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Myeloid-derived suppressor cells (MDSC) have been identified in the peripheral blood and
granulomas of patients with active TB disease, but their phenotype-, function-, and
immunosuppressive mechanism- spectrum remains unclear. Importantly, the frequency
and signaling pathways of MDSC at the site of disease is unknown with no indication how
this compares to MDSC identified in peripheral blood or to those of related myeloid
counterparts such as alveolar macrophages and monocytes. Most phenotypic and
functional markers have been described in oncological studies but have not yet been
validated in TB. Using a panel of 43 genes selected from pathways previously shown to
contribute to tumor-derivedMDSC, we set out to evaluate if the expression of these additional
functional markers and properties may also be relevant to TB-derived MDSC. Differential
expression was investigated between MDSC, alveolar macrophages and monocytes
enriched from bronchoalveolar lavage fluid and peripheral blood of patients with active TB,
patients with other lung diseases (OLD). Results demonstrated that anatomical
compartments may drive compartment-specific immunological responses and subsequent
MDSC immunosuppressive functions, demonstrated by the observation that MDSC and/or
monocytes from PB alone can discriminate, via hierarchical clustering, between patients with
active TB disease and OLD. Our data show that the gene expression patterns of MDSC in
peripheral blood and bronchoalveolar lavage fluid do not cluster according to disease states
(TB vs OLD). This suggests that MDSC from TB patients may display similar gene expression
profiles to those found for MDSC in cancer, but this needs to be validated in a larger cohort.
These are important observations for TB research andmay provide direction for future studies
aimed at repurposing and validating cancer immunotherapies for use in TB.
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INTRODUCTION

Tuberculosis (TB), one of the most prominent communicable
diseases in existence, is caused by Mycobacterium tuberculosis
(M.tb) infection (1). While some people remain asymptomatically
infected, others develop active disease. A major aim of TB research
efforts is to characterize host immune components contributing to
TB disease susceptibility and resistance (2). Host immune
modulators are currently explored as a popular approach to
enhance immune responses through novel vaccines and drugs
thereby reducing susceptibility to infection, delaying disease
progression and accelerating cure (2–4).

Myeloid derived suppressor cells (MDSC) are a heterogenous
population of immature myeloid cells, with potent immune
suppressive functions (5). MDSC are further grouped into
subsets, such as immature MDSC progenitor cells known as
early-stage MDSC (e-MDSC), polymorphonuclear MDSC (PMN-
MDSC) and monocytic MDSC (M-MDSC) (6–8). The most
recently described subset of eosinophilic MDSC (Eo-MDSC)
expand our understanding of the suppressive granulocyte lineage
(9). A multitude of immunosuppressive mechanisms have been
reported for tumor-derived MDSC, presumably reflective of the
heterogeneity and functional redundancy of this cell population.
While these mechanisms are designed to suppress excess
inflammation, they are frequently demonstrated to rather
inactivate pivotal immune responses required for protection
against tumor cells and pathogenic infections alike (10, 11).

As a major immunotherapeutic target in the field of oncology,
studies of tumor-derived MDSC suggest that the factors involved
in their differentiation, expansion and activation can be
characterized in two classes. Firstly, factors stimulating
myelopoiesis and inhibiting differentiation from immature
myeloid cells (IMC) into mature myeloid cells (MMC) (5, 12,
13) enhance the accumulation of IMC in lymphoid organs and
the tumor microenvironment (cancer). Such factors include
interleukin (IL)-6 and vascular endothelial growth factor alpha
(VEGFA) which activate the signal transducer and activator of
transcription factor 3 (STAT3) signaling pathway (14–17).
Secondly, factors such as such as the transcription factors c-
myc and C/EBP homologous protein (CHOP), reactive oxygen
species (ROS), inducible nitric oxide synthases (iNOS), arginase,
IFN-y, TNF-a, IL-13, S100A8/9, transforming growth factor beta
(TGF-b), IL-10, and prostaglandin E2 (PGE2) are involved in the
pathological expansion and activation of hematopoietic stem
cells (HPC) into IMC and eventually MDSC (5, 16). In cancer,
these factors are secreted by activated T cells and tumor stromal
cells (5, 14–16).

Suppressive myeloid cells have long been known to be
expanded in cancer (18, 19), but the identification of their
expansion in other inflammatory conditions including
infectious diseases such as active TB disease, are more juvenile.
Increased MDSC frequencies have been measured in the
peripheral blood of patients with active pulmonary TB disease
(20–22), however, little is known about the true phenotype and
immunosuppressive mechanisms of these cells in TB.
Importantly, the frequency and signaling pathways of MDSC
at the site of TB disease (the lung) is also unknown with no
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indication how this compares to those identified in the blood or
to those of related myeloid counterparts such as alveolar
macrophages, monocytes, dendritic cells, or neutrophils. In
recent studies it was shown that MDSC exhibit monocytic and
granulocytic morphologies, although M-MDSC appear more
relevant in the context of M.tb-infected participation, due to its
phagocytic potentials (20, 23, 24).

