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A method to analyze time 
expression profiles demonstrated 
in a database of chili pepper fruit 
development
Christian Escoto‑Sandoval1, Alan Flores‑Díaz1, M. Humberto Reyes‑Valdés2, 
Neftalí Ochoa‑Alejo3 & Octavio Martínez1*

RNA-Seq experiments allow genome-wide estimation of relative gene expression. Estimation of gene 
expression at different time points generates time expression profiles of phenomena of interest, 
as for example fruit development. However, such profiles can be complex to analyze and interpret. 
We developed a methodology that transforms original RNA-Seq data from time course experiments 
into standardized expression profiles, which can be easily interpreted and analyzed. To exemplify 
this methodology we used RNA-Seq data obtained from 12 accessions of chili pepper (Capsicum 
annuum L.) during fruit development. All relevant data, as well as functions to perform analyses and 
interpretations from this experiment, were gathered into a publicly available R package: “Salsa”. Here 
we explain the rational of the methodology and exemplify the use of the package to obtain valuable 
insights into the multidimensional time expression changes that occur during chili pepper fruit 
development. We hope that this tool will be of interest for researchers studying fruit development in 
chili pepper as well as in other angiosperms.

Measurements of gene expression constitute the primary molecular phenotype. RNA-Seq experiments1 allow 
genome-wide estimation of the relative level of gene expression in a particular species, organ, tissue or even 
single cells2.

Temporal gene expression profiles consist in measurements of gene expression at consecutive times3, and from 
such data it is possible to estimate the transcriptome changes that occur during the progression of organ devel-
oping programs. Phenomena as seed development4, senescence5 and aging6 have been shown to be conserved 
in plants. In particular, the development of fleshy fruits—an indispensable part of the human diet, is probably 
conserved throughout the angiosperms7.

There is a plethora of software tools developed to analyze different aspects of RNA-Seq data8,9, many of them 
designed to perform differential gene expression. For example, the NCBI provides “GEO2R” (https://​www.​
ncbi.​nlm.​nih.​gov/​geo/​geo2r/), a tool to compare two or more groups of samples in order to identify genes that 
are differentially expressed across experimental conditions10. However, given that time expression profiles are 
multidimensional—generally with more than 3 consecutive times sampled, traditional statistical methods are 
of limited relevance, and new approaches are required3.

As mentioned above, the main challenge for the analysis and interpretation of time course experiments 
is their multidimensionality11. Assume that gene expression is measured at times t1, t2, . . . , tn; (ti < ti+1) , 
and for each gene we have a vector of estimated expressions, say, g = (g1, g2, . . . , gn) . Clearly, for all 
n > 2 , there is not a single univariate test that could classify complex expression patterns through-
out time; in fact, we must perform at least n− 1 hypothesis tests on each pair of neighbor intervals, say, 
H0(1) : g1 = g2; H0(2) : g2 = g3; . . . ;H0(n− 1) : gn−1 = gn , to be able to classify all possible time course 
patterns. Multidimensionality of time course experiments implies multi-testing, and this in turn opens the pos-
sibility of an “Error Type III”12,13, which consist on estimating the wrong ordering in a set of means.

OPEN

1Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Unidad 
de Genómica Avanzada (Langebio), Irapuato, Guanajuato  36824, Mexico. 2Department of Plant Breeding, 
Universidad Autónoma Agraria Antonio Narro, Saltillo, Coahuila  25315, Mexico. 3Centro de Investigación y de 
Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Departamento de Ingeniería Genética, Unidad 
Irapuato, Irapuato, Guanajuato 36824, Mexico. *email: octavio.martinez@cinvestav.mx

https://www.ncbi.nlm.nih.gov/geo/geo2r/
https://www.ncbi.nlm.nih.gov/geo/geo2r/
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-92672-4&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2021) 11:13181  | https://doi.org/10.1038/s41598-021-92672-4

www.nature.com/scientificreports/

One aim of the analysis of time course experiments could be to detect significant periodic modes in time, 
and examples of tools for this propose are the ones documented in14 and15. Other approach, closer to our inter-
est here, is the identification of expression patterns in time course experiments. In16, the authors present an 
application combining modeling and a dimension reduction technique based in the ANOVA of simultaneous 
component analysis useful for microarray data. Also17 presents a test for microarray data that makes explicit 
use of the temporal order by fitting polynomial functions to temporal profiles. Other references for time course 
microarray experiments are cited in3, which also presents and discusses clustering and inference of networks 
from time course datasets.

With regard to the analysis of RNA-Seq time course experiments18, presents a linear mixed model spline 
framework. The proposed framework consists basically of three stages: (1) Identify and removal of “non-inform-
ative” profiles, (2) Modeling, via a serial model fitting approach to obtain smoothed profiles and (3) Analysis 
to identify similarities between summarized profiles by clustering, or hypothesis testing to identify differences 
over time. In this approach filtering “non-informative” profiles let out of the analysis genes that are relatively 
constant through the time frame explored, while fitting successive models of increasing complexity has the risk 
of ignoring patterns that are too convoluted to be fit with this spline approach.

