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Abstract: Maintenance of redox homeostasis is vital for aerobic organisms and particularly relevant
to plant pathogens. A balance is required between their endogenous ROS production, which is impor-
tant for their development and pathogenicity, and host-derived oxidative stress. Endogenous ROS in
fungi are generated by membrane-bound NADPH oxidase (NOX) complexes and the mitochondrial
respiratory chain, while transcription factor Yap1 is a major regulator of the antioxidant response.
Here, we investigated the roles of NoxA and Yap1 in fundamental biological processes of the im-
portant plant pathogen Verticillium dahliae. Deletion of noxA impaired growth and morphogenesis,
compromised formation of hyphopodia, diminished penetration ability and pathogenicity, increased
sensitivity against antifungal agents, and dysregulated expression of antioxidant genes. On the
other hand, deletion of yap1 resulted in defects in conidial and microsclerotia formation, increased
sensitivity against oxidative stress, and down-regulated antioxidant genes. Localized accumulation
of ROS was observed before conidial fusion and during the heterokaryon incompatibility reaction
upon nonself fusion. The frequency of inviable fusions was not affected by the deletion of Yap1.
Analysis of a double knockout mutant revealed an epistatic relationship between noxA and yap1.
Our results collectively reveal instrumental roles of NoxA and ROS homeostasis in the biology of
V. dahliae.

Keywords: antioxidant response; conidial anastomosis tubes (CATs); heterokaryon incompatibility;
oxidative stress; pathogenicity; reactive oxygen species (ROS); redox homeostasis

1. Introduction

Reactive oxygen species (ROS) are short-lived, highly reactive molecules that are
produced by partial reduction of oxygen, and they include hydrogen peroxide (H2O2),
superoxide anion (O2

•−) and hydroxyl (OH•) radicals [1]. Growing evidence from various
organisms has assigned a Janus-faced nature to ROS as both deleterious molecules that
can cause irreversible damage to biological systems and important signaling components
regulating metabolic and developmental processes [1–3]. This double-edged significance of
ROS is clearly illustrated in host–microbe interactions. In particular, fungal plant pathogens
have to cope with host-derived ROS burst reactions during infection [4], while endogenous
ROS production is simultaneously involved in the development of infectious structures
and the efficient colonization of their hosts [5]. It is, therefore, vital for fungal pathogens to

J. Fungi 2021, 7, 740. https://doi.org/10.3390/jof7090740 https://www.mdpi.com/journal/jof

https://www.mdpi.com/journal/jof
https://www.mdpi.com
https://orcid.org/0000-0002-6501-7052
https://orcid.org/0000-0002-8055-4024
https://orcid.org/0000-0002-8791-0669
https://orcid.org/0000-0003-2566-923X
https://doi.org/10.3390/jof7090740
https://doi.org/10.3390/jof7090740
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jof7090740
https://www.mdpi.com/journal/jof
https://www.mdpi.com/article/10.3390/jof7090740?type=check_update&version=1


J. Fungi 2021, 7, 740 2 of 19

maintain a balance between ROS generation and scavenging in order to achieve successful
development and pathogenicity [5,6].

Intracellular ROS production mainly takes place in mitochondria, as by-products of
the electron transport chain [7], and by the enzymatic activity of NADPH oxidase (Nox)
complexes [1]. The latter mostly localize at the plasma membrane or at the endoplasmic
reticulum, and they produce superoxide anion radicals via reduction of molecular oxygen,
using NADPH as the electron donor [1]. The best characterized member of this family is
the mammalian gp91phox (Nox2), which is responsible for the ROS burst of neutrophils
and other phagocytic cells in response to microbial pathogens [8]. Filamentous fungi
possess three well established families of Nox enzymes called NoxA, NoxB (homologs of
the mammalian gp91phox), and NoxC. These enzymes, together with their adapter protein
NoxD, form distinct complexes with pleiotropic roles in sexual reproduction, vegetative
growth, and host infection [5,6,9–13]. In particular, NoxA has been implicated in sexual
differentiation of fruiting bodies in Aspergillus nidulans [14], Podospora anserina [15], and
Sordaria macrospora [16], while its deletion in Neurospora crassa has led to complete female
fertility [17]. Generation of ROS by NoxA is indispensable for appressorium-mediated
cuticle penetration in Magnaporthe oryzae [10], as it controls the polarized elongation of
penetrations pegs [11]. Similarly, a complete lack or high attenuation of pathogenicity was
observed upon deletion of noxA in Claviceps purpurea [18], Sclerotinia sclerotiorum [19], Botry-
tis cinerea [20], and Alternaria alternata [21]. Finally, NoxA has been proposed to be involved
in the control of somatic conidial fusion via conidial anastomosis tubes (CATs) in various
species [22], including the plant pathogens Verticillium dahliae [23], Fusarium oxysporum [24],
and B. cinerea [25].

In parallel with ROS-generating systems, fungi have evolved a fine-tuned arsenal to
cope with oxidative stress. Basic leucine zipper (bzip) transcription factors are conserved
across eukaryotic life and are implicated, among others, in the oxidative stress response
(OSR), developmental processes, amino acid biosynthesis, and nutrient utilization [26,27].
The AP1 family is the largest and best characterized group of fungal bzip transcription
factors [28], and it includes Yap1, the major regulator of the OSR, which orchestrates
several ROS-scavenging enzymes and non-enzymatic antioxidants [5]. Extensive stud-
ies of Saccharomyces cerevisiae Yap1 revealed that oxidation of specific cysteine residues
upon exposure to H2O2 is crucial for the accumulation of the protein in the nucleus, pro-
viding a characteristic example of ROS-mediated signal transduction [29]. Homologs
of Yap1 in filamentous fungi have similar structures and their deletion increases sensi-
tivity to oxidative agents, indicating the conserved role of Yap1 in the regulation of the
OSR [28]. Transcriptional analyses in several species have shown that Yap1 homologs
control the expression of antioxidant genes such as catalases, superoxide dismutases,
peroxidases, and genes involved in glutathione biosynthesis [30–37]. Apart from their
universal role in regulating the OSR, Yap1 homologs also exhibit species-specific roles in
pathogenicity [33,36,38,39], development [33,37,39,40], and secondary metabolism [35,41].

