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Abstract

Infection with human cytomegalovirus (HCMV) can cause severe complications in immunocompromised individuals and
congenitally infected children. Characterizing heterogeneous viral populations and their evolution by high-throughput
sequencing of clinical specimens requires the accurate assembly of individual strains or sequence variants and suitable
variant calling methods. However, the performance of most methods has not been assessed for populations composed of
low divergent viral strains with large genomes, such as HCMV. In an extensive benchmarking study, we evaluated 15
assemblers and 6 variant callers on 10 lab-generated benchmark data sets created with two different library preparation
protocols, to identify best practices and challenges for analyzing such data.
Most assemblers, especially metaSPAdes and IVA, performed well across a range of metrics in recovering abundant strains.
However, only one, Savage, recovered low abundant strains and in a highly fragmented manner. Two variant callers, LoFreq
and VarScan2, excelled across all strain abundances. Both shared a large fraction of false positive variant calls, which were
strongly enriched in T to G changes in a ‘G.G’ context. The magnitude of this context-dependent systematic error is linked to
the experimental protocol. We provide all benchmarking data, results and the entire benchmarking workflow named
QuasiModo, Quasispecies Metric determination on omics, under the GNU General Public License v3.0 (https://github.com/
hzi-bifo/Quasimodo), to enable full reproducibility and further benchmarking on these and other data.
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Introduction
Human cytomegalovirus (HCMV) causes a lifelong infection that
is typically without major clinical symptoms. After primary
infection, HCMV persists latently in infected cells [1]. Primary or
(re-)infections and reactivation of HCMV can cause significant
morbidity and severe complications in immunocompromised
individuals, such as HIV-infected persons, transplant recipients
or congenitally infected children [2, 3]. HCMV has a double-
stranded DNA genome of approximately 235 kb, including ter-
minal and internal repeats, which contains at least 170 open
reading frames [4]. With genome sizes of known viruses ranging
from ∼1 kb (Circovirus SFBeef ) to 2 Mb (Pandoravirus salinus) [5],
HCMV belongs to the larger known viruses and has co-evolved
with its host for millions of years [6]. Multiple HCMV strain
infections (i.e. with more than one strain at the same time) prob-
ably contribute to prolonged viremia, delayed viral clearance and
other complications [7–10].

The establishment of high-throughput sequencing tech-
niques and accompanying bioinformatics analysis methods has
greatly advanced viral genomic research [11–16]. Assembling
viral genomes of individual virus strains from a mixed
population and variant calling are essential for characterizing
the evolution and genetic diversity of viral pathogens such
as HCMV in vivo. Although HCMV mutates and evolves more
slowly than many RNA viruses and not any faster than
other herpes viruses, high levels of genetic variation due to
mixed (i.e. multiple) viral strain infections in an individual are
often observed [17–20]. These multiple strain infections likely
result from reactivation of latent strains and/or re-infections
[17, 21, 22].

Assemblers leverage short read sequence data by linking
sequences using kmer or read graphs, and, in some cases, vari-
ant frequencies, to reconstruct viral haplotypes, such as the
recently developed HaROLD [23], which makes use of longitudi-
nal sequence data. There are also many variant callers available,
including programs for calling low-frequency variants, such as
LoFreq [24], VarScan2 [25], and the commercial CLC Genomics
Workbench [26]. Those programs use information on basecall
and mapping quality to determine if a variant site in a read may
be due to sequencing error and mapping bias or reflects true
biological diversity [24–26].

A recent study on simulated and mock viromes suggests that
the choice of assembler largely influences virome characteriza-
tion [27]. Several assemblers that we evaluated, including IDBA-
UD [28], SPAdes [29], Ray [30] and Megahit [31], were previously
assessed on more divergent, simulated and spiked mock viromes
[27, 32]. This in one case included strains of less than 97% average
nucleotide identity (ANI) [33], which resulted in shorter assem-
blies for low divergent community members. Viral haplotype
assemblers reconstruct small viral genomes, such as HIV, Zika
and hepatitis C virus, with good genome fractions. However,
these may be highly fragmented, in case of Savage [34], or consist
of longer contigs with a substantial amount of misassemblies,
in case of PEhaplo [35], QuasiRecomb [36] and PredictHaplo [37].
Viral haplotype assemblers have so far been mostly evaluated
on much smaller and more divergent genomes (genome size
around 10 kb with divergence of up to 12.7%) [34, 38]. They have
not been assessed on substantially larger genomes with low
density of variants so far. A recent assessment of variant callers
[39] reported variable, in part complementary performances of
FreeBayes [40], LoFreq, VarDict [41] and VarScan2 in minority
variant detection on simulated short read data from Respiratory

Syncytial Virus (RSV), which is a small virus with a 15 kb genome
size.

