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INTRODUCTION

Background: The purpose of this study was to examine sex dimorphism in water diffusion
in the brain throughout the normal aging process by magnetic resonance imaging.

Methods: Diffusion-weighted images covering the majority of the brain were acquired
from 77 healthy participants. Both the mean water diffusivity and diffusion kurtosis were
calculated from the cortical regions and parcellated according to the template in anatomical
automatic labeling. The mean water diffusivity and diffusion kurtosis from both sexes
were examined and subsequently correlated with age. Statistical significance was set at
a threshold of p < 0.01 after correction for multiple comparisons. In regions that reached
statistical significance, a linear regression model was performed. Analysis of variance was
conducted to determine the interaction between aging and sex.

Results: Sex differences were observed for three aspects. First, compared to females,
males presented increased mean water diffusivity and a decreased diffusion kurtosis in
the frontal and temporal lobes. Second, a widespread age-related increase in mean water
diffusivity was observed, which was more significant in the frontal, occipital, and temporal
areas and in the cingulum in females. Third, the diffusion kurtosis decreased with aging but
only in restricted areas for both sexes. For the interaction of aging and sex, the most
significant change was observed with regards to mean diffusivity, mostly in the right
amygdala.

Conclusions: A sexrelated dimorphism in water diffusion throughout the aging process
was observed in the cortex using magnetic resonance imaging.

Keywords: mean diffusivity, sex dimorphism, aging, magnetic resonance imaging, diffusion kurtosis

perfusion, could be sensitive imaging biomarkers for distinguish-

The human brain evolves through each stage of life as observed
using both postmortem histology and in vivo imaging. For exam-
ple, autopsies show a progressive decline in brain weight (Dekaban,
1978). Voxel-based morphometry using magnetic resonance imag-
ing (MRI) has shown alinear reduction in gray matter content with
age, especially in males (Good etal., 2001). A reduction of the
brain volume in many cortical regions has been observed and has
often been attributed to age-related cell death (Scheibel et al., 1975;
Meier-Ruge et al., 1978; Devaney and Johnson, 1980; Wong, 2002).
In contrast, specific structures, such as the amygdala and thalamus,
are relatively preserved, which may suggest a regional variation in
the brain’s susceptibility to aging (Tisserand etal., 2004; Grieve
etal., 2005; Curiati etal., 2009; Kalpouzos etal., 2009). There
is a growing interest in monitoring age-related changes using
functional imaging because it is often assumed that functional
alterations precede morphological changes. Therefore, changes
in brain function, such as those occurring with diffusion and/or

ing between normal aging and pathological atrophy at the early
stages of disease. Furthermore, a better understanding of func-
tional brain evolution may shed new light on neurodegenerative
processes.

Water diffusion can be measured non-invasively by MRI using
diffusion-weighted imaging (DWI). The directional dependence
in water diffusion in the human brain can subsequently be mod-
eled by diffusion tensor imaging (DTI). The mean diffusivity is a
derived semi-quantitative index that has been successfully applied
in the study of many neurological diseases (Moseley etal., 1990;
Basser etal., 1994; Chang etal., 2010; Lo etal., 2010). The mean
diffusivity reflects the magnitude of water diffusion. It is expected
that the diffusion in the intracellular space is more restricted
and smaller in magnitude than that from the extracellular space
(Van Zijl etal., 1991). The measured mean diffusivity in biological
environments is a balance of the contributions from the two com-
partments, i.e., intracellular and extracellular. Therefore, the mean
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diffusivity could potentially provide microstructural information
about tissues. Changes in mean diffusivity may be related to patho-
logical conditions where the balance between both compartments
is disrupted, such as cell loss in the process of axonal injury (Budde
etal.,, 2009) or degraded integrity of the myelin sheath (Songetal.,
2005).

The mean diffusivity in the whole brain has been reported to be
nearly stable throughout the majority of adulthood (Chun etal,,
2000). However, regional variation occurs. For example, the mean
diffusivity in the anterior and central sub-regions of the thala-
mus is age-related (Ota etal., 2007), as is the mean diffusivity in
representative locations in the frontal and occipital white matter
(Engelter etal., 2000). In deep gray matter structures, the aging
process can have different effects. An increase in both the diffu-
sion anisotropy and mean diffusivity was observed in the caudate
nucleus and putamen (Pfefferbaum etal., 2010). Furthermore, the
temporal evolution of water diffusion in the human brain may be
different between sexes. For example, females have reduced direc-
tionally dependent diffusion in the precentral, the cingulate, the
anterior temporal white matter, and especially the right deep tem-
poral regions compared to males (Hsu et al., 2008). In contrast, the
mean diffusivity was increased in the left frontal lobe of females
relative to males (Szeszko etal., 2003). For females younger than
60 years, increased mean diffusivity was found in the right frontal
and temporal regions (Naganawa etal., 2003). The reason for a
sex-related dimorphism in the mean diffusivity in the brain is not
clear. However, evidence of differences in brain structure between
the sexes has been reported based on cortical thickness (Sowell
etal., 2007) and neuro-morphometry (Lemaitre et al., 2005).