The asexual plant-pathogenic fungus V. dahliae causes wilt disease in a wide range
of economically important plants [42]. Upon induction from a plant host, its resting
structures (i.e., microsclerotia) in the soil germinate and form infectious hyphae that
attach to a host’s surface and penetrate its roots by forming swollen hyphae (termed
hyphopodia) and penetration pegs [42,43]. The formation of these pegs depends on a
ROS burst derived from the NoxB/Pls1 membrane-bound complex [44]. During host
colonization, V. dahliae must cope with the plant-derived oxidative stress that is induced
by plant defense mechanisms [45], which renders efficient OSRs necessary for successful
systemic infection. However, a recent study of V. dahliae Yap1 showed that its deletion did
not impair the ability of this fungus to cause disease in smoke trees [40].

In this work, we aimed at the functional characterization of noxA and its potential
involvement in important biological processes of V. dahliae. We coupled this investigation
with further analyses of yap1, which has recently been studied in V. dahliae [40], to gain
insight into the possible interplay between ROS-generating and -scavenging systems in
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fungi. To this end, we knocked out their V. dahliae homologs and further generated a
double knockout mutant to investigate their roles in fungal development, physiology, and
pathogenicity. Furthermore, we characterized the responses of these mutants to antifungal
agents and their behavior during hyphal fusion and the heterokaryon incompatibility
reaction. Our results attribute significant roles to NoxA and Yap1 regarding morphogen-
esis, pathogenicity, and stress tolerance, and they highlight the crucial contribution of
endogenous ROS production and metabolism to multiple aspects of fungal biology.

2. Materials and Methods
2.1. Fungal Strains, Growth Media, and Culture Conditions

All fungal strains constructed and used in this study are listed in Table S1 (Supplemen-
tary Materials). They were grown on standard growth media (Potato Dextrose Agar—PDA,
Czapek-Dox complete medium—CM, Czapek-Dox minimal medium—MM) at 24 ◦C, in
the dark. Preparation and maintenance of monoconidial strains have been described
previously [46].

2.2. Deletion and Complementation of V. dahliae noxA and yap1

All plasmids used for the construction of recombinant vectors are listed in Table S2
(Supplementary Materials). We have recently described the strategy that we used for
knocking out the V. dahliae homologs of noxA and yap1 [23]. Briefly, both mutants were
constructed in the background of V. dahliae wild-type strain 123V via double homologous
recombination following Agrobacterium tumefaciens-mediated transformation (ATMT) [47].
Using this method, we recently performed and described deletion of noxA and validation
of the mutant strain [23]. To knock out the yap1 homolog, the flanking chromosomal
regions (~2.0 kb-long each) of the yap1 open reading frame (ORF) were amplified from
genomic DNA of V. dahliae 123V and ligated to the neoR cassette (conferring resistance
to geneticin; the cassette was amplified from plasmid pSD1 [48]) in the backbone of the
A. tumefaciens binary vector pOSCAR [49]. All PCR amplification steps were performed
using the high-fidelity Herculase II Fusion DNA Polymerase (Agilent, Santa Clara, CA,
USA), and assembly of the recombinant vector was performed with the NEBuilder HiFi
DNA Assembly Master Mix (New England Biolabs, Ipswich, MA, USA). To generate the
double ∆noxA ∆yap1 knockout mutant, we transformed the ∆noxA strain with the deletion
construct of yap1. Validation of all knockout strains was achieved with PCR, using gene-
specific primers (Table S3, Supplementary Materials), and Southern hybridization analyses
(DIG DNA Labeling and Detection Kit, Sigma-Aldrich, St. Louis, MO, USA).

The coding sequence of the yap1 gene, flanked by ~2.0 kb-long genomic regions, was
amplified from genomic DNA of V. dahliae 123V and co-transformed into protoplasts of
the ∆yap1 strain with plasmid pUCATPH [50] (which carries the hph cassette conferring
resistance to hygromycin B) to generate the complemented strain yap1-c.

2.3. Characterization of Morphology, Physiology, and Stress Response of V. dahliae Strains

Morphological and physiological characterization of fungal strains, as well as assess-
ment of their stress sensitivity, were performed as previously described [47], with a minor
modification for the determination of germination frequency. In particular, strains were
grown for 12 h in CM and then checked microscopically for the emergence of germ tubes.

To characterize stress tolerance and responses, we exposed fungal strains to a variety of
oxidative agents (H2O2, paraquat, iprodione, and N-acetyl cysteine), substances that induce
osmotic stress (NaCl and sorbitol), cell wall damaging factors (amphotericin B obtained
from Biosera, Nuaille, France, fluconazole from Pfizer, Brooklyn, NY, USA, calcofluor white
M2R, and Congo red), trace elements (CaCl2, CuSO4, and FeSO4), and an inhibitor of
TOR kinase (sirolimus from Cayman Chemical, Ann Arbor, MI, USA). In addition, we
used fungicides that target complex I (sodium amytal), complex II (isopyrazam, flutolanil),
complex III (azoxystrobin, kresoxim-methyl, pyraclostrobin-QoI/cytB site; annisulborn-
Qi site), and complex IV (sodium cyanide) of the electron transport chain to investigate
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possible interactions between the ROS-generating systems. All chemicals were purchased
from Sigma-Aldrich, St. Louis, MO, USA, unless otherwise specified above. According
to our previously described methods [47], we used spot dilution assays and determined
relative growth inhibition (i.e., % growth inhibition = ((colony diameter on CM − colony
diameter in stress condition)/(colony diameter on CM)) × 100). All experiments were
performed at least in triplicate.

2.4. Virulence Assays

Plant pathogenicity bioassays were performed according to our previously published
methods [47,51]. Briefly, eggplant seedlings were inoculated with the corresponding fungal
strain by soil drenching (20 mL of conidial suspension of 5.0 × 106 conidia/mL per pot).
Plants were maintained at 24 ◦C with a 12 h light/dark cycle. Assessment of disease
severity at each time point (up to 40 days) and determination of relative AUDPC and plant
growth parameters were performed according to previously described protocols [51,52].
We re-isolated fungal strains from the treated plants by transferring xylem chips (three
chips from nine randomly selected plants per treatment) to acidified PDA plates. The
isolation ratio was expressed as the number of xylem chips from each treatment that
exhibited fungal growth.