So far, strain-level assembly and variant calling methods
have not been evaluated for large DNA viruses, where runtime
and memory consumption of the algorithms might also be criti-
cal, nor on benchmark data that include experimental biases of
library preparation and sequencing. To investigate these issues,
in the largest benchmark of its kind so far, we created and
sequenced ten samples of HCMV strains with different mixing
ratios and then evaluated 21 computational methods on the
resulting WGS data. Analysis of these lab-created benchmark
data sets allowed us to dissect the effects of computational
methods and library preparation protocols.

Results
Creation and quality control of viral sequence samples

To produce a benchmark dataset of mixed viral strains, which
also includes technical artifacts introduced in experimental data
generation, we created viral strain mixtures mimicking clinical
samples from patients with mixed strain infections in vitro. For
this, we combined viral DNA of the HCMV strains TB40/E BAC4
and AD169 (designated as “TA”), derived directly from bacte-
rial artificial chromosomes (BAC) with these viral genomes and
prepared from Escherichia coli, or the strains TB40/E BAC4 and
Merlin (designated as ‘TM’), which were amplified in human
cell-cultures, respectively, at mixing ratios of 1:1, 1:10 and 1:50.
The ANIs between each pair of those strains are around 0.977
(Table S1). In addition, pure strains were sequenced separately in
each experiment, resulting in four data sets with the TB40/E and
AD169 strains without target enrichment and the TB40/E and
Merlin strain after enrichment. For the TA mixture experiments,
we used a library preparation protocol (protocol 1, details in
Material and Methods) without target enrichment and for the TM
mixtures a protocol including target enrichment (protocol 2). All
10 samples (6 HCMV strain mixtures and 4 pure strains) were
sequenced using 2× 300 bp paired-end sequencing (Illumina
MiSeq), resulting in 1.58 million raw reads on average per sample.
After quality control, 1.1 million quality reads per sample with
average base quality above 30 remained.

As the HCMV strains for the TA mixtures and corresponding
pure strain samples were extracted from E. coli BACs, E. coli
reads were found in those samples with an average fraction
of 48.6 ± 16.5% (Table S2). Based on the genome size of HCMV
(235 K) and E. coli (4.6 M), the abundance of contaminating E. coli
is thus around 5%. The three TM data sets and the pure Merlin
strain, TM-0-1, did not include detectable bacterial contamina-
tion, but 51.7% of the reads of TM-1-0 (pure TB40/E strain) were
of human origin.

Strain-resolved genome assembly

For mixed strain data sets, the ultimate aim for assembly is to
recover the genomes of individual strains. To obtain a compre-
hensive performance overview for existing software, we evalu-
ated the performances of the generic (meta-)genome assemblers
SPAdes, metaSPAdes [42], Megahit, ABySS [43], Ray, IDBA-UD,
Tadpole, which is a part of the BBMAP toolkit [44] and IVA [45],
Vicuna [46], as well as the viral haplotype assemblers Savage,
PredictHaplo, PEhaplo, QuasiRecomb, ShoRAH [47] and VirGenA
[48] on our data sets (Material and Methods).
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Figure 1. Radar plot of assembler performances with six metrics across the 10

samples. Values were scaled based on the average performance for each metric

across tools and samples (best performance 1, lowest performance 0). All the

metrics were calculated using the combined reference statistics from MetaQuast,

except for NGA50, which is only available in genome-specific report. The NGA50

is the average NGA50 for individual genomes and samples.

Assemblies were assessed based on common assembly
quality metrics with metaQUAST [49], such as genome fraction,
duplication ratio, largest alignment and NGA50 using both strain
genomes as references for the respective mixtures (Methods,
Figure 1). The genome fraction is defined as the fraction of
the reference genome covered by at least one contig. The
duplication ratio is the number of bases of the reference genome
covered, divided by the total number of aligned bases from the
assembly. The largest alignment is the size of the biggest contig
that aligned to the reference genome. The NGA50 value of an
assembly is calculated by first sorting the aligned contigs, after
being split at misassembly events, by size in descending order
and returning the length of the contig that exceeds 50% genome
fraction. If an assembler fails to produce 50% genome fraction,
the NGA50 value cannot be calculated and was set to 0 kb. To
further summarize the performance of assemblers on the HCMV
datasets, we defined a composite quality metric for strain-
resolved assembly performances, consisting of a weighted score
combining the metaQUAST assembly metrics ‘duplication ratio’,
‘genome fraction’, ‘largest alignment’, ‘NGA50’, ‘number of
contigs’ and ‘number of mismatches per 100 kb’ (Materials and
Methods). In this weighted score, we considered genome fraction
and largest alignment the most important metrics, since they
reflect the ability of the assembler to reconstruct individual
strains and the completeness of the largest assembly.