In the field of immuno-oncology, the minimally accepted set
of surface markers for phenotypic classification of human MDSC
is HLA-DR, CD33, CD11b and CD14 (M-MDSC) or CD15
(PMN-MDSC) (25). These markers have also been adopted in
the human TB MDSC research field, specifically to characterize
blood-derived MDSC. Many additional phenotypic and
functional markers have, however, recently been described in
oncological studies, relating to the function and ontology of
MDSC, the most promising being LOX-1 (PMN-MDSC) and
S100A9 (M-MDSC) (26–28). Here we set out to evaluate if the
expression of these and other functional markers and functional
properties associated with MDSC in cancer, may also be relevant
to TB-derived MDSC. Additionally, we hypothesize that MDSC
from the blood of TB patients could display similar
characteristics to lung-derived MDSC but would differ to those
of other control myeloid subsets. We make use of myeloid cells
from peripheral blood cells and bronchoalveolar lavage cells
from of individuals with active TB or with non-TB MDSC-
inducing lung diseases, other than TB, to assess expression of
genes previously shown to be linked to MDSC in lung
malignancies. Specifically, we compare expression between
MDSC, alveolar macrophages (AM) and monocytes, to
determine how these compare between myeloid subsets.
MATERIALS AND METHODS

Ethics Approval and Statement
Ethical approval was obtained from the Health Research Ethics
Committee of Stellenbosch University as part of ongoing clinical
studies, namely TANDEM: Concurrent Tuberculosis and
Diabetes Mellitus - Unravelling the causal link and improving
care (N13/05/064); ICIDR: Biology and Biosignatures of Anti-
Tuberculosis Treatment Response (NIH/U01/AI115619); Screen
TB study: Evaluation of host biomarker-based point-of-care tests
for targeted screening for active TB (N16/05/070 and N16/04/
050); The effect of cigarette smoking on host and M.tb responses
(N10/08/276). The study was conducted in accordance with the
Declaration of Helsinki and International Conference on
Harmonisation guidelines.

Participant Recruitment and
Sample Collection
Participants were enrolled from a sub-district in Cape Town,
South Africa and written informed consent was obtained.
Participants were grouped as healthy household contacts
(HHC), other lung diseases (OLD) or active TB (Figure 1).
The criteria for inclusion in the HHC or OLD groups were no
clinical, radiological, or microbiological signs of active TB with a
March 2022 | Volume 13 | Article 839747
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negative sputum GeneXpert. The inclusion criteria for active TB
were clinical signs of TB (symptoms such as, persistent cough,
fever, night sweats, weight loss, loss of appetite) with a chest x-
ray screen showing signs of TB, or a positive sputum culture test
(culture negative TB included if positive for GeneXpert).
Participants were excluded if they had a history of previous
Frontiers in Immunology | www.frontiersin.org 3
TB, tested positive for diabetes, or tested positive for HIV.
Peripheral blood (PB) was obtained by venepuncture into
NaHep Vacutainers®. broncho-alveolar lavage fluid (BALF)
was collected by bronchoscopy conducted by an experienced
pulmonologist. Samples were processed within 2 hours
of collection.
FIGURE 1 | Experimental design and workflow.
March 2022 | Volume 13 | Article 839747
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Immune Cell Enrichment
Peripheral blood mononuclear cells (PBMC) were isolated from
PB using the standard ficoll density medium separation method
(GE Healthcare, Piscataway, New Jersey, United States of
America). BALF was filtered using a 70 µm cell strainer and
the cell pellet was washed using RPMI supplemented with 5%
FBS. MDSC were enriched from PBMC and BALF cells using
magnetic-activated cell sorting (MACS) through a series of
negative and positive selection steps, to obtain the CD3-/HLA-
DR-/CD33+ cell fraction enriched for MDSC (MiltenyiBiotec,
Germany). In parallel, for each participant, monocytes (from
PBMC) and AM (from BAL) were enriched from the HLA-DR+

fraction through plastic adherence in an overnight culture. Cells
were counted and viability assessed through Trypan Blue
staining. Samples displayed viability >95% and the quality and
efficacy of the isolation was assessed by flow cytometric
assessment of peripheral monocytes (CD33+HLA-DR+-PE) and
MDSC (HLA-DR-; CD33+ BV510) (BD FACS Canto II). Data
was analysed using FlowJo (version 10). Enriched fractions were
stored in RLT Plus® Buffer (Qiagen, Germany) at -80°C for
batch analysis.