2.5. Cellophane Penetration Assays

The ability of V. dahliae strains to penetrate cellophane membranes was assessed as
follows. Conidial suspensions from the examined strains were collected from 7-day-old
PDA cultures, and 5 × 106 conidia of each were transferred onto CM plates overlaid with
sterile cellophane sheets. The samples were incubated at 24 ◦C for five days. Cellophane
sheets were then removed, and the plates were incubated for four additional days before
being scored for fungal growth. For the microscopic examination of hyphopodial forma-
tion, the same membranes (i.e., after five days of incubation with the respective conidial
suspension) were washed with sterile water and observed under a microscope.

2.6. Superoxide Detection

Superoxide anion radicals (O2
•−) in germlings and in the mycelium of V. dahliae strains

were detected by a nitro blue tetrazolium chloride (NBT; Cayman Chemical, Ann Arbor, MI,
USA) staining assay. Conidia of each strain were grown for 16 h in CM, in plate wells with
sterile coverslips at their bottom. Following incubation, the medium was removed, 5 mL
of a 0.2% NBT solution was added, and the samples were incubated at room temperature
(RT), in the dark, for 45 min. The coverslips were then washed with ethanol and checked
microscopically. Detection of superoxide anion radicals in the mycelium was performed
with the addition of 10 mL of a 0.2% NBT solution on 20-day-old cultures grown on CM.
Plates were incubated for 45 min at RT, which was followed by washing with ethanol and
incubation for another 30 min, before being air-dried and scored. Staining assays were
performed in duplicate.

2.7. Reverse Transcription Quantitative PCR (RT-qPCR)

Determination of the expression levels of selected genes was performed as follows.
Wild-type, ∆noxA, ∆yap1, and ∆noxA ∆yap1 strains were grown for five days in CM
at 24 ◦C. Mycelia were collected, washed with water, and when desired treated with
1.5 mM H2O2 for 45 min. They were then snap-frozen in liquid nitrogen (N2), ground
to a fine powder under N2, and used for extraction of total RNA with the NucleoSpin
RNA kit (Macherey-Nagel, Düren, Germany). Total RNA was reverse transcribed to cDNA
using the PrimeScript cDNA synthesis kit (Takara Bio, Kusatsu, Japan). Quantitative
PCR (qPCR) was performed using the KAPA SYBR Fast Universal Master Mix (Roche,
Basel, Switzerland) in a Mx3000P real-time PCR instrument (Stratagene California, San
Diego, CA, USA), according to the manufacturer’s instructions. For each primer pair
(Table S3, Supplementary Materials), we performed optimization of oligo concentrations
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and construction of standard curves in preliminary experiments. All curves were highly
linear (R2 > 0.999), and their amplification efficiencies ranged between 95% and 105%.
The cycling protocol consisted of an initial denaturation step at 95 ◦C for 5 min, followed
by 40 cycles of 10 s at 95 ◦C (denaturation), 20 s at 60 ◦C (annealing), and 20 s at 72 ◦C
(elongation). Dissociation curves were generated for each primer pair with the following
protocol. Samples were first incubated for 1 min at 95 ◦C, then at 55 ◦C for 30 s, and finally
a temperature ramp (0.1 ◦C/s) up to 95 ◦C was applied with continuous collection of
fluorescence readings. A single product was amplified with each primer pair. No-template
control samples were included in each run to check for contamination and significant
formation of primer dimers.

The 2−∆∆Ct method [53] was used for analysis of the results, with the modification that
each ∆Ct value was calculated as the difference between the Ct values of the reference and
target genes (i.e., Ct reference-Ct target), and the fold change was calculated by the formula
2∆∆Ct. The V. dahliae β-tubulin gene (VDAG_10074) was used as the internal reference
in all experiments. The ∆∆Ct value and fold change for each gene in different mutants
and/or conditions was calculated relative to the control condition (i.e., expression level
of the corresponding gene in the untreated wild-type strain). Student’s t-tests were used
to assess differences of ∆∆Ct values. Three biological (i.e., independent cultures) and two
technical replicates were performed for each strain and condition.

2.8. Quantification of CAT-Mediated Fusion

We used our previously optimized and described methods for reproducible quantifica-
tion of CAT-mediated self and nonself fusion [23,54] to investigate the possible involvement
of noxA and yap1 in somatic cell fusion. Briefly, conidia from 7-day-old PDA cultures were
collected and transferred to 6-mm Petri dishes, with coverslips at their bottom (containing
5 mL of CAT medium each) to a final concentration of 2.0 × 106 conidia/mL. Plates were
incubated for 60 h at 24 ◦C before imaging. Each strain/pairing was tested in triplicate and
200 fusions were recorded per replicate.

2.9. Microscopy

Microscopic examination of fungal germlings, hyphae, and NBT-stained samples, as
well as investigation of CAT-mediated fusion, were performed using a Zeiss Axioplan
epifluorescence microscope equipped with a differential interference contrast (DIC) optical
system, a set of filters BP450-490 (excitation) and BP515-595 (emission), and a Zeiss Axiocam
MRc5 digital camera. Methylene blue staining (0.005% w/v) was used to differentiate live
from dead cells; samples were incubated at 25 ◦C for 5 min (in the dark) before imaging.

3. Results
3.1. Roles of NoxA and Yap1 in V. dahliae Morphogenesis and Physiology

The NADPH oxidase A (NoxA) and the transcriptional regulator Yap1 are key com-
ponents of ROS metabolism in fungi and other organisms. The single homolog of noxA
in the V. dahliae genome (VDAG_06812 in the reference genome of strain Ls.17) codes for
a predicted protein of 555 aa with a high similarity to its N. crassa Nox1 homolog (99%
query coverage, 90% sequence similarity), and we have recently described its deletion in
the wild-type V. dahliae strain 123V [23]. The A. nidulans Yap1 protein sequence was used
as a query in tBlastN genomic searches for the identification of its single V. dahliae homolog,
which encodes a predicted protein of 583 aa (VDAG_01588; protein similarity: 52%). This
protein is predicted to contain the characteristic bzip domain and the signal peptides of
its S. cerevisiae homolog, as well as the conserved cysteine residues that are essential for
its nuclear localization (Figure S1, Supplementary Materials). For the functional analysis
of yap1 in V. dahliae, the gene was deleted from strain 123V, and the resulting deletion
mutant (∆yap1) was validated by PCR and Southern blot analyses (Figure S2, Supplemen-
tary Materials). The wild-type yap1 gene was re-introduced into ∆yap1 to generate the
complemented strain yap1-c. A double deletion ∆noxA ∆yap1 mutant was constructed via
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double homologous recombination following transformation of ∆noxA conidia with the
yap1 deletion construct (Figure S2, Supplementary Materials).