Examination of local and longitudinal changes in water dif-
fusion may be more useful than global measures of diffusivity
(Mascalchi etal., 2002), as whole-brain analyses have failed to
account for regional variations. However, regional analyses require
a predefined region of interest. The selection of such regions is
subjective and tedious, and the selected regions are often located
in the white matter (Wang etal., 2010). Selection of regions of
interest throughout the whole brain is not practical; therefore,
an automatic procedure involving image manipulation such as
normalization is preferred. However, image manipulation might
change the principal direction of the measured diffusion (Alexan-
der etal., 2001). Recently, Lo etal. (2010) proposed a brain
parcellation algorithm for calculating water diffusion from the
regional cortex throughout the whole brain. With this approach,
we can investigate regional diffusion across the whole brain
in vivo without having to predefine a region of interest; fur-
ther, this method does not require manipulation of diffusion
images.

The hypothesis of our study is that the aging process may
change the water balance between the intra- and extracellular
spaces, which would subsequently result in observable changes
in mean diffusivity as measured by MRI. Based on morphological
studies, such changes could be sex-related and region-specific in
the cortex. The current study therefore investigated the age-by-
sex interaction of water diffusivity in parcellated cortical regions.
We investigated the sex-related dimorphism in water diffusion
in the brain throughout the normal aging process. DWIs were
acquired from healthy Chinese volunteers recruited from the local

community. A correlation of water diffusion with age in the
parcellated cortical regions was reported for both sexes.

MATERIALS AND METHODS

This study was approved by the Chang Gung Medical Founda-
tion Institutional Review Board of Linkou, Taiwan, and complied
with the Declaration of Helsinki. Each participant gave written
informed consent for participation.

PARTICIPANTS AND CLINICAL WORK-UP

Seventy-seven participants (37 male and 40 female) were recruited
from the local community. The mean age of the male partic-
ipants was 62.8 £ 7.25 years (range of 51-81 years, median
age of 61 years). The mean age of the female participants was
60.7 £ 6.79 years (range of 51-78 years, median of 59 years). To
calculate the percentage change in diffusion for each decade, the
participants were subsequently divided by age into the following
three groups: under 60 years (female/male = 22/13), 60—69 years
(female/male = 13/16) and at least 70 years (female/male = 5/8).
All subjects were screened with a medical history review and phys-
ical examination, which indicated that all subjects were free of
cognitive impairment.

IMAGE ACQUISITION

Images were acquired using a 3-Tesla MR scanner (Trio a
TIM system, Magnetom, Siemens, Erlangen, Germany). T2-
weighted fluid-attenuated inversion-recovery (FLAIR) and three-
dimensional (3D) T1-weighted magnetization-prepared rapid
acquisition gradient echo (MPRAGE) images were acquired to
rule out concomitant neurological disorders.

Diffusion-weighted imagings were acquired using a spin-echo
echo planar imaging sequence with the diffusion-weighting gra-
dients applied in three orthogonal directions and using the
following parameters: repetition time (TR)/echo time (TE)/flip
angle = 3,000 ms/110 ms/90°, field of view = 256 mm?, matrix
size = 128 x 128 and 20 axial slices with a thickness of 5 mm to
cover the majority of the brain. Multiple b-values were acquired
from 0 to 4,000 s/mm? in steps of 100 s/mm?. The single average
acquisition time was 7 min, 39 s.

IMAGE PROCESSING

The image processing was performed in MATLAB R2009b (Math-
Works, Natick, MA, USA). The template was created in Statistical
Parametric Mapping 8 (Wellcome Department of Cognitive Neu-
rology, University College London, London, UK). The brain
parcellation algorithm followed that described by Lo etal. (2010).
In short, a customized group template was created from all par-
ticipants by normalizing each individual’s T1-weighted MPRAGE
image to the ICBM152 template followed by averaging. The aver-
aged brain image was smoothed with an isotropic 8 mm Gaussian
kernel. To minimize the contamination from cerebrospinal fluid,
the maps were filtered by a gray matter mask, which was created
by segmenting each individual’s T1-weighted image. Meanwhile,
the T1-weighted MPRAGE images from each individual were
co-registered to the non-DWIs. The individual co-registered T1-
weighted image was then normalized to the study-specific template
by affine transformation. The parameter of the inverted affine
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transformation was then applied to warp the anatomical automatic
labeling (AAL) template.