RNA Extraction, cDNA Synthesis and
Quantitative Real-Time PCR (qRT-PCR)
Total RNA was isolated from enriched cell fractions using the
RNEasy® Micro Kit (Qiagen, Germany) according to the
manufacturer’s instructions and stored at -80°C. The RNA
purity, quality and quantity were assessed using the Agilent
2100 BioAnalyzer (Agilent Technologies Inc.) An RNA
integrity number (RIN) score above 7 was considered sufficient
for downstream processing. Isolated RNA was thawed on ice and
Frontiers in Immunology | www.frontiersin.org 4
cDNA synthesized using the Fluidigm Reverse Transcription
Master Mix (Fluidigm PN 100-6297) and a conventional thermal
cycler (Life Technologies, United States of America). Aliquots of
the cDNA were further subjected to either 16 or 20 pre-
amplification cycles using the Fluidigm One Tube PreAmp
Master Mix (Fluidigm PN 100-5580) and DNA was removed
by exonuclease-I treatment (PN M0293S/L; 20 U/µl).

Multiplexed Gene Expression Analysis
A customised 48-gene panel (Delta Gene Assay, Fluidigm,
California, USA) was designed, based on phenotypic and
functional markers related to MDSC as reported in the
literature from in vitro or in vivo studies of various diseases in
humans or animal models (Table 1). Included in these were 5
candidate reference genes: ACTB (NM_001101.N), G6PD
(NM_000402.N), GAPDH (NM_001289745) , RPS12
(NM_001016.N), and RPS18 (NM_022551.N). The multiplex
qRT-PCR was conducted according to manufacturer’s
instructions (Fluidigm BioMark HD-HX platform, California,
United States of America). All genes were assayed in duplicate.

Controls included no-template controls, no-reverse-
transcription controls, and no-pre-amplification controls.
Upon successful completion of the Fluidigm assay the Ct-
values (the fractional number of cycles required for the signal
to cross the detection threshold), proportional to the inverse gene
expression levels, were exported for further analysis.

Data Processing and Statistical Analysis
Data processing and analysis was performed using R [“R Core
Team (29)] along with the BioConductor packages readqPCR and
normqPCR. R packages tidyr, ggplot2 and ComplexHeatmap were
TABLE 1 | List of genes analysed.

Gene Description Gene Description

ACTB* Actin beta IL6 Interleukin 6
G6PD* Glucose-6-phosphate dehydrogenase ITGAM Integrin subunit alpha M
GAPDH* Glyceraldehyde-3-phosphate dehydrogenase ITGAX Integrin subunit alpha X
RPS12* Ribosomal protein S12 MAPK14 Mitogen-activated protein kinase 14
RPS18* Ribosomal protein S18 MAPK3 Mitogen-activated protein kinase 3
ARG1 Arginase 1 MIR146A MicroRNA 146a
CAV1 Caveolin 1 MIR17 MicroRNA 17
CD14 Cluster of Differentiation 14 MIR223 MicroRNA 223
CD274 (PDL1) Cluster of Differentiation 274 MIR494 MicroRNA 494
CD33 Cluster of Differentiation 33 MRC1 Mannose receptor, C type 1
CD36 Cluster of Differentiation 36 MTOR Mechanistic target of rapamycin
CPT1A Carnitine palmitoyltransferase 1A NOS2 Nitric oxide synthase 2
CSF2RA Colony stimulating factor 2 receptor alpha subunit OLR1 Oxidized low density lipoprotein receptor 1
FASLG Fas ligand PLIN1 Perilipin 1
FUT4 Fucosyltransferase 4 PTGS2 Prostaglandin-endoperoxide synthase 2
HADHA Hydroxyacyl-CoA dehydrogenase S100A8 S100 calcium binding protein A8
HLA-DRA Major histocompatibility complex class II, D-related protein alpha SIRPA Signal regulatory protein alpha
HMGB1 High mobility group box 1 SLC27A4 Solute carrier family 27 member 4
IDO1 Indoleamine 2,3-dioxygenase 1 STAT1 Signal transducer and activator of transcription 1
IFNG Interferon gamma STAT3 Signal transducer and activator of transcription 3
IL10 Interleukin 10 STAT6 Signal transducer and activator of transcription 6
IL17A Interleukin 17A TGFB1 Transforming growth factor beta 1
IL1B Interleukin 1 beta TNF Tumor necrosis factor
IL4 Interleukin 4 VEGFA Vascular endothelial growth factor A
*Reference genes.
March 2022 | Volume 13 | Article 839747
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used for processing and visualization of the data. Bayesian
statistical analysis was done using Stan (30) via the brms
package (31). Analysis of differences in expression levels (Ct-
values) was done using Bayesian multilevel models with either cell-
type or sample-type as the fixed-effect modelled using a student t-
distribution and subject and pre-amplification cycle as random
intercept effects with a default flat prior on the effect estimate.
Sampling was set at 5000 iterations, including a warmup of 1500,
using 4 chains and an adapt_delta value of 0.9. Correlation
analysis was done using the Spearman rank method.
RESULTS

Participant Characteristics, Sample Size
and Immune Cell Enrichment
Peripheral blood (n=8) and BALF (n=9) samples were collected
from participants upon diagnosis of active pulmonary TB disease
prior to initiation of standard antibiotic treatment and controls
with lung disease other than TB, residing in the same community
(n=4) (Table 2). Of the OLD patients, the OLD included
pulmonary complications associated with leukaemia, a
pulmonary fungal infection, lung cancer, and sarcoidosis.

