Three SALL4 functional isoforms were iden-
tified in blood cancers in humans and mice (A, B, and C). Most studies are on the A
and B variants (Figure 1). SALL4A is the full-length isoform, and SALL4B lacks exon
2 [12]. In transgenic mouse model studies, the SALL4A and SALL4B isoforms bound
β-catenin, synergistically activating the WNT/β-catenin pathway, which plays a critical
role in controlling leukemia stem cell self-renewal [154]. SALL4 also promoted leukemo-
genesis by repressing the tumor suppressor PTEN, similar to its breast cancer function.
The mechanism involves the interaction of SALL4 with the histone deacetylase (HDAC)
NuRD complex. Blocking SALL4/HDAC interaction with a peptide derived from the
amino-terminal 12-amino-acid sequence of SALL4 led to higher PTEN expression and an
antiproliferative effect on SALL4-expressing cancer cells. Of relevance here is that similar
to SALL4 down-regulation, the SALL4 peptide treatment of primary AML cells impaired
leukemic engraftment in vivo [155].

Together, these studies suggest that SALL1 and SALL2 play opposite roles in myeloid
progenitor-derived leukemia, as oncogene and tumor suppressor, respectively. However, in
lymphoid progenitor-derived leukemia (ALL-CLL), SALL1 could act as a tumor suppressor.
SALL4 is oncogenic, required for leukemia stem cell self-renewal. Remarkably, both SALL1
and SALL4 positively regulate the WNT/β-catenin pathway. For a more comprehensive
overview of SALL4 research on blood cancers, refer to [153].

5.4. Colorectal Cancer

Colorectal cancer (CRC) is the second most diagnosed malignancy worldwide in
women and the third in men [156]. Advances in CRC research have increased the disease
treatment options. Despite new approaches in the treatment of CRC patients, none is
entirely effective, resulting in high recurrence even after tumor resection. Thus, it is
necessary to search for new targets to facilitate the diagnosis and treatment [156]. In this
context, SALL proteins could have a promising role.

The epigenetic inactivation of SALL1 in epithelial cancers, including CRC, was iden-
tified using the MIRA (methylated-CpG island recovery assay) and CpG island arrays.
SALL1 promoter methylation was present in 83% of CRC and 89% of adenomas, while
methylation frequency in normal tissues was 38% [92]. Additionally, Zhang and collab-
orators identified SALL1 and SALL3 as part of a high-risk group of genes differentially
expressed within a vast number of genes whose methylation status also differed when
comparing tumor and adjacent normal tissue. The study suggested SALL1 and SALL3 as
being the new candidate biomarkers of poor prognosis in CRC. Epigenetic mechanisms
partly mediate the loss of SALL1 and SALL3 in CRC [157]. Recently, SALL1 was identified
as one of nine prognostic gene signatures predicting survival in CRC patients [158].

There are some conflicting studies on the expression of SALL4 in CRC. SALL4 is
upregulated, and its expression positively correlates with tumor stage, metastasis to lymph
nodes, and poor differentiation in CRC samples [159,160]. Accordingly, a Kaplan–Meier
analysis conducted after five years of follow-up on 135 CRC patients associated SALL4
expression with a lower survival rate as compared to the SALL4 negative group [161].
However, an immunohistochemical analysis of 149 patients revealed the significantly lower
expression of SALL4 in CRC (46.3%) than in atypical hyperplasia (68.0%) and normal tissue
(78.9%) [162]. However, as in previous studies, SALL4 expression positively correlated with
lymph node metastasis, tumor node metastasis, and Dukes’ stages. SALL4 and β-catenin
positively correlated in CRC tissues and cells, showing co-localization and interaction [162].
This study suggested that the function of SALL4 in promoting lymph node metastasis
and the advanced clinical stage is partly due to its interaction with β-catenin. In addition,
the flavonoid chrysin treatment of CT29 murine CRC cells decreased SALL4 expression,
resulting in apoptosis induction associated with increased BAX levels and caspase 3/9
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activity and with a decrease in tumor size in allograft assays [163]. The upregulation
of SALL4 in CRC is partly due to the low aberrant expression of miR-3622a-3p, one of
the SALL4 upstream negative regulators (Table 2). The overexpression of miR-3622a-
3p in CRC cells decreased stemness features and EMT-related markers via the targeting
of SALL4 [110]. In addition, miR-219-5p also inhibited colon cancer carcinogenesis by
targeting SALL4 [109].