The mean diffusivity was calculated using the diffusion kurtosis
imaging model according to Jensen etal. (2005). The average of
the diffusion-related index within the regions specified by the AAL
template was calculated. Only cortical regions were selected. As
a control study, the mean diffusivity was also calculated in the
conventional manner between the non-DWI and images with b-
values of 1,000, 2,000, 3,000, or 4,000 s/mm?.

The percent change between sexes was calculated as the differ-
ence divided by the average between sexes. The percent change
per decade was calculated by Eq. (1), where mean2 and meanl1 are
the average values of diffusivity in age decade2 and age decadel,
respectively

(mean2 — meanl)/meanl
decade2 — decadel

(1

STATISTICAL ANALYSIS
The participants were divided into two groups according to sex.
No significant difference in age between groups was noticed. The
difference between sexes with regard to both mean diffusivity and
diffusion kurtosis was examined by Student’s t-test. The corre-
lation with age was tested by Pearson’s correlation. In regions
with significance, a linear regression model was subsequently per-
formed. An analysis of variance (ANOVA) was conducted to detect
regions with significant interactions between age and sex, in which
three age groups were analyzed.

Statistical significance was set at a threshold of p < 0.01 (two-
tailed) after correction for multiple comparisons in the study.

RESULTS

To show regional variation, the mean diffusivity in the cor-
tex was plotted in Figure 1 (male [filled] and female [blank]).
For improved visualization, the AAL regions were divided into
frontal (Figure 1A), temporal and cingulum (Figure 1B), occipital
(Figure 1C), and parietal (Figure 1D). Although the water diffu-
sion was relatively stable throughout all of the parcellated brain
regions, regional variations were noticeable. The mean diffusiv-
ity was approximately (1.23 & 0.25) x 10~ mm?/s in the whole
brain of females, which was slightly less than that in the male
counterparts ([1.28 £ 0.25] x 1073 mm?/s). The corresponding
diffusion kurtosis was plotted in Figure 2. The average diffusion
kurtosis was similar for both sexes, i.e., approximately 0.61 £ 0.15
in the whole brain.

In all brain regions, the mean diffusivity decreased as the dif-
fusion weighting (b-value) increased (Figure 3A: 1,000 s/mm?;
Figure 3B: 2,000 s/mm?; Figure 3C: 3,000 s/mm?; and Figure 3D:
4,000 s/fmm?). It should be noted that the reduction in the mean
diffusivity was not uniform, thus highlighting regional depen-
dence in which the diffusivity decreased more in some regions
than in others as the diffusion weighting increased. Furthermore,
the mean diffusivity calculated using a diffusion kurtosis model
(Figure 1) was consistently larger than all of the conventional
diffusivities throughout the whole brain (Figure 3), even with
different b-values. Nonetheless, the values calculated using both
methods were within a very similar range.

The regions where the difference between sexes was significant
were rendered in a 3D human brain (Figure 4A: mean diffusivity;
Figure 4B: diffusion kurtosis). Figure 4C presents a plot of the
percentage changes from the corresponding regions in descending
order in terms of p-value (from left to right: mean diffusivity using
b = 1,000 s/mm?, mean diffusivity using the diffusion kurtosis
model and diffusion kurtosis). The blank bar in the conventional
mean diffusivity indicates the percent change in that region, which
did not reach significance. Females had reduced mean diffusivity
in the calcarine, frontal, occipital, temporal, insular, and cingular
regions relative to their male counterparts. In contrast, the dif-
ferences in diffusion kurtosis were less significant and appeared
predominantly as an increase in the female parietal lobe. Changes
in conventional mean diffusivity were detected in fewer regions.
The regions with changes in mean diffusivity and diffusion kur-
tosis did not always correspond to each other, which may suggest
differing sensitivity to the aging process for both indices.

The correlation of water diffusion with age was examined for
each sex separately by the Pearson correlation, as summarized in
Table 1. Figure 5 plots the mean diffusivity against age in females,
which reached significance (p < 0.001) in selected regions. A
strong correlation between mean diffusivity and age was found
in the frontal lobe, including the superior, middle and inferior
frontal pars triangularis (Figure 5A). The percent increase per
decade varied from 9.70% (right middle) to 13.04% (left middle).
In the temporal lobe (Figure 5B), the increase was noticeable in the
left superior (5.96%) and middle (8.23%) regions. In the occipital
lobe (Figure 5C), the increase was most significant in the right
inferior part (9.67%) and lowest in the left lingual gyrus (5.91%).
The percent increase in the mean diffusivity per decade in the left
postcentral part of the parietal lobe (Figure 5D) was 9.57%. Addi-
tional regions with significant changes (Figure 5E) included the
bilateral anterior cingulum (left, 12.65% and right 9.13%) and left
insula (5.92%).