A method to identify differential expression profiles in time course microarray experiments—implemented 
in the package “maSigPro”19, was updated to be able to use RNA-Seq time series analysis by introducing Gen-
eralized Linear Models (GLM) under the Negative Binomial distribution20. However, as its original version, the 
updated version of maSigPro relies on polynomials to fit time expression data through time. While the use of 
polynomials gives good results for cases when there are one or few critical points, either maxima or minima, it 
is well known that polynomial fitting fails when the behavior of the target function is too complex21. Because 
there is no guarantee that gene expression through time will always be simple, it appears better to look for a 
methodology that could fit even the most complex patterns shown by the data.

Chili pepper (Capsicum spp.) is an important crop, as well as a model for fruit development studies and 
domestication22. We developed a methodology to examine time expression profiles by testing neighboring time 
intervals and then obtaining “Standardized Expression Profiles” (SEPs), which can be easily interpreted and 
tested. That procedure was applied to all genes estimated in 12 accessions of chili pepper expressed during 7 
temporal stages of fruit development. All curated data and functions to analyze them are included in the R23 
package “Salsa”24. This data mining tool arouse during the course of a previous project, and has proven to be 
useful to reveal novel insights about the domestication of chili pepper22; please see https://​www.​mdpi.​com/​
2223-​7747/​10/3/​585. Here we explain the rationale of the methodology, present a panorama of its possibilities 
and exemplify the use of this tool.

Materials and methods
Biological materials and sequencing.  The data in Salsa were obtained from a time course experiment 
estimating gene expression at seven time points of fruit development: 0, 10, 20, 30, 40, 50 and 60 days after 
anthesis (DAA), in 12 accessions of chili pepper. Table 1 presents the content of the data frame “acc” within 
the Salsa package.

The content of data frame “acc”, displayed in Table 1, presents the accessions available in Salsa and helps 
in the use of the database. Variable “acc.key” contains a two letter code used within the package to distin-
guish each one of the 12 accessions studied. The categorical variable “acc.type” denotes if the accession is 
Domesticated (“D”), Wild (“W”) or a Cross (“C”) between a domesticated and a wild accession. Finally, variable 
“acc.name” gives a short description of the accession, corresponding with the common name used to denote 
the accession in the literature.

The RNA-Seq experiment from which Salsa data originated consisted in sampling fruits of the 12 accessions 
shown in Table 1 at 7 different times of development; this makes a total of 12× 7 = 84 sampling points. For each 

Table 1.   Information in the data frame “acc” within the R package Salsa. Head of table in mono spaced font 
gives the names of the variables (acc.key, acc.type and acc.name), while cell content present possible 
values for those variables.

acc.key acc.type acc.name

AS D Ancho San Luis

CM D Criollo de Morelos 334 (CM334)

CW D California Wonder

JE D Jalapeno Espinalteco

ST D Serrano Tampiqueno 74

ZU D Zunla-1

CO W Piquín Coahuila

QU W Piquín Queretaro

SR W Piquín Sonora Red

SY W Piquín Sonora Yellow

CQ C F1 : CM female × QU male

QC C F1 : QU female × CM male

https://www.mdpi.com/2223-7747/10/3/585
https://www.mdpi.com/2223-7747/10/3/585
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combination of accession × time of development, 2 RNA-Seq libraries (biological replicates) were constructed, 
thus a total of 84× 2 = 168 RNA-Seq libraries were employed to estimate time expression profiles. Additionally, 
some of the accessions were sampled in times larger than 60 DAA, but those data were not used for time profile 
estimation; please see Supplementary material in22. In total we obtained data from 179 RNA-Seq libraries, that 
comprise the 168 used for time profiles estimation plus some extra samples from times larger than 60 DAA as well 
as libraries from plantlet stage for one domesticated and one wild accession. Descriptions of these 179 libraries 
are in data frame “library.desc”, while raw counts of map reads for all genes at each one of the libraries 
is in data frame “readcounts”, both within the Salsa package. Sequencing, filtering and mapping of the raw 
reads to the reference Capsicum genome are presented in the supplementary methods and results in22. In total 
more that 3 billions of raw reads where map to the reference genome, and these data have been deposited in 
NCBI’s gene expression omnibus (GEO)25, and are accessible through GEO Series accession number GSE165448 
(https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​GSE16​5448).

Estimation of standardized expression profiles (SEPs).  Previously, in26, we presented a methodol-
ogy to classify time expression profiles into discrete classes, and here we extend such procedure to obtain “stand-
ardized expression profiles” (SEPs) in the general framework of an RNA-Seq time course experiment.