There are no functional studies of SALL2 or SALL3 in CRC; however, loss of heterozy-
gosity (LOH) has been reported in the 14q12-13 region, a chromosomal region where the
SALL2 gene is located [72]. Bioinformatic analysis of massive CRC public data indicates that
SALL2 is significantly downregulated in CRC [6]. However, another recent bioinformatic
study identified a positive correlation between SALL2 and the degree of tumor-stromal cell
infiltrates in colon and rectum adenocarcinomas [164].

Interestingly, in a small-sample-size study of primary and metastatic tumors from
four patients with CRC, SALL3 was identified as one of seventeen genes significantly
upregulated in CD133+ cells as compared to CD133− CRC cells, suggesting its potential as
a biomarker of CRC stemness [165]. Thus, SALL proteins can positively or negatively affect
CRC progression by different pathways and mechanisms. However, additional studies are
required to elucidate the role of the SALL proteins in CRC.

5.5. Hepatocellular Carcinoma

Hepatocellular carcinoma (HCC) is the most common primary liver cancer worldwide.
Carcinogenesis is associated with alcohol consumption, smoking, and genetic background,
but the primary cause is the hepatitis B virus (HBV) infection. A recent meta-analysis
proposed an association between HBV infection and gene methylation in HCC develop-
ment [166]. SALL3 tumor suppressor function was associated with CpG island methylation
in HCC. SALL3 directly interacts with DNMT3A, decreasing CpG methylation status [167].
Thus, the epigenetic silencing of SALL3 increases DNMT3A binding to chromatin, resulting
in aberrant CpG island methylation that should contribute to HCC development [168,169].

Contrary to SALL3 hypermethylation, the SALL4 promoter is hypomethylated in
HCC tissues and cell lines infected with HBV and the hepatitis C virus (HCV), which leads
to the aberrant overexpression of the SALL4A and SALL4B isoforms [170]. Several studies
demonstrated that the high expression of SALL4 in HCC is related to stem cell character-
istics and poor prognosis [171–175]. SALL4 was detected in HCC, but its expression was
weak in benign lesions and undetected in adjacent noncancerous hepatic tissues. Moreover,
SALL4 was associated with α-fetoprotein (AFP), a well-known diagnostic marker in HCC.
The detection of SALL4 combined with AFP may be helpful for prognostic stratification.
Patients with higher levels of SALL4 and AFP were associated with a worse prognosis [172].
Additionally, a recent investigation suggests that a quantitative analysis of the liver func-
tion by contrast-enhanced ultrasonography (CEUS) in conjunction with a quantitative
analysis of the SALL4/Wnt/β-catenin axis expression may serve as an early diagnosis
method for HCC patients [176].

A recent study proposed that the inflammatory microenvironment promotes stem-
ness and the metastatic phenotype in HCC via the NF-κB/miR-497/SALL4 axis. TNF-α
activated NF-κB and repressed the miR-497 promoter. Consequently, the upregulation of
SALL4 promoted stem cell self-renewal and metastasis [177]. On the other hand, SALL4
could impact the tumor microenvironment and support tumor progression by affecting
the HCC exosome content. SALL4 bound to the miR-146a-5p promoter and positively
regulated its expression in HCC exosomes. The miR-146a-5p from exosomes increased
the number of M2-polarized tumor-associated macrophages that support tumor progres-
sion [178].