In males, only the right superior temporal lobe showed a sig-
nificant correlation with age (Figure 6A) with regard to mean
diffusivity (percent increase per decade: 7.25%). For diffusion kur-
tosis, the correlation with age was negative and limited to much
smaller regions (Figure 6B). In males, the correlation was only
observed in the right opercular part of the inferior frontal gyrus
(percent decrease per decade: 4.79%), whereas in females the cor-
relation was observed in the left precentral (8.56%), left postcentral
(7.71%), and right posterior cingular (9.42%) regions.

Although the mean diffusivity showed different correlations
with aging in both sexes, the interaction between age and sex,
as examined by ANOVA, was only significant in the right amyg-
dala (p < 0.01). Additional regions that approached significance
included the right frontal superior orbital (p = 0.037), right pos-
terior cingulum (p = 0.016), right hippocampus (p = 0.021), and
right amygdala (p = 0.002). No region showed significance with
regard to mean diffusion kurtosis at a threshold of p < 0.01.
ANOVA analysis showed regions with significant differences in
mean kurtosis at a threshold of p < 0.05, including the left
frontal middle orbital (p = 0.026), right frontal inferior oper-
cular (p = 0.044), right frontal inferior orbital (p = 0.027), right
lingual (p = 0.041), right temporal superior (p = 0.035), and right
temporal pole superior (p = 0.050) regions. Figure 7 (Figure 7A:
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FIGURE 1| Mean diffusivity in parcellated cortical regions. The
mean diffusivity in the parcellated cortical regions was plotted for
male [filled] and female [blank], respectively. The AAL regions were
divided into frontal (A), temporal and cingulum (B), occipital (C),
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29 InsulaL
30InsulaR

31 CingulumAnt L
32 Cingulum AntR
33 Cingulum Mid L
34 Cingulum Mid R
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and parietal (D). The mean diffusivity is given in units of

10=3 mm?2/s. Asterisk indicates the regions with significance. The
regions were numbered according to the anatomical automatic
labeling template.

mean diffusivity; Figure 7B: mean kurtosis) presents a 3D render-
ing of the human brain where regions with significant differences
are color-coded (green: age; red: sex). Table 2 summarizes the
contributions from aging and sex.

DISCUSSION
The main finding of the current study is that functional alter-
ations of the human brain, as reflected by water diffusion,

are sex-dependent and region-specific and evolve with aging.
The novelty of this study is that this is the first use
of an automatic procedure to measure the mean diffusiv-
ity and diffusion kurtosis of water in parcellated cortical
regions. The current study reports that differences in diffu-
sion properties can occur between sexes in widespread corti-
cal regions. In many brain regions, the mean diffusivity is
larger and the diffusion kurtosis is smaller in males. More
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FIGURE 2 | Diffusion kurtosis in parcellated cortical regions. The diffusion
kurtosis in parcellated cortical regions was plotted for male [filled] and female
[blank], respectively. The AAL regions are divided into frontal (A), temporal
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and cingulum (B), occipital (C), and parietal (D). The regions were numbered
according to the anatomical automatic labeling template. Diffusion kurtosis is
dimension-free.

severe and widespread changes were observed in males than in
females.

Furthermore, the correlative analysis indicates that males and
females age at different rates. An age-related increase in mean
diffusivity was observed in females, but the increase was less sig-
nificant than that in their male counterparts. The mean diffusivity
and mean kurtosis may have different sensitivity and specificity
for characterizing aging, and each provides different types of

information regarding the underlying tissue environment. Dif-
fusion kurtosis could decrease with aging, but in fewer areas
than decreases in mean diffusivity. These observations suggest a
microstructural alteration in the normal aging process that can be
expressed as a loss of tissue complexity, cell loss, and subsequent
alteration of the water balance between compartments.

Finally, regarding the interaction of aging and sex, the ANOVA
analysis indicated that the most significant change occurred in the
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Table 1| Pearson correlation coefficient from parcellated cortical regions between mean diffusivity and age for each sex.