We will assume to have data from replicated RNA-Seq libraries at times t1, t2, . . . , tn; (ti < ti+1) (we must have 
at least two biological replicates for each time). We will also consider that the RNA-Seq libraries estimated a total 
of g genes for each one of the times. Now, consider only the n− 1 contrasts taking two neighboring intervals, i.e., 
contrasts between times 1 and 2, 2 and 3, . . . , n− 1 and n. Those contrasts can be tested, for example by using the 
package “EdgeR”27, to obtain the p-values corresponding to the g genes at each one of the n− 1 contrasts between 
neighboring intervals. For each gene at each contrast the null hypothesis of interest is H0 : µij = µi j+1 , where 
µij , µi j+1 are the true means of expression for gene i at time j. If the null hypothesis is not rejected, then we will 
consider that the gene i is in a steady state, “S”, between times j and j + 1 . On the contrary, if the null hypothesis 
is rejected we have two possibilities, depending on the estimated values of expression, µ̂ij and µ̂i j+1 , say: the 
gene increased its expression if µ̂ij < µ̂i j+1 , that we will denote by “I”, or, alternatively the gene decreased its 
expression if µ̂ij > µ̂i j+1 , that we will denote by “D”. As result, the time expression profile of a gene can be sum-
marized by a vector of n− 1 symbols, where each symbol can be one of three alternatives, say, “S”, “I” of “D”. In 
symbols, the model for a gene i can be summarized as mi = (mi1,mi2, . . . ,mi n−1) where mij ∈ {S, I, D} . We call 
these models “Ternary Models”, because each one of the t − 1 symbols can be one of three possibilities (S, I or 
D). Nonetheless, given that we are going to be performing thousands of tests, p-values need to be corrected by 
multi-testing, transforming them into q-values to obtain an acceptable “false discovery rate” (FDR)28.

In summary, the procedure described above gives a function that transforms the t-dimensional semi-contin-
uous space of gene expression into a unidimensional space of 3 t−1 discrete elements, constituted by all possible 
mi models. This is so because the information for each gene from all RNA-Seq libraries is now summarized in 
symbolic vectors having three possibilities for each element, thus we have 3× 3× · · · × 3 (t-1 times) possibili-
ties for all possible models mi , and by performing such transformation we have used all relevant information 
about the expression of the gene in all t times, including the random error (unexplained variation) represented 
by differences between the replicates for each time, given by distinct RNA-Seq libraries. To give a numerical 
representation of a model mi we first consider the mean estimates of expression at each one of the t times, say, 
the vector Oµi = (µ̂i1, µ̂i2, . . . , µ̂it) , where each estimated mean of expressed value, µ̂ij , is the mean expression 
measured as fragments per kilobase of gene model per million mapped reads (FPKM)29,30. Finally, we calculate 
the SEP for a gene i as a vector si = (si1, si2, . . . , sit) , where 

∑

j sij = 0 and S(si) = 1 , i.e., we use the pair (mi , Oµi) to 
calculate an standardized version of the gene expression pattern which has mean of 0 and standard deviation, S(), 
equal to 1. For details of this procedure please see the “Supplementary Material” in22 as well as Additional file 1.

For the case of the chili pepper fruit data gathered in Salsa, we have 2 biological replicates of each RNA-Seq 
library for each combination of accession × time of fruit development. We have t = 7 times of fruit development 
( 0, 10, . . . , 60 DAA), thus we have 7− 1 = 6 neighboring time intervals, and in this case the number of different 
ternary models ( mi ) is 36 = 729 . The exactTest function of the R package “edgeR” (version 3.20.9) was used 
to obtain the p-values of the contrasts between the 6 neighboring time intervals for all 35883 genes annotated 
in the Capsicum reference genome in each one of the 12 accessions. Of the total of 35883 genes annotated, only 
29946 ( ≈ 83.45% ) were consistently expressed in all the 12 accessions and thus only those genes were taken into 
account for SEPs estimation. An approximate 1% FDR was calculated for comparisons between two SEPs, and the 
edgeR results were used to construct the sets of mi models for each gene and accession. Then mean expressions 
in FPKM units (data.frame “FPKM.expr” in Salsa) were used to obtain the SEP estimates for genes of the 
consistent set that were expressed in each accession (see Additional file 1 for details). This produced a total of 
313919 estimated SEPs, allocated into the data.frame “SEP” in Salsa. This data frame contains—apart from 
the SEP estimate, identifiers for gene, accession, accession type as well as the ternary model ( mi ) and the time 
at which the maximum standardized expression was reached.

All possible 36 = 729 different ternary models ( mi ) appeared in the chili data, at different frequencies. Over 
all genes and accessions, the most frequent models were “DSSSSS”, “SSSSSS” and “ISSSSS” with frequencies of 
approximately 4, 3 and 2%, respectively. All other 726 models appeared at frequencies ≤ 1% . Model “DSSSSS”, 
in ≈ 4% of the cases, implies that gene expression decreased from the initial state at 0 DAA—the mature flower, 
to the next state as 10 DAA (this is shown as the initial “D” in the model), and then the gene stayed at an steady 
state (“S”) up to the end of the fruit development at 60 DAA. Genes with model “SSSSSS”, in ≈ 3% of the cases, 
implies that gene expression remained in an steady state, “S”, during all the times intervals, while model “ISSSSS”, 
in ≈ 2% of the cases, implies that the genes were at low expression in the mature flower, but increased from 0 
to 10 DAA to then remain in a steady state up to the end of fruit development. Figure 1 present 5 examples of 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE165448
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SEPs for genes with different models, while Table 2 gives the identifiers, models, and coded protein for each one 
of the cases presented in Fig. 1.

In Fig. 1 we see graphic examples of SEPs with 5 different models ( mi ). This shows that the original 7-dimen-
sional space of expression profiles during fruit development can be transformed to a discrete space with only 
729 models—of which Fig. 1 presents only 5 cases, and that the numerical representation of the time expression 
profiles as SEPs can give a graphic representation that is easy to interpret and contains the information necessary 
to group and contrast different time expression profiles.