Altogether, the evidence points to SALL4 as a potential candidate for HCC therapy.
Additionally, SALL3’s relationship with global methylation appears to be an attractive field
of study. Demethylating agents are increasingly being used and proposed for clinical trials
in different tumors, including HCC [179].
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5.6. HNSCC and Cervical Cancer

Strong evidence associates the human papillomavirus (HPV) with several human
diseases, including cancer. To date, more than 170 HPV genotypes have been described, of
which the high-risk HPV (HR-HPV) types 16, 18, 31, 33, and 35 are related to malignancies
such as cervical carcinoma and head and neck squamous cell carcinoma (HNSCC). HNSCC
includes a heterogeneous group of malignancies that arise in the oral cavity, pharynx, or
larynx [180].

The first study that associated SALL proteins with HPV-related cancer showed that
oncoprotein E6 from HR-HPV infection binds SALL2 and induces its stabilization in cervical
cancer cells. This interaction prevented the binding of SALL2 to the p21 promoter, leading
to the accumulation of inactive SALL2 in SiHa, Caski, and HeLa HR-HPV positive cervical
cancer cell lines [146]. However, the cellular location and significance of the inactive SALL2
protein in cervical and other HPV-related cancers require further investigation.

Subsequent evidence of a relation between SALLs and HPV-related cancers conveys
their epigenetic regulation. The hypermethylation of the SALL3 promoter was described
in different HPV-related cancer cell lines and tissues such as cervical cancer and HN-
SCC [95,96,181]. SALL3 hypermethylation correlates with reduced disease-free survival
(DFS) in stage III and IV HNSCC patients [96]. Moreover, the SALL3 chromosomal locus
is part of a region with genes identified as significant prognostic biomarkers in HNSCC
patients. Here, LOH on chromosome 18q23 is associated with significantly decreased
survival in HNSCC patients [95]. Similar to SALL3, SALL1 is aberrantly hypermethylated
in HNSCC. It correlates with reduced DFS in early-stage T1 and T2 patients and with the
methylation status of the SALL3 promoter [97]. In the same context, SALL2 hypermethyla-
tion correlated with the methylation status of SALL1 and SALL3. Thus, more than one SALL
(SALL1–3) hypermethylation positively correlates with a worse prognosis and lower DFS
in HNSCC [94]. In contrast to SALL1 and SALL3, high SALL4 expression is correlated with
disease recurrence and decreased DFS rates in HNSCC [121]. SALL4 expression increased
G1 to the S-phase cell cycle progression in cervical cancer cell lines by a mechanism that
involves the increment of β-catenin expression, a necessary cofactor for activating the
Wnt/β-catenin signaling pathway involved in cell proliferation [41].

In summary, members of the SALL family are related to HNSCC and cervical carci-
noma, with a loss of function of SALL1–3 by epigenetic silencing. Furthermore, SALL4
upregulation is associated with a poor prognosis. The involvement of SALL proteins in other
HPV-related cancers such as penile, vulvar, vaginal, or anal cancer awaits investigation.

6. Targeting SALLs for Cancer Therapy

Considering the evidence on the role of the SALL family members in cancer initiation
and progression, targeting SALLs provides a unique therapeutic opportunity for cancer
treatments.

Even though transcription factors have remained challenging drug targets, several in vitro
and in vivo approaches targeting SALL4 protein activity have already been investigated.