All programs reconstructed the genome sequence much bet-
ter for the dominant than for the minor strain. With the weighted
summary score, metaSPAdes achieved the highest score (8.95),
with a large genome fraction assembled (73.8 ± 19.8% versus
64.7 ± 30.2% for IVA, mean ± standard deviation) and second best
for largest alignment (145.9 ± 56.6 kb), NGA50 (102.3 ± 69.0 kb),
third best for number of contigs (12.4 ± 9.1) and duplication ratio
(1.01 ± 0.01) (Figure 1, Tables S3 and S4). Next were IVA (8.56),
which was ranked best for largest alignment, NGA50, and second
best for number of contigs, and ABySS (7.87) (Figure 1, Tables S3

and S4). IVA produced on average the second fewest (8.1 ± 7.9),
and longest contigs (159.6 ± 77.8 kb), especially for abundant
strains (160.8 ± 72.3 kb) (1/0, 50/1, 10/1), with only very few parts
of the genomes covered multiple times (duplication ratio of
1.01 ± 0.03) (Figures 1 and 2, Table S3). The Tadpole assembly
had the lowest duplication ratio (1.001 ± 0.001) and the fewest
mismatches per 100 kb (18.5 ± 39.8, Figures 1 and 2, Table S3).
However, this was mainly because it assembled very little data
and generated short contigs (NGA50 12.4 ± 15.8 kb) that covered
just half (52.9 ± 38.0%) of the underlying genomes.

Megahit reconstructed overall the largest fraction of genomes
on average (79.8 ± 16.5% genomes fraction) but with a high
level of duplication (1.7 ± 0.6) and mismatches per 100 kb
(1715 ± 1684). The haplotype assembler Savage in reference-
based mode recovered the second most (79.1 ± 20.0% genome
fraction) of both strains, even for the low abundant ones
(Figure 2). However, it produced shorter contigs (largest contig
length 21.5 ± 22.8 kb) and many duplicates (1.38 ± 0.23).

The reference-based assembler VirGenA recovered most
(95.8 ± 3.4%) of the genome sequence for the dominant strains,
followed by Megahit (93.5 ± 5.7%), SPAdes (93.4 ± 2.4%), ABySS
(92.7 ± 3.2%) and Ray (91.6 ± 7.8%), however much less for the
low abundant strains (0%, 38.3 ± 20.0%, 35.2 ± 6.6%, 37.3 ± 14.5%,
12.2 ± 4.5%, respectively). MetaSPAdes and IVA also recovered a
relatively large fraction (83.4 ± 28.2% and 86.4 ± 21.2%, respec-
tively) of the dominant strains, but only little (38.7 ± 28.4% and
8.5 ± 6.0%, respectively) of the genome for low abundant strains.

All other haplotype assemblers, i.e. Savage in de novo mode,
PredictHaplo, PEhaplo, QuasiRecomb and ShoRAH, assembled no
contigs and were terminated after running for more than 10 days
using 24 CPU cores. Furthermore, we also tested 1000 random
weights sets to calculate the summary score, and the top two
assemblers (metaSPAdes and IVA) maintained this ranking for
∼850 out of 1000 sets. This suggests that the assemblers with
good performance deliver a high-quality assembly across most
metrics.

As genome assembly can be computationally intensive
and time-consuming, we also benchmarked the disk space
consumption (IO output), memory (maximum memory require-
ment) and run time of the different algorithms. Ray and
ABySS used less than 30 MB for the output while IVA, SPAdes,
metaSPAdes and Savage consumed more than 20 GB of disk
space for output or intermediate output (Figure 3). Megahit
was the most memory efficient assembler, using less than
1 GB memory, whereas ABySS, VirGenA, Savage and Vicuna
consumed more than 10 GB. As to the run times, Megahit
required around 10 mins for each assembly, while Vicuna and
Savage needed more than 20 h with 24 threads on a server with
62 2.4GHZ CPUs, 200 TB disk space and 1 TB memory.

Variant calling

We evaluated the variant callers LoFreq, VarScan2, the low fre-
quency variant caller of the CLC genomics workbench, BCFtools
[50], FreeBayes and the GATK HaplotypeCaller [51] on the six
mixed strain and four pure strain (three different strains, details
in material and methods) WGS samples. A ground truth was gen-
erated by pairwise genome alignment of the respective strains
with MUMmer [52] (Methods, Figure 4), which identified around
3500–4000 variants, including ∼200 short insertions and dele-
tions (InDels). Sites in these genomes were then classified as
variant or nonvariant in this alignment, and compared to pre-
dicted variants, to determine true positive (TP), false negative
(FN) and false positive (FP) calls. Since the major strain in each
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Figure 2. Performance of nine genome assemblers and one haplotype assembler (Savage) in reconstructing HCMV strains from mixed sequence samples. In the two

mixture types, HCMV strains AD169 and Merlin are the high abundant strains, respectively, and TB40/E is less abundant, at ratios ranging from 1:1 to 1:50. Boxplots

display the median (black line) and interquartile range of individual assembly quality metrics (panels A–F) across the 10 data sets. ‘metaSPAdes’ is abbreviated as

‘metaSPA’. Strain genomes are denoted by their abundances in individual mixtures. For instance, 1/10 (blue) indicates the low abundant strain in the 1:10 mixture (i.e.