Testing differences between two SEP sets.  SEPs are based on ternary models and summarize time 
expression profiles in scale free measurements. Thus, plotting the SEP of a gene the researcher immediately 
obtains an statistical summary of its behavior during the time course experiment. Additionally, SEPs can be 
group by criteria which include, for example, the origin (accession), or the Gene Ontology category (molecular 
function, biological process or cell component), or any other known attribute of the corresponding genes. On 
the other hand, the researcher could have sets of genes which are of interest from results obtained in previous 
studies, or in a different specie, etc.

Here we consider the problem of determining if two sets of SEPs say, SA = {sA1, sA2, . . . , sAk} and 
SB = {sB1, sB2, . . . , sBr} are statistically equivalent, i.e., if they present the same or different average time profile, 
or in other words if they can or cannot be considered as having the same mean expression behavior over time. 
We will not impose any restriction on the nature of these two SEPs sets, and will ask only that the numbers of 
SEPs included at each one of them, say the numbers k and r, must be both larger than two ( k > 2; r > 2 ), but 
they could be different ( k  = r).

To test the difference between SA and SB we propose to use the Euclidean distances between and within the 
components of the two groups. For arbitrary vectors of dimension n, say x = (x1, x2, . . . , xn); y = (y1, y2, . . . , yn) , 
their Euclidean distance is defined as d(x, y) =

√

∑

(xi − yi)2 . Now consider the vector formed by the Euclid-
ean distances between all different pairs of SEPs, where the first SEP belongs to SA and the second to SB , say 
DB = (d(sA1, sB1), d(sA1, sB2), . . . , d(sAk , sBr)) . The vector of Euclidean distances between SEPs in SA and SB 
has dimension k × r . Now we will construct the vector of Euclidean distances within different SEPs in the two 
groups, say DW = (d(sA1, sA2), d(sA1, sA3), . . . , d(sAk−1, sAk), d(sB1, sB2), d(sB1, sB3), . . . , d(sBr−1, sBr)) ; in words, 
to obtain DW we take in turn all possible different pairs of SEPs within SA and also within SB , thus the dimension 
of this vector is k(k − 1)/2+ r(r − 1)/2.

0 10 20 30 40 50 60

−1
.0

0.
0

0.
5

1.
0

1.
5

2.
0

Time (DAA)

S
ta

nd
ar

di
ze

d 
E

xp
re

ss
io

n

1 − SSSSSS

2 − SSSIII

3 − IIIIII

4 − DDDDDD

5 − IDIDID

Figure 1.   Examples of SEPs with different models ( mi ) for 5 genes in accession “CM”. The number of case and 
symbolic representation of the model are shown in the legend at the left hand side of the plot for each one of the 
numeric representations of the SEPs (colored lines; see Table 2 for the description of the protein coded by each 
gene).

Table 2.   Examples of 5 different ternary models ( mi ) for genes expressed in accession “CM”.

Gene id Model ( mi) Protein coded by the gene

192 1—SSSSSS tRNA-splicing endonuclease subunit Sen2-1-like

7969 2—SSSIII Non-specific lipid-transfer protein A-like

1625 3—IIIIII Uncharacterized GPI-anchored protein At3g06035-like

4076 4—DDDDDD 1-aminocyclopropane-1-carboxylate oxidase

27681 5—IDIDID Probable calcium-binding protein CML36
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The biological hypothesis that the two SEP sets have statistically equivalent time profiles can be translated 
to the null hypothesis H0 : D̄B = D̄W that need to be contrasted with the one-tail alternative hypothesis 
Ha : D̄B > D̄W (here D̄B and D̄W are the true means of the distances between and within SEPs, respectively). 
The rational to suggest this test is that the vector of estimated distances between members of the two sets, DB , 
measures how far apart are members of the two groups in the t-dimensional space, while the distances within 
the two groups, estimated by DB , measure the heterogeneity or “noise” that exist within the SEPs in each one 
of the two groups. Thus we will consider that if the null hypothesis H0 : D̄B = D̄W is rejected in favor of the 
one tail alternative, Ha : D̄B > D̄W , then we can consider that the two sets of SEPs represent different mean 
time expression profiles. This rational is parallel to the one employed in classical ANOVA, where the variation 
within treatments is used as a measure of noise (unexplained error), while the variation between treatments is 
the one of interest.

Now, we must select a statistical test to decide between H0 : D̄B = D̄W against Ha : D̄B > D̄W . To take this 
decision it is illustrative to consider how the number of elements in the vectors DB and DW (from which the mean 
distances D̄B and D̄W are estimated) grow as function of the number of elements in SA and SB . We have mentioned 
before the lengths of the vectors: |SA| = k , |SB| = r , |DB| = k × r and |DW | = k(k − 1)/2+ r(r − 1)/2 . Table 3 
presents examples of the lengths of the vectors |DB| and |DW | for some values of k and r.