Regions Female Male Regions Female Male

1 Precentral L 0.493xx 0.2823 41 Amygdala L 0.1998 —0.0215
2 Precentral R 0.449x%x% 0.3153 42 Amygdala R —0.1720 0.0538
3 Frontal sup. L 0.484 %% 0.2474 43 Calcarine L 0.69sxx 0.418%
4 Frontal SUR R 0.527 5% 0.2818 44 Calcarine R 0.547 s 0.415x%
5 Frontal sup. orb. L 0.14 -0.1017 45 Cuneus L 0.433 % 0.1574
6 Frontal sup. orb. R 0.463%x* —0.1318 46 Cuneus R 0.492%x% 0.2895
7 Frontal mid. L 0.6023skx 0.209 47 Lingual L 0.562:kx%x 0.41%

8 Frontal mid. R 0.585sskx 0.2446 48 Lingual R 0.425x%% 0.43 %
9 Frontal mid. orb. L —-0.1172 0.221 49 Occipital Sup. L 0.3113 0.1538
10 Frontal mid. orb. R 0.0716 0.0434 50 Occipital sup. R 0.358x% 0.2689
11 Frontal inf. oper. L 0.35% 0.3148 51 Occipital mid. L 0.585%x*x 0.1946
12 Frontal inf. oper. R 0.412x% 0.492xx 52 Occipital mid. R 0.459xx 0.408x%
13 Frontal inf. tri. L 0.548x%xx 0.2559 53 Occipital inf. L 0.334x% 0.2228
14 Frontal inf. tri. R 0.434xx 0.2128 54 Occipital inf. R 0.524 % 0.337x%
15 Frontal inf. orb. L 0.2212 0.1027 55 Fusiform L 0.42 7 s 0.2313
16 Frontal inf. orb. R 0.2936 0.1809 56 Fusiform R 0.391% 0.436%x*
17 Rolandic oper. L 0.446xx 0.495x%x% 57 Postcentral L 0.528sskx 0.372x
18 Rolandic oper. R 0.1857 0.3178 58 Postcentral R 0.413%% 0.2888
19 Supp. motor area L 0.37x% 0.2664 59 Parietal sup. L 0.36x% 0.2292
20 Supp. motor area R 0.363x% 0.2492 60 Parietal sup. R 0.3039 0.2472
21 Olfactory L 0.2303 0.0571 61 Parietal inf. L 0.373x% 0.2923
22 Olfactory R 0.2053 0.1505 62 Parietal inf. R 0.405%:x 0.2703
23 Frontal sup. medial L 0.497 %% 0.2373 63 Supramarginal L 0.2935 0.1MM
24 Frontal sup. medial R 0.374% 0.2662 64 Supramarginal R 0.331x% 0.436%x*
25 Frontal mid. orb. L 0.357x 0.2459 65 Angular L 0.2143 0.2177
26 Frontal mid. orb. R 0.2616 0.2259 66 Angular R 0.316% 0.2817
27 Rectus L 0.1874 —0.0897 67 Precuneus L 0.323x 0.2959
28 Rectus R 0.0964 —0.0722 68 Precuneus R 0.373% 0.2706
29 Insula L 0.546xx 0.415% 69 Paracentral lobule L 0.1999 0.2683
30 Insula R 0.453x 0.435%x 70 Paracentral lobule R 0.348x 0.0867
31 Cingulum ant. L 0.519sskx 0.1581 81 Temporal sup. L 0.5 sk 0.459xx
32 Cingulum ant. R 0.506% 0.2376 82 Temporal sup. R 0.395x% 0.527 %%
33 Cingulum mid. L 0.3610% 0.1642 83 Temporal pole sup. L 0.39x% 0.0046
34 Cingulum mid. R 0.359x% 0.0566 84 Temporal pole sup. R 0.2260 0.242
35 Cingulum post. L 0.2364 —0.1932 85 Temporal mid. L 0.79%x% 0.26

36 Cingulum post. R 0.44 x % —0.1391 86 Temporal mid. R 0.434 %% 0.438x*
37 Hippocampus L —0.0386 0.0503 87 Temporal Pole mid. L 0.0082 0.2782
38 Hippocampus R 0.1267 0.0919 88 Temporal pole mid. R 0.434 %% —0.1303
39 Parahippocampal L 0.0933 0.0049 89 Temporal inf. L 0.352x% 0.2371
40 Parahippocampal R 0.2778 0.1327 90 Temporal inf. R 0.487 % 0.1964

Table 1 summarizes the Pearson correlation coefficient between the mean diffusivity and age for each sex. *p < 0.05, **p < 0.01, and ***p < 0.001.
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FIGURE 5 | Regions of interest with significant correlation to female is significant (p < 0.001). The mean diffusivity is given in units of
mean diffusivity. This figure presents a scatter plot of the mean diffusivity *10~3 mm?2/s, and age is given in years. The regions were divided into the
against age from selected regions of interest in females where the correlation  frontal (A), temporal (B), occipital (C), parietal (D), and additional regions (E).

right amygdala, according to the mean diffusivity. Consistent with
our hypothesis, sex-related dimorphism throughout the aging
process was observed.