The HDAC-1 and -3 inhibitor Entinostat was identified as a potential treatment for
SALL4-expressing cancers. The study used a panel of 17 lung cancer cell lines with var-
ied SALL4 expression levels, showing that cells expressing high levels of SALL4 were
more sensitive to Entinostat treatment [182]. However, HDAC inhibitors are not selec-
tively targeting SALL4 expressing cells. Pharmacological peptides that exclusively target
cancer cells expressing SALL4 were tested as potential cancer therapeutic agents. A 12-
amino-acid peptide that disrupts the interaction between SALL4 and the NuRD complex
comprising HDAC1 and HDAC2 was tested in AML and HCC. The peptide disrupted
the interaction between SALL4 and HDAC, which blocked the NuRD-mediated SALL4
repression function [155,174]. Similarly, another peptide, known as PEN-FFW, was recently
designed to target SALL4 in HCC cell lines. The peptide disrupted the SALL4–NuRD
interaction via the blocking of the SALL4 interaction with RBBp4, specifically inhibiting
the transcription-repressor function of SALL4. Treatment of HCC cells with the PEN-FFW
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peptide induced apoptosis, enhanced cell adhesion, and dramatically inhibited xenograft
tumor growth [183]. The use of miRNAs targeting SALL4-associated HCC has also been
proposed. Let-7/miR-98-induced SALL4 depletion decreased the expression of MMP2/9,
Fibronectin, n-cadherin, and increased E-cadherin, which correlated with reduced migra-
tion/invasion and EMT in an HCC in vivo cancer model [100].

Alternative strategies are the use of drugs that can induce the degradation of SALL4.
Small immunomodulatory drugs (IMiDs), such as thalidomide and derivatives, induce
ubiquitination and the proteasomal degradation of zinc finger transcription factors. The
mechanism involves recruiting C2H2 zinc finger (ZnF) domains to Cereblon (CRBN), the
substrate receptor of the CRL4CRBN E3 ubiquitin ligase [184]. Thalidomide induced the
robust degradation of SALL4 in the neuroblastoma (Kelly and SK-N-DZ) cell lines and
the MM1 multiple myeloma cell line [185]. However, because of the critical role of SALL4
in limb development, treatment with thalidomide or analogous drugs during pregnancy
could contribute to severe birth developmental abnormalities [17,185–187].

Studies on the reestablishment of the SALL tumor suppressor function have focused
on demethylating agents’ potential use. As indicated previously, SALL1, SALL2, and SALL3
hypermethylation are associated with bad prognosis in several cancers [54,55,92–97], and the
epigenetic silencing of SALL2 confers tamoxifen resistance in breast cancer [54]. Treatment
with 5-Aza-dC, a DNMT inhibitor, increased the sensitivity of SALL2 hypermethylated
breast cancer to tamoxifen therapy in vitro and in vivo [54]. This result suggests that
treatment with DNMT inhibitors might overcome tamoxifen resistance in breast cancer.
However, co-therapy, including both a DNMT inhibitor and tamoxifen, might be an appro-
priate therapy for a subset of patients with breast cancer. In addition, Histone deacetylase
inhibitors, including TSA (Class I and II inhibitor), Panobinostat (Pan-HDAC inhibitor),
Vorinostat/SAHA (class I and II inhibitor), and Chidamide (class I inhibitor), also upregu-
lated SALL2 in Jurkat T cells by a mechanism involving the recruitment of Sp1 and p300 to
the P2 promoter [51].

Additional therapeutic strategies to restore tumor suppressor function could be related
to the modulation of SALL1 or SALL2 protein levels by altering their ubiquitylation and
subsequent proteasome degradation, or by inhibiting still unknown negative regulators of
the transcription factor expression. Thus, efforts should also focus on identifying novel
SALL regulators and partners.

7. Concluding Remarks/Future Perspectives

Increasing evidence shows an association between SALL family members with human
cancers. Consistently, SALL4 acts as an oncogene; however, SALL1–3 play dual roles,
depending on the cancer context and disease stage. Still, most studies support the tumor
suppressor role of SALL1 and SALL2.