In Table 3 we can see how the number of values taken into account to estimate the mean distances between 
and within SEPs elements ( D̄B and D̄W ) rapidly grows in a multiplicative fashion with the increase in the num-
bers of elements in the original SEP sets, SA (of size k) and SB (of size r). For example, for values of k ≥ 5, r ≥ 5 
the number of distances used to estimate D̄B and D̄W are ≥ 20 , thus the distributions of the estimated mean 
distances will be approximately normal, leading to the selection of the one tail Student’s t-test to decide between 
H0 : D̄B = D̄W against Ha : D̄B > D̄W . The selection of this particular hypothesis test is supported by the 
results presented in31. Additionally, the vectors DB and DW have approximately independent distributions, and 
results of the Shapiro-Wilk normality test applied to the residuals DB − D̄B and DW − D̄W do not show strong 
normality departures (results not shown). Also, applying the non parametric Wilcoxon test give p-values that 
are highly concordant with the ones obtained by the t-test in all cases assayed (results not shown).

In summary, we propose that the application of the t-test on the distances between and within SEPs elements 
is useful to decide if two sets of SEPs are equal in average. Salsa function “analyze.2.SEPs” implements 
this procedure for the chili pepper data.

Structure, data and functions in Salsa.  Salsa is organized as a relational database32. This means that 
different data aspects are organized into data frames which are connected among them by common variables. 
Table 4 presents the main data frames and functions that constitute Salsa.

In Table 4 data frames in rows d.1 to d.6 include the variable “id”, a unique numerical gene identifier which 
links different data attributes for each gene, as its description (d.1), expression values (d.2 and d.3), estimated 
SEP and SEP summary (d.4 and d.5, respectively) and available GO annotations (d.6). On the other hand, data 
frames d.7, d.8 and d.9 contain all GO aspects, accessions and libraries, respectively.

Main functions in Salsa are presented in rows f.1 to f.7 in Table 4. The gene.summary function (f.1) plots 
the SEPs of a gene grouped by type (D, W and C) and outputs an statistical summary. Function get.ids (f.2) 
allows the selection of gene identifiers that share a description or other attributes. The get.SEP function (f.3) 
is the core of the Salsa querying algorithm, because it allows to obtain a set of SEPs fulfilling different criteria, 
as gene identifiers or description, accession key or type and model, among others. Functions in rows f.4, f.5 and 
f.6 plot, summarize and test one or more SEPs data frames, respectively. Finally, function analyze.GO in f.7 
perform a GO enrichment analysis for a target set of genes in a given GO aspect. For brevity, other complemen-
tary data and functions are not shown in Table 4, but they are documented in the manual of the package as well 
as in Additional file 1. Figure 2 presents a simplified schema of data mining workflow in Salsa.

Table 3.   Lengths of the vectors DB and DW ( |DB| and |DW | , respectively) for some values of k and r.

k r |DB| |DW | Total: |DB| + |DW |

2 2 4 2 6

2 5 10 11 21

2 10 20 46 66

5 2 10 11 21

5 5 25 20 45

5 10 50 55 105

10 2 20 46 66

10 5 50 55 105

10 10 100 90 190
· · · · · · · · · · · · · · ·

15 15 225 210 435
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Results and discussion
Data mining possibilities with Salsa.  Data mining, also called “knowledge discovery”, is the process of 
uncovering interesting and useful patterns and relationships in large volumes of data (https://​www.​brita​nnica.​
com/​techn​ology/​data-​mining“Data mining” entry at Britannica). In the context of gene expression, data mining 
has been used for example to obtain33,34 and visualize networks35, or to find association rules36.

Figure 2 presents a simplified schema of data mining workflow in Salsa.
The first step to initiate an analysis in Salsa is to select one or more sets of interesting genes (upper rectangles 

in Fig. 2). This is the most difficult phase to explain, because it depends on the specific and limitless interests 
of researchers. As shown in the figure, various functions can help with the delimitation of such sets. The most 
important and flexible of these functions is “get.SEP()”. This function has 10 parameters to select specific 
gene attributes. These parameters are “ids”, “descr”, “acc.key”, “acc.type”, “model”, “ExistInAll”, 
“TimeMaxExp, “isTF” and “coded.expr.level”, and allow to pass to the function the criteria to select 

Table 4.   Main data frames (rows “d.”) and functions (rows “f.”) in Salsa.

Row Name Short description

d.1 gene Gene description

d.2 readcounts Read counts for each gene at each library

d.3 FPKM.expr Expression data in FPKM

d.4 SEP Standardized expression profiles (SEPs)

d.5 SEP.id Summaries of SEPs for each gene expressed

d.6 GO.annot GO annotations

d.7 all.GO Gene ontology (GO) annotations

d.8 acc Accessions

d.9 library.desc Description of RNA-Seq libraries

f.1 gene.summary Graphic and numeric summary of a gene

f.2 get.ids Selects a set of gene identifiers

f.3 get.SEP Obtains a SEP data frame from various criteria

f.4 SEPs.plot Plot mean expression times in SEPs

f.5 SEP.summary Summary of a SEP dataframe

f.6 analyze.2.SEPs Test two SEPs trough Euclidean distances

f.7 analyze.GO GO enrichment analysis (single term)