Morphogenesis and physiology of strains ∆noxA, ∆yap1, and ∆noxA ∆yap1 were
compared to those of their wild type on growth media PDA, CM, and MM. Production
of microsclerotia was significantly reduced in mutants ∆noxA and ∆noxA ∆yap1 on PDA,
while it was almost absent from ∆yap1 on all media (Figure 1A). The ability of ∆noxA and
∆noxA ∆yap1 to produce aerial hyphae was compromised on CM and MM (Figure 1A),
and these strains also exhibited moderately slower growth on PDA (p < 0.01 and p < 0.05,
respectively; Figure 1B). In contrast, deletion of yap1 did not affect the formation of aerial
mycelium, but it slightly reduced its growth rate (p < 0.05, Figure 1A,B).

Regarding development of conidia, a non-significant increase in their production was
observed in ∆noxA, but their ability to germinate was drastically limited in this mutant (51.3%
reduction), similarly to what was observed in ∆noxA ∆yap1 (43.7% reduction) (Figure 1B). On
the other hand, ∆yap1 exhibited a 10-fold reduction in conidiation (Figure 1B), although its
conidia germinated normally (Figure 1B,C). We also observed that mature hyphae of ∆noxA
and ∆noxA ∆yap1 were significantly thinner than those of the wild type (Figure 1D,E). All
these defects were fully rescued in the corresponding complemented strains (Figure 1A,B,E).
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Figure 1. Morphological and physiological characterization of V. dahliae ∆noxA, ∆yap1, and ∆noxA
∆yap1 deletion mutants: (A) morphology of colonies of the V. dahliae wild-type (123V), ∆noxA, ∆yap1,
∆noxA ∆yap1, and the complemented strains noxA-c and yap1-c after growth on PDA, CM, or MM
for 35 days. (B) Growth rate, conidial production, and germination frequency of tested strains. All
experiments were performed in triplicate, and germination of 100 conidia was assessed per replicate.
Bars: SD. Statistical significance of differences from the wild type were tested with Student’s t-tests
(* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001). (C) Morphology of conidial germlings of the wild-type and
the knockout strains. Bar = 5 µm. (D) Morphology of mature hyphae. Bar = 5 µm. (E) Mean hyphal
width of examined strains. For each strain, the widths of at least 50 non-apical hyphal compartments
from colony areas of the same age were recorded. Bars: SD. Statistical significance of differences from
the wild type was assessed using Student’s t-tests (*** p ≤ 0.001).
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3.2. NoxA, but Not Yap1, Is Essential for the Penetration Ability and Pathogenicity of V. dahliae

To investigate the possible involvement of NoxA and Yap1 in V. dahliae pathogenicity,
we assessed the ability of the deletion mutants to cause disease in eggplant, in compar-
ison to their wild type. Both ∆noxA and ∆noxA ∆yap1 mutants exhibited diminished
pathogenicity, with 88% and 76% of the treated plants (respectively) remaining completely
asymptomatic 40 days after inoculation, while the remaining plants showed only weak
symptoms (Figure 2A,B). In contrast, deletion of yap1 only slightly limited the fungal
potential to cause disease (Figure 2A,B). Complementation of the corresponding mutants
with the wild-type alleles of noxA and yap1 fully rescued the ability of the fungus to cause
severe disease, characterized by defoliation, wilting, and chlorosis (Figure 2A,B).
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Figure 2. Phytopathological characterization of V. dahliae noxA and yap1 knockout strains:
(A) representative examples of inoculated plants with the wild-type strain 123V (WT), the dele-
tion mutants ∆noxA, ∆yap1, and ∆noxA ∆yap1, as well as their corresponding complemented strains,
29 days post-inoculation. (B) Average disease severity caused by the examined strains, 40 days
after inoculation (30 eggplant seedlings/strain). Non-infected plants (mock) served as controls.
(C) Time-course analysis of disease severity caused by the wild-type and the knockout strains
(21 plants/strain) over 29 days. (D) Mean relative area under disease progress curve (AUDPC) score
of each strain (29 days). (E) Average plant fresh weight at the end of the time-course experiment
(29 days). (F) Fungal re-isolation ratios at the end of the time-course experiment (29 days). Bars
in (C–F): SE. Statistical significance of differences between strains was tested by one-way ANOVA
followed by Tukey’s post hoc tests. Bars marked with the same letter did not differ significantly
(p ≤ 0.05).

We further performed a time-course analysis of virulence to gain a better understand-
ing of the involvement of noxA and yap1 in the induction of plant disease (Figure 2C). The
wild-type strain started causing observable symptoms in the infected plants 12 days after
inoculation, reaching a mean disease severity of 55.5% (±7.3%) at the end of the experiment
(29 days), and an overall relative AUDPC value of 27.5% (±3.9%) (Figure 2C,D). Deletion
of noxA completely prevented the expression of disease symptoms during this time pe-



J. Fungi 2021, 7, 740 8 of 19

riod, similarly to the ∆noxA ∆yap1 strain, which achieved a relative AUDPC score of 0.1%
(±0.1%) (Figure 2C,D). In contrast, only a minor reduction was detected in virulence of ∆yap1
(Figure 2C,D). These findings were further supported by the determination of the average
plant fresh weight at the end of the experiment, with ∆noxA and ∆noxA ∆yap1 having no
effect, whereas ∆yap1 led to a reduction similar to that of the wild-type strain (Figure 2E).
Consistently, our attempts to re-isolate the fungus from xylem chips (29 days post-inoculation)
revealed a significantly reduced presence of the pathogen in the xylem vessels of plants inocu-
lated with ∆noxA or ∆noxA ∆yap1, in contrast to ∆yap1, which achieved systemic colonization
at wild-type levels (Figure 2F).