SEX-DEPENDENT DIMORPHISM OF DIFFUSION

The interaction between sex and age with regard to diffusion is a
complicated phenomenon that could involve regions, properties
(mean diffusivity and diffusion kurtosis), sex, aging, and com-
binations of the above effects. Sex-related differences in water
diffusion could occur in many brain regions. For example, there
was an increase in mean diffusivity in the brain in males relative
to females. In contrast, the mean diffusivity increased with age in
females but not in males.

Increased mean diffusivity in the white matter is more notice-
able in males than in females, and such white matter includes
the right superior longitudinal fasciculus and the right inferior
longitudinal fasciculus (O’Dwyer etal., 2012). A reduction in
diffusion kurtosis was observed in the prefrontal regions in an
aging study and was attributed to a loss of structural complex-
ity (Falangola etal., 2008). In contrast, the current study reports
a change in water diffusion in various parcellated brain areas
rather than a few selected regions of interest or white matter
alone.

Age-related sex differences in atrophy have been reported in the
middle part of the right temporal lobe, the left basal ganglia, the
parietal lobe, and the cerebellum in male subjects but not in female

Frontiers in Aging Neuroscience

www.frontiersin.org

November 2013 | Volume 5 | Article 71| 9


http://www.frontiersin.org/AgingNeuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/AgingNeuroscience/archive

Ng etal.

Sex differences in cortical water diffusion

2
A
18
1.6
1.4
[

1.2
1

® 82 Temporal SupR

82 Temporal SupR

0.8 M " N M N M ;

48 53 58 63 68 73 78 83

FIGURE 6 | Regions of interest with significant correlations in male
mean diffusivity and in diffusion kurtosis. This figure is a scatter plot for
the age where the correlation is significant (p < 0.001) [(A) mean diffusivity in
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males, (B) diffusion kurtosis: male, filled; female, blank]. The mean diffusivity
is given in units of * 10=3 mm?2/s, and age is given in years. The diffusion
kurtosis has no dimension.

FIGURE 7 | Interaction between sex and aging for water diffusion. This
figure uses 3D rendering to show the regions where the difference in
either the mean diffusivity (A) or diffusion kurtosis (B) between sexes and
aging is significant. The green color indicates significant regions with
respect to aging, and the red color shows significance between sexes.

subjects (Xu et al., 2000). The affected cortical regions in our study
are largely consistent with those identified in volumetric studies,
and the effect may be more severe in males than females. The
diffusion changes in our study are consistent with observations
that brain atrophy is age-related, sexually dimorphic, lateralized,

and region-specific, in addition to being more prevalent in men
than in women (Cowell et al., 1994).

Most studies on diseases using DTI, including those evalu-
ating Alzheimer’s disease and mild cognitive impairment, have
assumed that functional changes are secondary to gray matter
atrophy (Bosch etal., 2012). These studies have predominantly
focused on white matter because of the nature of the diffusion
tensor model (Wang etal., 2010). Our hypothesis is that diffusion
changes in the cortical gray matter may precede morphological
loss, and in the present study, we observed increases in mean diffu-
sivity in many cortical regions. Increased mean diffusivity is often
attributed to increased extracellular space, which is subsequently
filled by cerebrospinal fluid that has a larger mean diffusivity, and
increased mean diffusivity is often attributed to cell death in the
underlying microstructure. Therefore, the increased water diffu-
sivity and decreased diffusion kurtosis in our study could be a
result of increased extracellular space, which may be related to a
loss in micro-environmental complexity that most likely results
from cell death.

The reason for the observed sex difference is still under
investigation. However, sex-related differences were observed for
synaptic protein loss in various parts of the cortex in a study
on synaptophysin- and synaptosomal-associated protein (Downes
etal,, 2008). The hormone difference between sexes may have a
neuro-protective effect (Turgeon et al., 2006). The increased mean
diffusivity in males may reflect an elevated level of microstruc-
ture damage. However, no significant difference in cognitive

Frontiers in Aging Neuroscience

www.frontiersin.org

November 2013 | Volume 5 | Article 71 | 10


http://www.frontiersin.org/AgingNeuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/AgingNeuroscience/archive

Ng etal. Sex differences in cortical water diffusion

Table 2 | Regions with significance for the sex by age interaction.