Figure 2.   Simplified schema of data mining workflow in Salsa. Comprehensive description of the output of 
each one of the functions, as well as details for their use are presented in Additional file 1 as well as in the Salsa 
package manual.

https://www.britannica.com/technology/data-mining
https://www.britannica.com/technology/data-mining
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genes that will be included into the output. As an example, assume that a researcher interested in MYB transcrip-
tion factors—genes that regulate plant responses37, but in particular wants to investigate expression profiles of 
this kind of genes that have its maximum expression at either, 0 or 20 DAA in the accession “Criollo de Morelos 
(CM 334)”; see Table 1. Then, the selection of gene sets can be easily performed by the following R commands: 

(1)	 temp1<- get.SEP(descr=”MYB”, acc.key=”CM”, TimeMaxExp=0, isTF=TRUE)
(2)	 temp2<- get.SEP(descr=”MYB”, acc.key=”CM”, TimeMaxExp=20, isTF=TRUE)

In both cases the function is call with parameters “descr=”MYB””, which will select only genes that contain 
within their protein description the chain “MYB”, and “acc.key=”CM”” which will select cases that belong to 
the accession CM, and which also fulfill “isTF=TRUE”—which means that the genes are annotated as transcrip-
tion factors. The differences between the output objects, “temp1” and “temp” is given because in the first we 
ask for cases where the time where the maximum expression is reached is at 0 DAA (“TimeMaxExp=0”), while 
in the second case we ask for cases where that point is reached at 20 DAA (“TimeMaxExp=20”).

The output of the function get.SEP(), obtained with statements (1) and (2) above, are SEP data frames. 
Thus we obtain information of how many different genes fulfill the parameters (in this particular case there are 
30 and 12 genes in “temp1” and “temp2”, respectively), as well as the numerical values of the estimated SEPs 
and extra information about other of the attributes of these genes.

We can now proceed to the “Summarization” step of the analysis, represented in the second row of rectan-
gles in Fig. 2. Let’s begin by plotting the two sets of SEPs by calling the function SEPs.plot with parameters 
“SEPs.plot(list(temp1, temp2), colors=c(”red”, ”blue”))”. The direct result of this 
call is shown in Fig. 3.

Figure 3 shows the raw result of running the function “SEPs.plot()” with main input consisting on 
the objects “temp1” and “temp1”, which are sets of SEPs containing MYB transcription factors expressed in 
the accession “CM” at times 0 and 20 DAA, respectively. Additionally, parameter “col” is set to red and blue 
to determine the colors that will be used in the plot for objects “temp1” and “temp1”, respectively. This plot 
presents the average of SEPs for the 30 MYB transcription factors with maximum expression at the mature 
flower (0 DAA)—red line, while the blue line presents the average of SEPs for the 12 MYB transcription fac-
tors with maximum expression at 20 DAA, in both cases in accession CM. 95% confidence intervals (CI) are 
also plot at each time of expression, however, those CI are too narrow to be visible in the scale of the graph. If 
desired the user can add extra annotations to the plot, as legends of descriptions, by using the corresponding R 
commands. The summarization step can proceed by examining the summaries of the data frames “temp1” and 
“temp2”, by calling SEP.summary(temp1) and SEP.summary(temp2), and also by using function 
“gene.summary” for each one of the genes at each one of the two groups; for example by calling “gene.
summary(temp1$id[1])”, produces the plot shown in Fig. 4 of the SEPs in all 3 sets of accessions (D, W and 
C) as well as the average SEP for the gene with “id=552” that corresponds to a transcription factor MYB108-like. 
Figure 4 presents the plot obtained by this call. The user will also obtain a statistical summary of the expression 
profiles of this gene in all 12 accessions (not shown).

In Fig. 4, obtained to investigate the expression profile of the first gene of interest (with id 552), the researcher 
gets information of the average time profiles in all the collection of 12 accessions, and also a statistical summary 
of those time profiles that for brevity is not shown. The summarization step can also include calling the gene.
summary() function in the remaining 41 MYB transcription factors included in “temp1” and “temp2”, and 
also browsing the NCBI site to obtain detailed information about the proteins coded by these genes using the 
function “browse.gene()”.

The last step in the data mining workflow in Salsa corresponds to “Analyses” in Fig. 2. It is worth noticing 
the the corresponding box of this figure repeats the functions “SEPs.plot” and “SEPs.summary” that also 
appear in the box “Summarization” of that figure. This is so because the mentioned functions give also results 
about the sets of interest that can be interpreted by the user. Now, by calling the function “analyze.2.SEPs” 
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Figure 3.   Raw plot resulting of running the function “SEPs.plot(list(temp1, temp2), colors 
= c(”red”, ”blue”))”. The input (objects “temp1” and “temp1”) are sets of SEPs containing MYB 
transcription factors expressed in the accession “CM” at times 0 and 20 DAA, respectively.
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with parameters “analyze.2.SEPs(temp1, temp2)” the researcher could perform the t-test of Euclid-
ean distances between and within the two SEPs, and confirm that, as shown in Fig. 3, the average time profiles 
are significantly different (p-value < 2.2× 10−16 ; details of the test not shown). Finally, if desired, the user can 
perform a full set of GO enrichment analyses by using function “analyze.all.GO” on the genes found in 
the objects “temp1” and “temp2”.