As expected with regard to the essential role of transcription factors in gene expression
regulation, all SALLs directly or indirectly impact the hallmarks of cancer, including
cell proliferation, cell migration, and cell survival. An analysis of the current literature
highlights some common signaling pathways between SALL members such as PI3K/Akt
and Wnt/β-catenin and common target genes such as PTEN, CCDN1, c-MYC, VIM, and
CDH1. SALL proteins interact with specific protein partners to perform their functions;
however, as indicated here, some partners are shared among family members. Examples are
β-catenin, a partner of SALL1 and SALL4, and DNMT3, a partner of SALL3 and SALL4. In
addition, all four SALLs interact with SOX2 in the stemness context [63,65–67], and with the
NuRD complex that is associated with transcriptional repression activities [5,28,32,34,36].

According to these few examples of shared signaling pathways and interactors related
to the function of SALL proteins, genetic analysis of specific cancer types should consider
all the family members. Specific SALLs might act oppositely, activating or repressing the
same pathway, inducing or repressing the target gene. In addition, changes in expression
of a particular SALL member, the presence of cancer-related isoforms, or specific mutations
might affect the relative availability of shared protein partners and consequences as they
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could compete for interaction. Thus, the expression levels of each SALL family member
and the pattern of interactors expressed in specific cells might influence cellular outcomes.
These aspects are relevant as deregulated SALL1–4 have been reported in at least 11 cancer
types analyzed in this review (Figure 3, Table 2).

Current literature indicates that SALL1 and SALL2 might have a dual role in cancer.
A recent study using a database search and a literature annotation of 12 main cancers
identified genes with oncogenic and tumor suppressor functions, which are called double
agents [188]. Most of them encoded transcription factors or kinases and exhibited dual
biological functions. Still, double agents mainly function as tumor suppressors in normal
tissues. The dual role of SALL1 and SALL2 in cancer might relate to the expression of
specific isoforms, the cancer stage, and the context (primary tumor versus metastasis),
and/or the presence of particular partners. As an example of this, unlike its proposed
tumor suppressor role in several cancer types, SALL2 acts as a cancer-promoting factor
in GBM. In this context, SALL2 interacts with SOX2, and this interaction may lead to the
binding of SALL2 to DNA elements (AT-rich) different from the SALL2 consensus sequence
(GC-rich) [6,65], likely explaining its oncogenic role in GBM.

Another significant finding is the common epigenetic regulation of SALL genes and the
association of epigenetic marks with patient prognosis. In general, the hypermethylation
of SALL1–3 is associated with a bad prognosis in several cancers. Relevant for cancer
therapeutics is that the demethylating agent 5-azacytidine increases SALL1 and SALL2
expression and is associated with a better prognosis. This evidence suggests that the
SALL status is a valuable tool for predicting the response to chemotherapeutic drugs and
other cancer treatments in various malignancies [54,55,92,94–97,145,168,181,189]. On the
contrary, SALL4 promoter hypomethylation and miRNAs-dependent SALL4 regulation
are common events in several cancer types [98–100]. Likewise, studies indicate that the
oncogenic function of SALL4 and the tumor suppressor function of SALL1 greatly rely
on the recruitment of the NuRD complex. Targeting the SALL4/NuRD interaction holds
great potential for cancer treatment (see the section above on Targeting SALLs for cancer
therapy). Although SALL1 is frequently epigenetically inactivated, it would be interesting
to investigate the existence of mutations that impair its association with NuRD. Future
studies should continue to focus on identifying the subunits of NuRD and target genes
recruited by different SALL proteins in cancer.

Thus, efforts should pursue the identification of novel SALL regulators, partners, and
targets. Additional mechanistic and comprehensive studies, including more than one SALL
protein in similar cancer contexts, are required to understand the significance of SALLs’
alterations in cancer. In this regard, a recent article used the TCGA pan-cancer data and
NCI-60 database to conduct a comprehensive analysis of SALL genes. The study suggests
that SALLs associate with immune infiltrate subtypes, with a close association between
different degrees of stromal and immune cell infiltration. Furthermore, it supports the idea
that SALLs are related to cancer cell resistance [164]. However, further functional studies of
SALL genes are required to confirm these findings.
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