The inability of the ∆noxA and ∆noxA ∆yap1 strains to cause disease in their plant
hosts, as well as their severely reduced presence in the xylem of inoculated plants, led us to
the hypothesis that noxA is possibly necessary for efficient root penetration. We therefore
investigated the capacity of the deletion mutants to penetrate cellophane membranes
by inoculating cellophane sheets overlaying CM plates with conidia of each strain and
incubating them for 5 days. Cellophane sheets were then removed, plates were incubated
for another 4 days, and they were finally scored for fungal growth. In support of our
hypothesis, deletion of noxA, or both noxA and yap1, completely abolished penetration
of cellophane, in contrast to the wild-type, the ∆yap1, and the complemented strains,
which grew profoundly on but also below the membrane sheets (Figure 3A). Furthermore,
microscopic examination of the removed membranes revealed a drastic reduction in the
frequency of normally developed hyphopodia (i.e., infectious structures involved in host
penetration [43]) in ∆noxA and ∆noxA ∆yap1, whereas all other strains retained the ability
to form numerous hyphopodia (Figure 3B). Our results indicate that NoxA, but not Yap1,
plays a major role in plant penetration and has essential functions in V. dahliae pathogenicity.
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Figure 3. Penetration assays on cellophane membranes: (A) sheets of cellophane membrane were
placed on CM agar, inoculated with conidial suspensions of the examined strains, and incubated
for 5 days (above). Plates were scored for fungal growth 4 days after membrane removal (be-
low). The experiments were performed in triplicate and 4 cellophane sheets per plate were used.
(B) Microscopic examination of hyphopodial formation on the cellophane membranes (5 days post-
inoculation). Arrowheads: examples of hyphopodia. Bar = 5 µm.

3.3. NoxA Is Involved in ROS Metabolism and Its Oxidative Activity Is Counteracted by Yap1

Staining of O2
•− radicals using NBT revealed their accumulation mostly in the apical

parts of germlings and at the periphery of colonies of the ∆noxA mutant, in contrast to
their more uniform presence in the wild-type strain (Figure 4A). Peripheral staining of
colonies was also observed in ∆noxA ∆yap1, whereas the wild-type pattern was restored
in the complemented strain (Figure 4A). These observations support the hypothesis that
NoxA is involved in ROS metabolism in V. dahliae. On the other hand, deletion of yap1
resulted in generally increased formazan precipitation (Figure 4A), which indicates de-
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fects in ROS metabolism and is consistent with the conserved role of this regulator in
ROS detoxification.

We further characterized the roles of NoxA and Yap1 in response to oxidative stress
by exposing the wild-type and knockout strains to the oxidizing agent H2O2, the herbicide
paraquat, the fungicide iprodione, and the ROS scavenger N-acetyl cysteine (NAC). As
expected, we detected significant growth defects of ∆yap1 in the presence of any ROS-
inducing agent (Figure 4B,C). On the other hand, ∆noxA was inhibited to a lesser extent
by H2O2 (at high concentrations), iprodione, and the ROS-scavenger NAC (Figure 4B,C).
Notably, the double deletion mutant ∆noxA ∆yap1 exhibited the same behavior as ∆noxA
(Figure 4B,C), indicating an epistatic relationship between the two genes.
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Figure 4. Patterns of ROS accumulation and oxidative stress tolerance of V. dahliae noxA and yap1
knockout mutants: (A) detection of O2

•− using NBT staining in germlings (16 h of growth in CM)
and colonies (20 days old on CM plates). Top and bottom views of plates are shown for each strain.
(B) Conidial germination of each examined strain upon treatment with H2O2, paraquat, iprodione,
or N-acetyl cysteine (growth for 3 days). (C) Relative growth inhibition of colonies by the same
substances. Bars: SD. Statistical significance of differences from the wild type was tested by Student’s
t-tests (* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001). Concentrations are expressed in mM, except for iprodione
(µg/mL). All experiments were performed in triplicate.

To gain a better understanding of the roles of V. dahliae noxA and yap1 in the OSR, we
investigated their expression patterns before and after treatment with H2O2 by RT-qPCR
(Figure 5). The noxA gene is strongly induced upon oxidative stress in the wild type, and
neither its induction pattern nor its transcript levels were affected by deletion of yap1. On
the other hand, yap1, which is down-regulated under oxidative stress in the wild type,
failed to reach its normal expression levels in the ∆noxA mutant background under these
conditions. When we also analyzed the expression levels of the stress-activated Hog1
MAP kinase gene before treatment with H2O2, we observed significantly lower levels in
all knockout mutants than in the wild type. Under oxidative stress, however, hog1 was
down-regulated in the wild type, followed a similar but less pronounced trend in ∆yap1,
and moderate induction in ∆noxA and ∆noxA ∆yap1 (Figure 5).

Furthermore, we characterized the responses to oxidative stress of three important
downstream genes known to be involved in the OSR, i.e., catalase (cat1), superoxide dis-
mutase (sod1), and glutathione reductase (glr1). As expected, induction of all three was
detected in the wild-type strain in the presence of H2O2, whereas they were expressed
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at lower levels and failed to be induced by oxidative stress in the absence of their tran-
scriptional regulator Yap1 (Figure 5). Interestingly, we detected significantly higher mRNA
levels of cat1 and glr1 in the ∆noxA mutant than in the wild type under normal conditions,
while sod1 and glr1 failed to reach their wild-type levels under oxidative stress in ∆noxA
(Figure 5). The ∆noxA ∆yap1 strain exhibited a similar expression pattern to ∆yap1 for cat1
and glr1, while the expression of sod1 was up-regulated under normal conditions in this
strain (Figure 5). Our findings indicate that V. dahliae NoxA is up-regulated by oxidative
stress and implicate it in the transcriptional regulation of both the OSR and the important
stress-responsive MAP kinase Hog1.
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Figure 5. Expression profiles of genes involved in ROS metabolism before (-) and after (+) treatment
with 1.5 mM H2O2. For each gene, the upper plot shows the average relative expression level in each
strain compared to the untreated wild-type strain, and the lower shows the determined ∆∆Ct values.
Three biological replicates (and two technical replicates for each) were performed and analyzed for
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represent the SD between the three biological replicates. Statistical significance of differences from
the untreated wild-type strain was tested by Student’s t-tests (* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001).