The simplified workflow schema for Salsa, shown in Fig. 2 is linear, and thus it does not reflects the iterative 
nature of data mining. In reality, data mining processes are iterative—iteration, by alternating functions, alter-
ing sets of interest or focussing into particular aspects are in many cases necessary for the generation of relevant 
hypotheses38,39. Accordingly, the simple example presented above only gives a glance to the Salsa possibilities 
to find interesting aspects in the time profiles contained in the package. Next section presents a more detailed 
example.

Comparing gene expression profiles between accessions with contrasting fruit size.  We begin 
our analysis by isolating, as separate SEP data.frames, the genes expressed in accessions, “AS” (Ancho San 
Luis), of the domesticated accession set, which produces very large and moderately pungent fruits and “SR” 
(Sonora Red), a wild accession with very small and highly pungent fruits (see Table 1). R code and details of the 
analyses in this section are in Additional file 1.

The majority, > 89% , of the genes were consistently expressed in both accessions, while small percentages, 
< 3% and < 7% of the total number of genes, were exclusively expressed in “AS” and “SR”, respectively. Figure 5 
presents the plot of the average SEPs for each accession, as well as for the set formed by both of them.

Figure 5 shows that the average SEPs in “AS” and “SR” significantly differ at some points of the fruit develop-
ment. For this plot we employed a very stringent threshold for the estimation of confidence intervals (CI) for the 
means; an Error Type I of α = 1× 10−4 , which implies a 99.99% of confidence. CIs for the mean of each group at 
each time are shown as thin vertical lines over the circles that stand for the means per time and accession group. 
Looking at the CIs, we see that the mean SEPs of “AS” and “SR” are highly different at time points 10, 20, 40 and 
50 DAA. It is important to consider that the plot of average SEPs, as the one presented in Fig. 5 for “AS” (red line) 
and “SR” (blue line), does not indicate uniformity of expression profiles for individual genes; in fact, the mean of 
the SEPs hides the large diversity of individual expression profiles among genes (see Fig. 3 in Additional file 1).

Finding sets of genes with divergent expression between the two accessions.  The divergence of average SEP expres-
sion between “AS” and “SR”, observed in Fig. 5, entails high differences between the transcriptomes of the two 
accessions; in particular, the peak of mean expression is found at 10 DAA for “AS”, while for “SR” it happens ten 
days later, at 20 DAA. Peak of mean expression signals maximum transcriptional activity, and is a hallmark in 
time for each individual gene.

To dissect transcriptome differences between “AS” and “SR”, we selected the sets of genes with simultaneous 
peak expression at each one of the seven sampled time points. This produces a total of 7× 7 = 49 gene sets (see 
Box 3 in Additional file 1). Figure 6 shows the matrix of percentages of genes with peak expression at each one 
of the 49 times combinations.

The total of genes expressed in both accessions was 24720. Of these, 3672, representing a proportion of 
3672/24720 ≈ 0.1485 or 14.85%, have their peak expression at 0 DAA in both accessions That figure is presented 
in the bottom left hand-side of the matrix in Fig. 6. The green dashed line in Fig. 6 signals the cases where the 
peak expression coincides in time in both accessions, and we can see that, except for 0, 10 and 60 DAA, the cor-
responding percentages are small (less than 2%), which partially explains the differences between the average 
SEPs observed in Fig. 5.

Gene sets that are out the dashed green diagonal of Fig. 6 are “interesting”, in the sense that they present a 
pattern where peak expression are out of phase. One of the two sets of genes presenting the highest possible phase 
difference is the one formed by the 758 genes ( ≈ 3.07% of the total; top left hand-side corner in Fig. 6) which 
peak at 0 DAA in “AS” (X-axis) while having such maximum at 60 DAA in “SR” (Y-axis).
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Figure 4.   Result of running “gene.summary(temp1$id[1])” (see Text).
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Analysis of the “ASm0SRm60” gene set.  To further illustrate “Salsa” capabilities, we performed an in-depth 
analysis of the set of 758 genes ( ≈ 3.07% of the total), which presents its maximum mean expression at the 
mature flower (0 DAA) in accession “AS”, while having such peak at the mature fruit (60 DAA) in “SR” (see 
higher left hand side corner in Fig. 6). We denote that gene set as “ASm0SRm60”. Figure 7 presents the averages 
of SEPs in the ASm0SRm60 set.
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Figure 5.   Plot of average Standardized Expression Profiles (SEPs) in groups formed by accessions “AS” (in red), 
“SR” (in blue) and the SEPs including all genes from both accessions (in grey). Thin vertical lines over the circles 
marking each mean are the 99.99% ( α = 1× 10

−4 ) confidence intervals (CI’s) for the means. Plot obtained with 
function “SEPs.plot()”.
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In Fig. 7 we can notice the high difference in phase and contrasting average SEPs in the set ASm0SRm60. 
Average SEPs in “AS” (red line) presents a high peak at 0 DAA, suddenly decreasing from 0 to 10 DAA and then 
presenting a relatively steady state from 10 up to 60 DAA, forming an ‘L’ shaped expression profile. On the other 
hand, average SEPs for “SR” (blue line) presents an almost mirrored L shape with a local maximum at 0 DAA and 
then decreasing from 0 to 10 DAA—where the global minimum of mean expression is reached. From 20 DAA 
up to 50 DAA mean expression in “SR” stays relatively steady, suffering then a sudden increase to reach the peak 
of mean expression at 60 DAA. 53 of the 758 genes in ASm0SRm60 ( ≈ 6% ) are transcription factors (TF), and 
Fig. 8 in Additional file 1 shows that these genes display a highly significant difference between “AS” and “SR” 
only at 0 and 60 DAA, showing a low and not significant steady state between 10 and 50 DAA.