TB40/E in TA-1-10 and TM-1-10), and 10/1 (purple) represents the abundant strain in the 1:10 mixture (i.e. AD169 and Merlin in TA-1-10 and TM-1-10, respectively). The

best assembler for each metric is marked in bold red. To illustrate the performance of assemblers on each strain in the mixture with different abundance ratios, we

used genome-specific reports here from metaQUAST. It should be noted that contrary to the combined reference statistics above (Figure 1), genome-specific estimates

are based on nonunique mappings over the entire set of reference genomes with metaQUAST even when using the unique option, which leads to minor discrepancies

in metrics, such as increased genome fraction, duplication ratio and number of mismatches.

Figure 3. Input/output (I/O), memory consumption and run time of assembly

programs measured with the snakemake benchmarking function for all samples.

Each dot in the boxplot indicates one sample.

mixture was used as reference, we could evaluate the perfor-
mance of those variant callers in identifying low frequency vari-
ants originating from the minor strain in the mixture, with the

expected low frequency variants being 2 and 10%, respectively,
in the mixtures with ratios of 1:50 and 1:10. Variant calls for
which a false nucleotide was predicted for a variant site were
also considered as FPs. Based on the number of TP, FN and FPs,
we calculated precision, recall and the F1-score as detection
quality metrics for each caller and sample. Precision, or purity,
reflects the fraction of predicted variants that are true variants:
precision = TP

TP+FP ; it thus quantifies how reliable the predictions
of a particular method are. Recall is sometimes also known
as completeness, and measures the fraction of truly existing
variants in a data set that have been detected by a caller (recall =

TP
TP+FN ), it thus measures how complete the predictions of a caller
are with respect to the variants that are there to discover. To
allow a comparison based on a single metric, the F1-score is
commonly used, which is the harmonic mean of precision and
recall, i.e. F1 = 2 × precision×recall

precision+recall .
Applying the commonly used cutoff of 20 for Phred

quality scores (QUAL) [53] for accepting predicted variants,
we evaluated the performance of variant callers on single
nucleotide polymorphisms (SNPs). LoFreq achieved the best
average precision (0.940 ± 0.011) and VarScan2 the highest
recall (0.872 ± 0.050, Figure 5A, Table S5) across mixture samples.
LoFreq and VarScan2 consistently performed best across sam-
ples, with average F1-scores, of 0.890 ± 0.009 and 0.880 ± 0.011,
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Figure 4. Schematic presentation of the variant calling benchmark. Mixed

samples include two HCMV strains at different abundance ratios. A genome

alignment of the two strains was used to generate the ground truth, defining

divergent and conserved sites, denoted by G (‘genomic difference’) and G (‘no

genomic difference’), respectively. Based on the caller, sites were classified as

predicted variants C, or predicted conserved C, defining true positive (TP, in

blue), false positive (FP, in red) and false negative (FN, in orange) variant calls.

If a variant was called that differed from the ground truth variant, this was also

considered a FP.

respectively (Figure 5B, Table S5). CLC had a slightly lower F1-
score (0.806 ± 0.025), and was more variable in performance
across samples, while BCFtools, GATK and Freebayes performed
poorly (F1-score: 0.166 ± 0.288, 0.261 ± 0.388 and 0.289 ± 0.428,
respectively), particularly due to low recall (0.122 ± 0.230,
0.215 ± 0.338 and 0.253 ± 0.386). Across all strains and abun-
dance ratios tested, LoFreq consistently performed well, while
VarScan2 was consistent across abundance ratios but performed
differently for the two strain mixtures (varied in precision)
and CLC’s recall dropped dramatically for mixture TM-1-50.
BCFtools, GATK and FreeBayes performed poorly in comparison
for all samples, and for highly diluted samples, their recall
was almost 0. To analyze the effect of their returned Phred
quality scores on variant callers’ performances, we evaluated
both SNPs and InDels called with different thresholds for their
quality scores using a recall-precision curve. LoFreq had the best
recall-precision balance followed by VarScan2 and CLC, while
FreeBayes demonstrated high performance on samples TA-1-1
and TM-1-1 (Figure S1). To compare variant caller performances
under optimized performance conditions, we also determined
performances of variants called using the best F1-scores
over these different settings across all samples. Notably, the
performance of FreeBayes increased substantially, and that of
CLC slightly, while the performances of other methods remained
similar (Figure 5C and D, Figure S2, Table S6).

The callers achieving good recall, LoFreq, CLC and VarScan2,
identified around 2400 to 2700 shared true positive SNPs from
all mixed strain samples when using a quality score threshold
of 20 (Figure 6). On the pure strain samples, where no SNPs were
expected, LoFreq and VarScan2 predicted 61 ± 33 and 71 ± 42 FPs,
respectively, substantially less than for the mixed strain samples

(164 ± 59 and 381 ± 163). Notably, of these FPs in mixtures,
70.7 ± 17.3% (based on LoFreq predictions) and 37.6 ± 7.9%
(based on VarScan2) were shared (Figure S3). This significant
overlap (Fisher’s exact test P-value <2.2 × 10−16, odds ratio
3416.8 ± 1601.1), indicates a systematic shared bias regardless
of variant callers. Variant calling (Figure S4) indicated that allele
frequencies intended by dilutions were closely reached with
protocol 2 (TM mixture) and differed slightly more for protocol 1
(TA mixture).