3.4. NoxA Is Involved in the Response to Cell Wall Stress and Possibly Interacts with Components
of Important Biological Processes

We further investigated the possible involvement of NoxA and Yap1 in fungal re-
sponses to other sources of cellular stress by characterizing the behavior of the corre-
sponding mutant strains in the presence of substances inducing hyperosmotic stress, cell
wall-perturbating agents, high concentrations of trace metals, and various fungicides
(Figure 6A,B). Regarding osmotic stress, only a minor growth inhibition of ∆noxA and
∆yap1 was recorded in the presence of NaCl. In contrast, cell wall stress significantly
compromised the growth rates (calcofluor white and Congo red) and the germination
frequency (calcofluor) of ∆noxA and ∆noxA ∆yap1, whereas ∆yap1 exhibited limited sensi-
tivity only to calcofluor. Consistently, the drug amphotericin B, which disorganizes fungal
cell membranes by targeting ergosterol, and also causes oxidative stress, impaired growth
and germination of ∆noxA and ∆noxA ∆yap1. However, the inhibitor of ergosterol biosyn-
thesis fluconazole specifically restricted growth of ∆yap1 and, to a lesser extent, that of the
double deletion mutant. Motivated by the observation that deletion of yap1 in yeast causes
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decreased resistance to metals [55], we checked resistance of the V. dahliae noxA and yap1
mutants to Ca2+, Cu2+, and Fe2+ cations (Figure S3A,B, Supplementary Materials). While
Ca2+ and Cu2+ indeed restricted radial growth of ∆yap1, Fe2+ had a more pronounced
effect on the noxA-deficient strains.

Apart from the Nox complexes, mitochondria are a major intracellular source of ROS.
We tested fungicides that target the four complexes (I–IV) of the respiratory chain (i.e.,
azoxystrobin, sodium cyanide, pyraclostrobin, kresoxim-methyl, annisulborn, sodium
amytal, flutolanil, and isopyrazam), and we found them all to cause significant growth
reduction in ∆noxA and ∆noxA ∆yap1 strains, while ∆yap1 was not affected (Figure 6A,B;
Figure S3A,B, Supplementary Materials). These findings are suggestive of a possible
crosstalk between the two major cellular sources of ROS.

Finally, since NoxA has been shown to interact with the machinery of autophagy
in phagocytic cells [56], we tested the responses of the V. dahliae mutants to rapamycin,
an inhibitor of the TORC1 kinase and, therefore, an inducer of autophagy (Figure 6A,B).
Deletion of noxA, but not of yap1, led to significantly increased sensitivity to the inhibitor,
which implies a possible dysregulation of autophagy.
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Figure 6. Effects of osmotic stress, cell wall- and plasma membrane-perturbating agents, and
antifungal agents that target the respiratory chain on V. dahliae ∆noxA and ∆yap1 mutants: (A) effects
of NaCl, sorbitol, calcofluor white M2R, Congo red, amphotericin B, fluconazole, azoxystrobin,
sodium cyanide, pyraclostrobin, kresoxim-methyl, and rapamycin on conidial germination (growth
for 3 days). (B) Relative growth inhibition of colonies caused by the same substances. Bars: SD.
Statistical significance of differences from the wild type was tested by Student’s t-tests (* p ≤ 0.05,
** p ≤ 0.01, *** p ≤ 0.001). All concentrations are expressed in µg/mL, except for NaCl (M), sorbitol
(M), and rapamycin (nM). All experiments were performed in triplicate.
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3.5. NoxA, but Not Yap1, Is Essential in Both Partners for CAT-Mediated Cell Fusion

We have previously found that NoxA in V. dahliae is essential for somatic fusion of
conidia or germlings via CATs [23]. On the contrary, deletion of yap1 exerted no effect
on CAT-mediated fusion (Figure 7A). The double deletion mutant exhibited the same
behavior as ∆noxA (Figure 7A). Surprisingly, the ∆noxA mutant retained its capacity for
hyphal fusion between mature hyphae (Figure 7B), which suggests differences between the
regulatory mechanisms of conidial and hyphal fusion.
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Frequencies of active conidia and their fraction that are involved in CAT fusion are shown for each
strain. All assays were performed in triplicate and 150 conidia were analyzed per replicate. Bars: SD.
Statistical significance of differences from the wild type was tested by Student’s t-tests (* p ≤ 0.05, ***
p ≤ 0.001). (B) Fusions between mature hyphae of the indicated strains. (C) Frequencies of self and
nonself fusions in pairings of the indicated strains with their incompatible partner, Ls.17 H1-sgfp.
Each pairing was tested in triplicate, and 150 fusion events were analyzed per replicate. (D) Detection
of O2

•− by NBT staining during CAT homing and establishment of CAT fusion (wild-type strain
123V). Arrowheads: localized ROS production at CAT tips during homing; asterisk: a complete CAT
fusion. Bar = 5 µm. (E) Relative expression levels of the MAPK genes fus3 and slt2 in the wild-type
and ∆noxA strains. The upper plot shows the average relative expression levels compared to the
corresponding genes of the wild type, and the lower shows the determined ∆∆Ct values. Three
biological replicates (and two technical replicates for each) were analyzed for each strain and gene.
In the ∆∆Ct plots, the horizontal bars represent mean ∆∆Ct values, and the bars SD between the
three biological replicates. Statistical significance of differences from the untreated wild-type strain
was tested by Student’s t-tests (** p ≤ 0.01, *** p ≤ 0.001). (F) Detection of O2

•− by NBT staining
(arrowhead) during the heterokaryon incompatibility reaction (123V × Ls.17 pairing). Inviable cells
were no longer stained with NBT (asterisk). (G) Frequency of inviable fusions determined by staining
with methylene blue in 123V × Ls.17 and 123V ∆yap1 × Ls.17 pairings. Each pairing was tested in
triplicate (n = 100 anastomoses per replicate). Bar = 5 µm.