Sex p-value Age p-value
Region MD MK Region MD MK
5 Frontal sup. orb. L 0.000 0.002 1 Precentral L 0.003 NS
11 Frontal inf. oper. L 0.001 0.002 2 Precentral R 0.003 NS
14 Frontal inf tri. R 0.001 NS 3 Frontal sup. L 0.000 NS
17 Rolandic Oper. L 0.007 NS 4 Frontal sup. R 0.000 NS
18 Rolandic Oper. R NS 0.001 7 Frontal mid. L 0.000 NS
20 Supp motor area R 0.009 NS 8 Frontal mid. R 0.000 NS
38 Hippocampus R 0.000 NS 12 Frontal inf. oper. R 0.001 NS
42 Amygdala R 0.000 NS 13 Frontal inf. tri. L 0.001 NS
43 Calcarine L 0.000 NS 17 Rolandic oper. L 0.001 NS
44 Calcarine R 0.000 NS 19 Supp motor area L 0.009 NS
53 Occipital inf. L 0.001 NS 20 Supp motor area R 0.001 NS
63 Supramarginal L 0.003 0.006 23 Frontal sup. medial L 0.001 NS
86 Temporal mid. R 0.000 NS 24 Frontal sup. medial R 0.001 NS
29 Insula L 0.002 NS
30 Insula R 0.003 NS
31 Cingulum ant. L 0.005 NS
32 Cingulum ant. R 0.000 NS
43 Calcarine L 0.000 NS
44 Calcarine R 0.000 NS
46 Cuneus R 0.000 NS
47 Lingual L 0.001 NS
48 Lingual R 0.000 NS
50 Occipital sup. R 0.010 NS
51 Occipital mid. L 0.001 NS
52 Occipital mid. R 0.003 NS
54 Occipital inf. R 0.002 NS
56 Fusiform R 0.005 NS
57 Postcentral L 0.000 0.002
58 Postcentral R 0.001 NS
61 Parietal inf. L 0.001 0.002
62 Parietal inf. R 0.004 NS
66 Angular R 0.004 NS
67 Precuneus L 0.009 NS
68 Precuneus R 0.004 NS
81 Temporal sup. L 0.000 NS
82 Temporal sup. R 0.000 NS
85 Temporal mid. L 0.000 NS

Table 2 summarizes the p-values of the contributions from sex and aging, respectively, in parcellated cortical regions where the two-way analysis of variance reached
significance for mean diffusivity (MD) and diffusion kurtosis (MK). NS, non-significance.
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impairment was found between sexes, which suggests that a
difference in the brain reserve may exist between sexes.

RELATION OF AGING WITH SEX-DEPENDENT DIMORPHISM OF WATER
DIFFUSION IN THE BRAIN

The aging process affects different brain regions in the different
sexes. In general, mean diffusivity in males, although elevated rel-
ative to that in females, is relatively stable with aging. In the female
brain, the mean diffusivity in many regions increased with age.
The increase in cortical diffusion in females during the aging pro-
cess is most prominent in the frontal lobe and anterior cingulum.
Such regional dependence of the aging effect can be attributed
to different factors, such as lasting morphological changes and/or
actual changes in the mean diffusivity (Camara et al., 2007). Furu-
tani etal. (2005) reported an age-related increase in the mean
diffusivity in the gray matter, especially in the lentiform region.
In contrast, several studies have reported that a lack of age-by-
sex interaction in the white matter (Hsu etal., 2008; Wu etal.,
2011; O’Dwyer etal., 2012). The discrepancy between previ-
ously observed atrophic decay effects and the findings of our
study may be related to the different imaging mechanisms used
and variations in detection sensitivity in functional approaches,
such as in diffusion imaging. The biological basis of this pro-
cess is still largely unclear but may be attributed to differences
in the degenerative process, although this notion requires further
validation.

Diffusion kurtosis imaging has emerged as a new imaging tech-
nique with applications in many neurological diseases such as in
the analysis of tumors (Raab etal., 2010), epilepsy (Akiyama et al.,
2012), and Parkinson’s disease (Wang etal., 2011). The observed
changes in diffusion kurtosis and mean diffusivity are largely
related to a deviation from the Gaussian distribution in water
molecules. Because such a deviation in the biological environment
results from restriction of diffusion, the change in the diffusion
kurtosis may be related to the evolution of structural complexity.
Reduced diffusion kurtosis, together with increased mean diffu-
sivity, may suggest increased extracellular space within the voxel
of interest. An age-related, non-Gaussian diffusion process was
previously reported in the prefrontal brain, and this diffusion
decreased after the age of 47 years (Falangola etal., 2008). The
current study reports that the correlation of diffusion kurtosis
with aging is region-specific and more significant in females.