Genomic context of variant calls

We analyzed whether there was a specific genomic signal asso-
ciated with variant calls, considering separately correct and
false calls using mutational context analysis [54–56]. Focusing
exemplarily on LoFreq, this approach analyzes the frequency of
a certain SNP together with its sequence context, specifically the
flanking3’ and 5′ bases. For the predictions of a certain caller,
the genomic context of the six substitution types (C to A, C to
G, C to T, T to A, T to C and T to G) was calculated with the R
package SomaticSignatures [56] for the six mixtures and four
pure strain samples (2 samples of TB40/E, 1 of Merlin, and 1
of AD169). Since the analysis is not strand-specific, the above
were considered equivalent with G to T, G to C, G to A, A to T,
A to G and A to C, respectively. We observed a strong, context-
independent preference for C to T or T to C transitions (with a
fraction of 0.803 ± 0.016 of all variant calls across samples; top
panel of Figure 7A and B), which was even more pronounced for
the true positives (middle panel of Figure 7A and B), but not for
FPs. For variants observed across pairwise combinations of 30
E. coli and 30 HIV genomes, which were obtained from NCBI
RefSeq database (Table S7), respectively, we observed concordant
results (Figures S5 and S6). For these data, transitions accounted
for 0.716 ± 0.058 and 0.681 ± 0.017 of variants between genome
pairs, respectively.

We found a pronounced context-dependent signal for FP calls
of LoFreq and VarScan2. Here, T to G variants in a G.G context cor-
respond mostly to FPs in the TA and TM mixtures (57.1 ± 10.0%
and 86.8 ± 18.3%, respectively; bottom panel of Figure 7A and B).
This enrichment is highly significant (P-value <0.0001, Fisher’s
exact test), with an odds ratio of around 45.2 for the TM mixture;
i.e. T to G calls are 45.2 times more frequent in this context than
in others and 19.9 more frequent for the TA mixture. For false
variant calls on the pure Merlin and AD169 samples, T to G calls
in a G.G context were even more dominant. For LoFreq on the
pure Merlin (TM-0-1) sample, the genomic context pattern of
false calls is highly correlated with the context pattern of FPs for
all mixed strain samples, with an average Pearson correlation
of 0.903 (P-value < 0.0001). For the AD169 strain and respective
mixtures, this correlation (Pearson) is lower, on average 0.697, but
still highly significant (P-value < 0.0001).

The allele frequencies of the FP LoFreq variants were
substantially lower than those of the true positive variants
(Figure S7, Wilcoxon test P-value < 2.2 × 10−16), except for the
TA-1-50 sample, which had the highest-level E. coli cloning
vector contamination. False T to G calls in a G.G context had
a lower frequency than other false calls (P-value 1.181 × 10−10

for TM mixtures: Figure S8, 8.16 × 10−10 for TA mixtures). The
allele frequency of those FP SNPs was slightly lower in protocol
2 (TM, 0.0237 ± 0.0522) than in protocol 1 (TA, 0.0242 ± 0.0121)
with a Wilcoxon P-value = 0.000559, 95% CI = [0.00363, 0.0120].
The extent of the signal differed between samples created with
different protocols. Though the overall FP rate was similar, the
context-dependent false calls T to G in G.G doubled in protocol
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Figure 5. Comparison of variant caller performances across samples. (A) and (B) SNPs with quality score > =20. (C) and (D) All variants including SNPs and InDels with

threshold of quality scores maximizing F1 (analyzed with RTG-tools). In the scatterplots, shapes indicate samples and colors the variant caller. The box in the boxplots

indicates interquartile range (colored boxes), median (black line) and outliers (points outside of box) of caller performances across the samples. (A) and (C) share the

same figure legend (color and shape).

2 (Figure 7A and B). We found no such signal for false LoFreq
variants calls on MiSeq sequencing data from HIV lab data
[57], even though the frequency of GTG/CAC patterns in both
genomes are similar (Figure S9).

Materials and methods
Creation and sequencing of HCMV strain mixtures

We created mixtures for two pairs of strains: ‘TB40/E BAC4’ with
‘AD169 subclone HB5’ (TA) and TB40/E BAC4 with strain Merlin
(TM). For each strain pair, mixtures with three different mix-
ing ratios, 1:1, 1:10 and 1:50, were created. Accordingly, strains
‘AD169’ and ‘Merlin’ are the dominant strains in the mixtures,
and their genomes were used as reference for variant calling in
mixed samples. In addition, the pure strains were sequenced.
The name of the mixture specifies the included strains and the
mixing ratio. For instance, a mixture of TB40/E and Merlin with
a ratio of 1:10 is denoted by TM-1-10. Pure strain samples are
denoted as TA-1-0 for TB40/E and TA-0-1 for AD169, which were

created with protocol 1 (details, see below), as well as TM-1-0 for
TB40/E and TM-0-1 for Merlin, created with protocol 2.