We hypothesized that the role of NoxA in cell fusion via CATs could be related to the
generation or perception of the unknown signal that is involved in pre-fusion cell commu-
nication. If that process were unidirectional (i.e., each fusion partner emitting or receiving
the signal, but not both), a functional copy of noxA in only one of the interacting partners
could be sufficient for fusion of a subset of cells. To test this possibility, we paired the deletion
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strains with the strain Ls.17 H1-sgfp (expressing GFP-tagged histone H1 in its nuclei), which
permitted the microscopic identification of nonself fusions. The presence of functional noxA
genes in both partners was found to be essential for their fusion (Figure 7C); deletion of yap1
from one partner showed no effect, as expected.

It is unclear whether NoxA functions in cell fusion by causing localized ROS produc-
tion with direct effects on partner recognition or the commitment to fuse, or indirectly by
transducing signals to alter the expression of other genes or the activity of their products.
We found that, during the homing phase of the interacting cells prior to their fusion, O2

•−

always accumulated at the tips of the mutually attracted CATs (Figure 7D), suggesting
that localized generation of ROS putatively by NoxA is indeed involved in the process.
No ROS accumulation was detected after completion of CAT-mediated fusion (Figure 7D).
On the other hand, deletion of noxA had no effect on the expression levels of the MAP
kinases Fus3 and Slt2, which are important components of the pre-fusion communication
mechanism in N. crassa [22], and are also required for CAT fusion in V. dahliae [23].

Fusion of vegetatively incompatible strains of fungi, including V. dahliae, usually
triggers an incompatibility reaction that can cause cell death of the anastomosed compart-
ments [54]. Based on the observations that this reaction in N. crassa is characterized by
an induction of ROS [57], and that genes involved in the OSR are up-regulated during
CAT formation in Colletotrichum gloeosporioides [58], we used NBT staining to study O2

•−

accumulation in incompatible V. dahliae fusions (pairing Ls.17 H1-sgfp × 123V). One-third
of such fusions (n = 30) exhibited increased formazan precipitation (Figure 7F), indicating
that ROS accumulation is indeed associated with the onset of the incompatibility reaction,
similarly to what was observed in N. crassa [57]. Deletion of yap1 had no effect on the
frequency of inviable fusions (Ls.17 H1-sgfp × 123V ∆yap1 pairing), which suggests either
that the observed ROS accumulation does not mediate the catastrophic reaction or that
Yap1 does not respond to it.

4. Discussion

The dual nature of ROS in biological systems as a potential cause of cellular damage
on the one hand, and as signaling components of important developmental processes on
the other, has been the focus of extensive research [1,2,5,8]. This duality is clearly illustrated
in the case of fungal plant pathogens, which need to cope with their host-derived ROS
bursts during infection [4], while they generate and use endogenous ROS for their own
development and pathogenicity [5,6]. Therefore, the survival and ecological success of these
organisms depend on their ability to maintain a redox balance that presumably requires
coordination of ROS generation and scavenging systems. In this study, we investigated the
roles of the ROS-producing NADPH oxidase NoxA in the biology of the important plant-
pathogenic fungus V. dahliae, in comparison to its transcription factor Yap1, a conserved
central regulator of ROS detoxification [13,28]. We found that NoxA has multifaceted
roles in important developmental and physiological processes, plays an essential role
in virulence, mediates responses to different types of cellular stress, and is required for
somatic cell fusion.

Fungal NADPH oxidase complexes have been attributed pleiotropic functions in
morphogenesis and pathogenicity [9,12,13,59]. In V. dahliae, we found NoxA to be required
for normal formation of microsclerotia, i.e., dormant resting structures that are crucial for
long-term survival and spread of the species [42]. In addition, V. dahliae NoxA is necessary
for normal formation of aerial hyphae and germination of its asexual spores, in agreement
with similar previously described roles in, e.g., N. crassa, Epichloë festucae, C. purpurea, and
S. macrospora [16–18,60]. Furthermore, our investigation revealed that NoxA is essential
for virulence in V. dahliae, and our findings suggest that this can be at least partly due
to its involvement in the formation of hyphopodia, i.e., infectious swollen hyphae that
can penetrate the roots of the plant hosts to initiate the disease cycle [43,44]. Although
the regulatory mechanisms that underlie the development of V. dahliae hyphopodia are
mostly unknown, recent reports implicated in this process both Ste11, a component of MAP
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kinase signaling, and Csin1, a cellophane surface-induced protein that acts through the
cAMP pathway [61,62]. These findings suggest putative interactions of ROS with important
signaling transduction pathways. Previous studies have demonstrated the involvement
of NoxA in the formation of appressoria in the plant pathogen M. oryzae [10,11] and traps
in the nematode pathogen Arthrobotrys oligospora [63]. These findings together indicate
conserved involvement of the ROS-generating enzyme NoxA in the early stages of infection
of diverse pathogenic fungi.

Another explanation for the highly compromised ability of V. dahliae to cause systemic
infection and disease symptoms in the absence of NoxA could be its increased sensitivity
to various types of environmental stress, most notably cell wall and oxidative stress. Ox-
idative bursts of ROS have been described to play a role in cell wall biosynthesis [9], which
could be linked to the sensitivity of the V. dahliae ∆noxA mutant to cell wall-perturbating
agents. Our analyses also revealed reduced resistance of ∆noxA to oxidative stress, which
could be attributed to dysregulation of antioxidant genes, such as the example of sod1 that
we observed in our study. In addition, deletion of noxA resulted in dysregulation of the
important stress-activated MAP kinase Hog1, which could be directly or indirectly linked
to some of the identified pleiotropic phenotypes of NoxA. These observations could be
likely attributed to the expected function of ROS as secondary signals that could potentially
control the expression and function of multiple transcription factors and signaling compo-
nents via post-translational modification [2]. A possible mechanism for this could involve
the control of cellular localization of key signaling components, such as the MAP kinase
Mpk1 in P. anserina, whose normal localization depends on nox1 [64]. Notably, the absence
of functional NoxA rendered the fungus sensitive to several antifungal agents, including
representatives that block the central TOR kinase, as well as the four complexes of the mi-
tochondrial electron transport chain. The latter observation indicates that the maintenance
of a minimum level of intracellular ROS is important for cell functionality and viability. It
could also be relevant to the crosstalk that has been demonstrated between mitochondrial
ROS and NADPH oxidases in mammalian cells [65], hypothetically reflecting the function
of mechanisms that ensure the coordination of those two major intracellular sources of
ROS in the context of oxidative homeostasis.