INTERACTION BETWEEN SEX AND AGING FOR DIFFUSION

The most significant interaction between sex and age from the
ANOVA analysis involved mean diffusivity in the right amygdala.
The interaction appeared to display a hemispheric effect. Age-
related differences in the functional connectivity of this region
with the rest of the brain have been previously reported (St
Jacques et al.,2010). Differences in the amygdala have been noticed
between sexes in terms of size (Goldstein etal., 2001), lateraliza-
tion (Cabhill etal., 2001), cognitive function (Ziabreva etal., 2003;
Hamann, 2005; Lanteaume et al., 2007), and the presence of excita-
tory neurons (Cooke and Woolley, 2005). The involvement of the
amygdala determined by our analysis supports an increased sen-
sitivity of functional imaging over morphological measurements.
Many reports have shown that the aging process also involves the

amygdala, as determined by activation, volumetric, or functional
connectivity data (St Jacques etal., 2010; Todd etal., 2011; Shen
etal., 2013). Given the role of the amygdala in emotional pro-
cessing (Adolphs etal., 1994; Morris etal., 1998) and memory
modulation (Hamann etal., 1999; McGaugh, 2004), future stud-
ies on aging-related cognitive changes may need to include the
function of the amygdala as a covariate.

INTERPRETATION OF CHANGES IN DIFFUSION

In this study, mean diffusivity was calculated from two different
models: the non-Gaussian model using diffusion kurtosis imag-
ing and, for comparison, the conventional Stejskal-Tanner model
(Stejskal, 1965). The conventional model assumes free diffusion
and is currently used in routine clinical practice. The mean dif-
fusivity calculated from conventional model is generally lower, as
observed in selected brain regions in rats (Veraart et al., 2011). The
current study confirms this finding in humans and furthermore
indicates that the reduced diffusivity is a general phenomenon in
all brain regions. The difference between the two models is most
likely related to the fact that the diffusion-related signal decay was
fit to a parabola in the non-Gaussian model (Jensen and Helpern,
2010) rather than to a straight line as in the conventional diffusion
model.

Although the mean diffusivity in the diffusion kurtosis model
is different from that in the conventional model, the diffusion
kurtosis model did not detect a larger difference between sexes.
However, the mean diffusivity did identify more regions with sig-
nificant differences, most likely because of reduced variation in
the measurements (Figure 3), as the mean diffusivity in the study
was calculated from multiple acquisitions with different diffusion
weights, which may improve the signal-to-noise ratio.

Furthermore, a decrease in mean diffusivity with an increase in
diffusion weighting was noticed throughout the brain. The b-value
dependence of mean diffusivity has been reported in various brain
regions (DeLano etal., 2000; Hui etal., 2010; Veraart etal., 2011).
We found that such dependence may occur in all regions within the
whole brain. Additionally, as the diffusion weighting increased, the
b-value dependence decreased and reached saturation. The b-value
dependence is thus attributed to the selective suppression of the
diffusion component. The mean diffusivity calculated from low-
diffusion-weighting acquisitions demonstrated a higher difference
between sexes. This phenomenon should be further investigated
in the future.

In summary, because the calculation of mean diffusivity can
be affected by diffusion weighting and by imaging parameters,
particular caution should be exercised in studies using data from
multiple centers. In addition, different models have different
assumptions and, as a result, different sensitivities. The calcula-
tion of mean diffusivity from the diffusion kurtosis imaging model
is a good choice because of its increased sensitivity and reduced
variation. Future studies should evaluate the effect of the adopted
diffusion model on the measurement.

STUDY LIMITATIONS

The current study used AAL as a template for normalization. How-
ever, because AAL is based on Caucasian brains, which differ in
many aspects from Asian brains, potential bias may have been
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introduced in measurement of deep gray matter and nuclei. A
gray matter mask was produced to reduce contamination from
cerebrospinal fluid and white matter. The current study only
focused on gross anatomical structures such as the lobes of the
brain. Further information for these nuclei may be obtained by
improved image co-registration procedures, which may lead to a
new understanding of the role of nuclei in sex-related differences
in aging.

Because there is currently no well-established model for dif-
fusion anisotropy in gray matter, our study only focused on
investigating mean diffusivity and diffusion kurtosis. However,
in future investigations, both the diffusion tensor and diffusion
kurtosis tensor will be acquired in an effort to develop a more
comprehensive interpretation of the observed sex dimorphism.

CONCLUSION

Magnetic resonance imaging was used to observe sex dimorphism
in the diffusion of water in the cortex, which was found to be
region-specific and to evolve differently during the normal aging
process.
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