Two protocols were used to generate the sequencing libraries.
In protocol 1, the DNA of TA mixtures (TA-1-1, TA-1-10 and TA-
1-50) and pure strain samples (TA-0-1, TA-1-0) was extracted
from the BAC host E. coli strain GS1783 using the Plasmid Midi
Kit (Macherey Nagel). Library preparation was performed using
an Ultra II FS-Kit from NEB according to the standard protocol
from the manufacturer. Fragmentation time was 10 mins and the
library was amplified 4 cycles for the mixtures and 5 cycles for
the pure BACs, multiplexed and sequenced on a MiSeq (Illumina)
using reagent kit v3 to generate 2 × 300 bp paired-end reads.

Protocol 2 was used to generate the TM mixture data
sets (TM-1-1, TM-1-10, TM-1-50) and the pure strain samples
data sets (Merlin, TM-0-1 and TB40/E BAC4, TM-1-0). The
HCMV strains TB40/E BAC4 and Merlin were isolated from
cell cultures. The library preparation was performed as we
previously described [20] with the KAPA library preparation kit
(KAPA Biosystems, USA) with a few modifications. After PCR
preamplification (6–14 cycles) with adapter-specific primers,
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Figure 6. Intersection of SNPs between genomes and SNP calls from LoFreq, VarScan and CLC with score ≥20.

up to 750 ng of DNA was target enriched for HCMV fragments
using HCMV-specific RNA baits. HCMV-enriched libraries
were indexed, amplified (17 to 20 cycles) using TruGrade
oligonucleotides (Integrated DNA Technologies), multiplexed
and sequenced on a MiSeq (Illumina) using reagent kit v3 to
generate 2 × 300 bp paired-end reads.

Quality control of the sequencing data

Sequencing reads produced by the MiSeq sequencer were
quality-controlled using fastp v0.19.4 [58]. Fastp is an all-in-
one FASTQ data preprocessing toolkit with functionalities
including quality control, adapter detection, trimming, error
correction, sequence filtering and splitting. The remaining
adapter sequences were clipped from the raw reads as well
as bases at the 5′ or 3′ of the reads with a base quality score
of less than 20. Reads shorter than 130 bp after trimming were
removed. The remaining PhiX sequences (originating from the
Illumina PhiX spike-in control) were also removed from
the dataset by mapping all quality-controlled reads against
the PhiX reference genome downloaded from Illumina using
BWA-MEM v0.7.17 [59]. Contamination from E. coli and the
human host were also removed using the same method.

Consensus assembly and evaluation

To benchmark the performance of commonly used assemblers,
we evaluated SPAdes v3.12.0 (with kmer sizes: 21, 33, 55, 77,
99, 127 and —careful option), metaSPAdes v3.12.0 (kmer sizes:
21, 33, 55, 77, 99, 127), Megahit v1.1.3 (kmer sizes: 21, 41, 61,
81, 101, 121, 141, 151), Ray (kmer size: 31), ABySS v2.1.4 (kmer
size: 96), IDBA v1.1.3 (default settings), Tadpole v37.99 (default
settings), IVA v1.0.9 (default settings) and Vicuna v1.3 (default
settings). The quality of the resulting contigs or scaffolds was
then assessed with metaQUAST v5.0.2. Only contigs longer than
500 bp were taken into account. Since the reference genomes of
those strains are highly similar, with an ANI around 98%, only

unique mappings were considered in the assessment, i.e. not
allowing a single contig to map to both reference genomes in
the combined reference report. The metrics include the overall
number of aligned contigs, the largest alignment, genome frac-
tion, duplicate ratio, NGA50, number of mismatches per 100 kb.
Here, ‘largest alignment’ refers to the largest contig or scaffold
that mapped to the reference genome. ‘Genome fraction’ repre-
sents the fraction of the genome recovered by contigs from an
assembly. The ‘duplication ratio’ is the total number of aligned
bases in the assembly divided by the total number of those in
the reference (https://github.com/ablab/quast). NGA50 is the N50
value of the contigs that mapped to the reference genomes with
contigs being split at misassemblies. The NGA50 value cannot be
calculated for the assemblies which recover less than 50% of the
genome in terms of genome fraction and was set to 0 instead
to ensure comparability. The individual reference report from
metaQUAST was used to evaluate the performance for abundant
or low abundant strains in mixtures. All overall metrics values
regardless of the specific strain in the mixture were calculated
using the combined reference report from metaQUAST, except
for NGA50.

Haplotype reconstruction

Of viral quasispecies assemblers, we ran PEHaplo v0.1, Predic-
tHaplo v0.4, Savage v0.4.0, QuasiRecomb v1.2, ShoRAH v1.9.95
and VirGenA v1.4 with single reference mode using default
settings (for details see the code repository). We did not run
HaROLD, as this requires longitudinal clinical samples from the
same source. The haplotype assemblies were evaluated using
metaQUAST together with the consensus assemblies mentioned
above.