Conidial and hyphal fusion is an integral component of the establishment and devel-
opment of fungal colonies [66], and nonself fusion could possibly grant access to parasexual
generation of diversity [23,54]. We have previously demonstrated that NoxA is essential
for CAT-mediated fusion of V. dahliae conidia or germlings [23], and we further found in
the present study that the requirement for functional NoxA applies to both interacting cells.
We also detected O2

•− accumulation at the tips of wild-type germlings during their homing
phase of interaction prior to fusion, which could most likely be attributed to the activity of
NoxA. Similar observations have previously been made in B. cinerea [25]. We hypothesize
that temporally and spatially regulated ROS bursts could be involved in the pre-fusion
communication of the interacting cells, possibly linked to the oscillatory recruitment of
signaling components (such as the MAP kinase Fus3 and the scaffold protein SOFT) to cell
tips that controls cell fusion in N. crassa [67].

The transcription factor Yap1 has a conserved role in ROS detoxification among diverse
organisms as a central regulatory element that participates in the orchestration of their
OSR [30–37]. Indeed, we found deletion of yap1 to result in increased sensitivity to all
oxidative agents tested, as well as to the fungicide fluconazole, which can induce ROS
production in Cryptococcus neoformans [68,69]. In addition, the expression of important
antioxidant genes, such as cat1, sod1, and glr1, was lower and non-inducible by oxidative
stress in the absence of Yap1. Apart from its regulatory function in oxidative stress tolerance,
Yap1 has also been attributed additional developmental and other, sometimes contradictory,
roles between fungi [28]. Here, we found that in V. dahliae Yap1 is necessary for normal
conidiation, in line with previous findings in M. oryzae and A. nidulans [33,37], while its
deletion also severely compromised the formation of microsclerotia. A previous study
demonstrated attenuated microsclerotial formation upon V. dahliae yap1 deletion [40], to
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a lesser extent than the one observed in our work, which probably reflects strain-specific
variation in the fine-tuning of the underlying regulatory mechanisms. In agreement with
the previous study that analyzed virulence on smoke trees [40], we detected no significant
involvement of Yap1 in the virulence of V. dahliae on eggplant. This is consistent with
studies of other fungal pathogens that do not require Yap1 for infecting their hosts (e.g.,
B. cinerea, Fusarium graminearum, and Cochliobolus heterostrophus), but in contrast to other
fungi where Yap1 is indispensable for successful infection (e.g., Ustilago maydis, M. oryzae,
and Alternaria alternata) [31,33,35,38,70,71]. These findings suggest that, in some fungi,
alternative detoxification pathways or regulatory mechanisms likely take over during
infection and suffice for efficient ROS detoxification when Yap1 is absent. Such alternatives
could include the transcription factors Atf1 and Skn7, which mediate responses to RNS
and ROS, respectively, by regulating the expression of antioxidant genes [72,73].

Based on the significant biological roles of the ROS-generating NADPH oxidase NoxA
in V. dahliae, and the presumed need of the pathogen to withstand the ROS bursts involved
in the defense mechanisms of its hosts [4], we would expect systems for coordination
between ROS generation and processing to be important for its ROS homeostasis. In sup-
port of this hypothesis, our study revealed an antagonistic epistatic relationship between
noxA and yap1, with their double null mutant exhibiting the same behavior as ∆noxA in all
tested phenotypes, instead of any detectable additivity between the two genes. This was
also observed with regard to sensitivity to oxidative stress, whereby ∆noxA and ∆noxA
∆yap1 were more resistant to oxidative agents than ∆yap1. Our interpretation of these
findings is that Yap1 contributes to the neutralization of the ROS produced by NoxA, but
this Yap1 detoxification function depends on NoxA, which itself responds to oxidative
stress with higher expression levels. We propose that, in the absence of NoxA, other yap1-
independent systems take over, presumably via up-regulation, to effectively shield the
organism from the hazards of elevated oxidative stress. This is further supported by the
detected changes in the expression patterns of antioxidant genes in the ∆noxA mutant. The
observed small increase in Hog1 transcripts observed in this strain is unlikely to mediate
antioxidant responses, since, in V. dahliae, Hog1 appears to play no role in the OSR [74]. In
other fungi, oxidative stress signaling alternatives include Pap1 activation by Tpx1 and the
Hog1 homologs Sty1/Spc1 MAPK pathway, which can trigger antioxidant responses in
Schizosaccharomyces pombe [75]. Furthermore, the OSR of the filamentous fungus A. nidulans
involves, in addition to its Yap1 homolog NapA, the Skn7 homolog SrrA and the Hog1
homologs SakA and MpkC [76–78]. Finally, we would attribute the findings that low
levels of oxidative stress (e.g., low concentrations of H2O2) have no observable effect on
the ∆noxA strain and, consistently, no induction of antioxidant genes, to the perturbated
generation of endogenous ROS, which could be linked to a higher resistance of the fungus
to low levels of exogenous oxidative stress.

In this study, we characterized the V. dahliae homolog of the important ROS producer
NoxA, and we demonstrated significant pleiotropic roles in multiple developmental and
physiological processes. We provide evidence that implicates NoxA in sensing and me-
diating responses to oxidative stress through genetic interactions with the transcriptional
regulator Yap1 and presumably alternative, currently unknown, ROS signaling and detoxifi-
cation systems. These data contribute to a better understanding of fungal ROS homeostasis
and welcome future research to elucidate the significance and modes of action of ROS
metabolism in the development, pathogenicity, and stress response of fungal pathogens.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/jof7090740/s1, Figure S1: Sequence alignment of Yap1 homologs of V. dahliae (VDAG_01588)
and other fungi, Figure S2: Validation of the yap1 knockout mutants, Figure S3: Effects of antifungal
agents that target the respiratory chain, and trace elements on V. dahliae deletion mutants ∆noxA
and ∆yap1, Table S1: Verticillium dahliae strains constructed and used in this study, Table S2: List
of plasmids constructed and used in this study, Table S3: List of DNA oligonucleotides used in
this study.
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