The expression pattern of ASm0SRm60 genes is intriguing because it reverses peak expression from the first 
stage of fruit development—the mature flower at 0 DAA in domesticated accession “AS”, to the last stage—fully 
mature fruit at 60 DAA in wild accession “SR”. To understand the biological relevance of this set of genes we 
performed GO enrichment analyses by running function “analyze.all.GO” with a FDR threshold of 10% 
with categories Biological Process (BP), Cell Component (CC) and Molecular Function (MF). Results are sum-
marized in Table 5.

In the first row of Table 5 we can see that a total of 106 genes from the set of 758 in “ASm0SRm60”, i.e., 
≈ 14% , are annotated in the BP ‘Transport’ (GO:0006810), while the expected number of such genes under the 
independence hypothesis is only 70. This implies that small molecule transport is higher in the mature flower (0 
DAA) in the domesticated accession “AS”, while it is higher in the mature fruit (60 DAA) in the wild accession 
“SR” (see Fig. 7).
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Figure 7.   Average expression profiles for genes simultaneously having maximum expression at 0 DAA in 
accession “AS” but maximum expression at 60 DAA in accession “SR” (set “ASm0SRm60”). Obtained with 
function “SEPs.plot()”; see Box 4 in Additional file 1.

Table 5.   Selected Gene Ontology enrichment analyses results. “O” and “E” are Observed and Expected 
number of genes in the “ASm0SRm60” set, respectively.

Category Id Description Odds O E

Biological process GO:0006810 Transport 1.72 106 70

Biological process GO:0051649 Establishment of localization in cell 2.02 39 21

Biological process GO:0016236 Macroautophagy 22.48 4 0

Cell component GO:0009579 Thylakoid 0.00 0 9

Cell component GO:0009521 Photosystem 0.00 0 8

Cell component GO:0005778 Peroxisomal membrane 15.72 4 0

Molecular function GO:0022892 Substrate-specific transporter activity 1.90 42 23
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We are not going to extend here the discussion of the biological relevance of the results in Table 5; nonetheless, 
it must be clear that Salsa capabilities grant detailed and deep mining of the chili pepper transcriptome during 
fruit development in the 12 accessions sampled (see Additional file 1 for more details).

Extending Salsa algorithms to other datasets.  The methodology to estimate and analyze SEPs can 
be extended to almost any time course experiment, including not only RNA-Seq data, but also other expression 
profiling methods as microarrays or metabolomic time profiling experiments, as the ones described in40. How-
ever, SEP estimation is dependent on the specific data type as well as on the number and separation of the times 
sampled. In summary, to estimate SEPs we need replicated measures of the target data at times that include the 
whole relevant time period. It is also advisable that sampling times will be equally separated, forming intervals 
with the same time length. Constructing ternary models, that implies hypothesis testing of neighboring intervals 
to decide if the variable has not significantly changed (remained at an steady state, “S”), or it increased (“I”) or 
it decreased (“D”), at each interval is the core of SEPs estimation, and can be performed for any time course 
experiment, but the particular method for hypothesis testing depends on the nature of the data. Having such 
ternary model for the variable of interest, the standardization necessary is straightforward, and, as seen here, SEP 
plotting, grouping and analysis present advantages for the interpretation of the results. A disadvantage of this 
approach is that SEP estimation use error variance (differences between replicates), and thus further analyses 
must rely on indirect evidence, as the Euclidean distances between and within SEPs sets. However, this approach 
is statistically robust giving good practical results, even when it is computationally heavy when SEPs sets are 
large.

In conclusion, we presented a methodology to summarize time expression profiles directly applicable to any 
RNA-Seq time course experiment, and which can be adapted to other types of time course experiments. This 
methodology was applied to a large set of 179 RNA-Seq libraries that estimate gene expression during fruit devel-
opment in 12 chili pepper accessions. All relevant data and functions to mine these transcriptomes are collected 
in the Salsa R package, which possibilities for data mining have been demonstrated here. We anticipate that the 
R package will be useful to the research community studying gene expression changes during fruit development.

Additional information.  The full set of 179 RNA-Seq libraries from which the R package “Salsa” origi-
nated have been deposited in NCBI’s Gene Expression Omnibus (GEO)25, and are accessible through GEO 
Series accession number GSE165448.

(Link: https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​GSE16​5448).
Salsa R package The R package “Salsa” has been deposited at zenodo and it is publicly available in the link 

https://​zenodo.​org/​record/​47674​45#.​YKJmF​GauJn​5 (Salsa at zenodo). On that link you can download the pack-
age, its manual as well as instructions to install it.
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