A composite quality metric for strain-resolved assembly

To summarize assembly performances, we defined a weighted
score based on the metaQUAST assembly metrics using com-
bined reference including genome fraction, largest alignment,

https://github.com/ablab/quast
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Figure 7. Genomic context of LoFreq predictions for the TA (A) and TM (B) strain mixtures. ‘All’: genomic context pattern of all predicted SNPs, ‘TP’: true positive variant

calls and ‘FP’: false positive variant calls. The 16 mutation contexts for each mutation type are indicated once for the box in the lower right.

NGA50, duplication ratio, number of contigs and number of mis-
matches per 100 kb. As NGA50 is not available in the combined
reference report of metaQUAST, we used the average NGA50
based on individual genomes from the individual references
report. Of these metrics, we considered genome fraction and
largest alignment as the most important metrics, since they
reflect the ability of the assembler to reconstruct individual
strains. To calculate a weighted summary score for assembler
performance, we weighted the above metrics by the factors 0.3,

0.3, 0.1, 0.1, 0.1 and 0.1 (genome fraction, largest alignment,
NGA50, duplication ratio, number of contigs and number of mis-
matches per 100 kb), respectively. The score of an assembler with
metric i was formulated based on the scale average performance
spi and then multiplied by a factor of 10 to ensure the score is in
the range of 0–10:

scorei = 10 × weighti × spi,
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where spi is the scaled performance for metric i. The value was
scaled into 0–1 with min–max normalization defined as follows:

spi =
{

pi−min
max − min ,

max −pi
max − min ,

if p bigger better
if p smaller better

In the formula, pi is the average performance across all sam-
ples of the given assembler for metric i, and the min and max are
the smallest and largest average performance value on metric i
among all assemblers.

Determination of genome differences between two
strains

MUMmer v3.23 with default setting was used to align two
genomes of the strains in each mixture and to identify the
differences between genomes as ground truth. Command ‘show-
snps’ of the MUMmer package was employed to determine the
SNPs and short InDels differing between two aligned genomes
with parameter setting ‘—CTHr’, where the repeat regions
were masked. The genomic differences between TB40/E and
Merlin were considered as the ground truth variants for the TM
mixtures, while differences between TB40/E and AD169 were
considered as the ground truth for the TA mixtures.

Variant calling

Quality-controlled reads were mapped against the reference
genome of the HCMV strains Merlin and AD169 using BWA-MEM
with a seed length of 31. HCMV Merlin and AD169 genomes
were used as reference genomes, as they were the major strains
in all mixtures. The resulting BAM files were deduplicated with
the Picard package (http://broadinstitute.github.io/picard/) to
remove possible amplification duplicates that may bias the allele
frequency of identified variants. To compare the performance of
different variant callers, we used LoFreq (parameter: -q 20 -Q 20
-m 20), VarScan2 (—min-avg-qual 20 —P-value 0.01), FreeBayes
(—p 1 -m 20 -q 20 -F 0.01 —min-coverage 10), CLC (overall read
depth ≥10, average basecall quality ≥20, forward/reverse read
balance 0.1–0.9 and variant frequency ≥0.1%), BCFtools (—p 0.01
—ploidy 1 -mv -Ob) and GATK HaplotypeCaller (—min-base-
quality-score 20 -ploidy 1) to identify variants. The variants
from the difference between genomes detected by MUMmer
were considered as positive variants. Based on this standard,
precision, recall and F1-score were computed to evaluate those
callers. The pairwise genome differences of 30 E. coli or 30 HIV
genomes were determined by MUMmer as well. To evaluate the
performance of different callers for SNP and InDel prediction,
the command vcfeval in RTG-tools [60] was used to generate
recall-precision curves based on the Phred scaled ‘QUAL’ score
field (—squash-ploidy -f QUAL —sample ALT).

Data and code availability
The benchmarking program developed in this study is available
under the GNU General Public License V3.0 at https://github.co
m/hzi-bifo/Quasimodo. This program can also be used to assess
variant calling and assembly results for other viral mixed strain
data sets (see readme of the repository for details). All assem-
bly and variant calling results are freely accessible on Zenodo
(10.5281/zenodo.3739874). The sequence data were deposited in
ENA with accession number PRJEB32127.

Discussion and conclusions
Mixed infections with multiple HCMV strains are commonly
observed in patients with active HCMV replication [10, 17–20].
Accurately reconstructing the genomic sequences of the indi-
vidual haplotypes has implications for gaining a deeper under-
standing of viral pathogenicity and viral diversity within the
host. To identify the most suitable software for analysis of mixed
viral genome sequencing samples with low evolutionary diver-
gence and comparatively large genomes, we evaluated multiple
state-of-the-art assemblers and variant callers on lab-generated
strain mixtures of HCMV.

In the assembly benchmarking, most metagenome and
genome assemblers, in particular metaSPAdes and IVA, recov-
ered the abundant strains well in terms of metrics such as
genome fraction, contig length and mismatches. When also
considering strains of low abundance, Savage recovered the
largest fractions of both underlying genomes in the reference-
based mode. However, this was achieved in a highly fragmented
manner, consistent with reports by the authors (Table 3, [34]).
Thus, the state-of-the-art assembly methods, including both
generic (meta-)genome and specialized viral quasispecies
assemblers, do not yet reconstruct large viral HCMV genomes
of low abundance and low variant density with high quality.
This may not be surprising since these programs were originally
designed primarily for mixtures of large and much more
divergent microbial genomes, or for viral genomes with a tenth
of the size of the HCMV genome, but a higher variant density. In
terms of resource usage, Ray and ABySS produced the smallest
outputs, while Megahit was the most memory efficient, as
well as fastest assembler with good performance (weighted
score > 5).

Of the variant callers, LoFreq most faithfully identified
only true variants across all samples, closely followed by
VarScan2. Both had high F1-scores even on the samples with
high mixing ratios. When analyzing the genomic context of the
predicted variants, for true positive calls, we observed a context-
independent enrichment of T to C and C to T transitions. A
preference for transitions over transversions is common in
molecular evolution [61, 62]. This is the case in terms of
observed mutations and because transitions more often lead
to synonymous mutations that tend to be neutral, rather than
under negative selection, as most nonsynonymous changes on
the population level.

For false variant calls, we found a striking enrichment of
T to G changes in a G.G context, representing an unreported
context-dependent signal. Calls with this pattern had lower
allele frequencies than true positive variant calls and were more
pronounced in sample with more PCR cycles used (protocol 2,
6–14 cycles versus 4 in protocol 1), indicating a link to DNA
amplification. Amplification error introduced in PCR cycles will
accumulate exponentially and occur at frequencies that depend
on when they were introduced: PCR-induced errors are mostly
of lower frequency unless introduced in one of the very early
amplification cycles [57]. Schirmer and co-workers studied the
error profiles for the amplicon sequencing using MiSeq with dif-
ferent library preparation methods and showed that the library
preparation method and the choice of primers are the most
significant sources of bias and cause distinct error patterns [63].
They also observed a run-specific preference for the substituting
nucleotide. They observed that A and C were more prone to
substitution errors (A to C and C to A) compared to G and T,
which differ from our results. We could not find the context-
dependent signal for an HIV quasispecies data set that had

http://broadinstitute.github.io/picard/
https://github.com/hzi-bifo/Quasimodo
https://github.com/hzi-bifo/Quasimodo
10.5281/zenodo.3739874
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been generated with Nextera XT DNA Library Prep chemistry
(Illumina) on Illumina’s MiSeq platform, suggesting that the FP
pattern originates from a step unique to the HCMV sequencing
protocol, such as preamplification and amplification PCR during
library preparation.

Notably, the experimental protocols substantially affected
the nature of the generated data and bioinformatics results.
Protocol 1 led to substantial amplification of E. coli host DNA and
thus lower coverage of the viral strains. This, together with the
resulting differences in actual mixing ratios relative to protocol
2 likely explain the higher recall and slightly lower precision
observed in variant detection (Figure S4). An earlier study based
on simulated sequencing data also showed that variant calling
on lower coverage samples achieved higher recall and lower
precision [64]. Protocol 2 used more extensive DNA amplification
together with cultivation in human cell culture. This resulted
in higher coverage of viral strain genomes in comparison to
protocol 1, and the doubling of context-dependent FP variant
calls within a G.G context discussed above (Figure 7, Figure S10,
S11).

Taken together, our results suggest that for strain mixtures
of large DNA viruses with low variant density, many assemblers
reconstruct the abundant strain with high quality, but assembly
of the low abundant strains is still challenging. Variant callers
designed for low frequency variant detection provided the best
results and detected most true variants. These findings are rel-
evant for the interpretation of program outputs when analyzing
clinical patient samples. We also provide a resource that facili-
tates further benchmarking, including our result evaluation and
visualization software QuasiModo, all produced benchmarking
data sets and results, for flexible assessment of further methods
on these and similar data sets.

Key Points
• The strain-resolved de novo assembly of large DNA

virus with low variant density is challenging to all
evaluated assemblers. Some generic (meta-) genome
assemblers, such as metaSPAdes and IVA, performed
particularly well in recovering the dominant strain.

• LoFreq and VarScan2 are good choices for identifying
low frequency variants from a strain mixture of large
DNA viruses.

• The pattern of false variant calls likely links to the
experimental protocol used to generate the sequenc-
ing data. More amplification cycles led to more pro-
nounced FP variant calls.

• All the analyses can be reproduced using QuasiModo
developed in this study. QuasiModo can be also uti-
lized to evaluate other methods using the benchmark-
ing data sets in this study or similar data sets.

Supplementary Data

Supplementary data are available online at https://academi
c.oup.com/bib.
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