MDSC (CD3-/HLA-DR-/CD33+) were enriched from PBMC
and BALF, while AMs and monocytes (CD3-/HLA-DR+/CD33+)
were enriched from BALF and PBMC, respectively, using MACS
isolation technology, as compartmental control populations.
Purity checks were run on the enriched MDSC and monocyte
populations by flow cytometry and were demonstrated to have
an average purity of 73% and 100%, respectively. Because of the
lower purity of the MDSC population, this is a population
enriched for MDSC, rather than a pure population. Purity
checks could not be performed on the AMs owing to the
known issues with autofluorescence in these cells because of
the high level of carbon loading within the macrophage
population of participants from the Western Cape province of
South Africa (32). Literature shows that between 85-96% of cells
from the BALF of the human lung are alveolar macrophages (33,
34). Therefore, while not 100% pure, the cells obtained from the
lung in this study are enriched for AMs.

Reference Gene Selection
To compare gene expression levels between cell or sample types,
the absolute expression levels were first normalized using the Ct
values for a set of reference genes. A panel of five candidate
reference genes was selected as endogenous controls based on the
criterion of constitutive expression, regardless of cell, tissue, or
sample type. These were: ACTB, G6PD, GAPDH, RPS12 and
RPS18. We selected an optimal subset of these candidate reference
Frontiers in Immunology | www.frontiersin.org 5
genes based on an assessment of gene expression stability as
determined by the method of Vandersmpele et al. using the
geNorm package (35). We found good average stability (M-
values, higher values denote lower stability) of the reference sets,
improving with the progressive exclusion each least stable gene.
The pairwise ratios of the M-values showed nominal changes in
stability with each additional reference gene, although we observed
a notable increase with the addition of a fifth gene in some sample-
types. The implication being that there is little benefit to be gained
from using more than the recommended three reference genes. As
ACTB and RPS18 were the least stable references in the 16- and
20-times pre-amplification assays respectively, we chose to exclude
both. Normalised delta-Ct values were therefore calculated based
on the geometric mean expression of the G6PD, GAPDH and
RPS12 genes.

Hierarchical Clustering and Statistical
Analysis of Normalized Expression Data
Gene Expression Profiles of MDSC and/or
Monocytes in the Blood Discriminate Between
Patients With TB Versus Those With OLD
It remains unclear how the phenotype and function ofMDSCdiffer
in various chronic inflammatory conditions. This information will
be critical in selecting and designing targeted host-directed
therapeutic (HDT) strategies and inform repurposing of
compounds being tested in immune-oncology. We measured the
expression of 43 target genes, previously shown tohave relevance in
MDSCphenotype and function in immune-oncology, in peripheral
blood-derived MDSC and monocytes from TB patients and those
with OLD, (Figure 2A). We observed no obvious distinction
between the expression patterns of either peripheral MDSC or
monocytes between patients with TB versus those with OLD. We
also investigated changes in gene expression ofBAL-derivedMDSC
and monocytes between patients with active TB and OLD.
Hierarchical cluster analysis showed no obvious distinction
between the expression patterns of either BAL-derived MDSC or
AM between TB and OLD (Figure 2B).

Gene expression can also be employed for the discovery of
discriminatory gene or multigene signatures in disease.
Interestingly, hierarchical cluster analysis of gene expression
levels in both MDSC and monocytes in PB displayed clear
differences between patients with active TB and those with OLD,
resulting in complete separation of the two conditions (Figure 2A).

Blood-Derived MDSC and Monocytes From TB
Patients Display Differential Enrichment in Selected
Gene Transcriptional Levels
Hypotheses as to the source of circulating MDSC in TB patients
include the export of immature cells into the blood stream
TABLE 2 | Sample set selection.

Group BALF cells(MDSC and AM) PBMC(MDSC and monocyte)

Active TB 7 (Paired MDSC and AM)1 (MDSC), 1 (AM) 8 (Paired MDSC and Monocyte)
Other Lung Diseases 2 2
March 202
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through emergency myelopoiesis or the reprogramming of
exported peripheral monocytes (18, 36, 37). Some have shown
that these reprogrammed monocytes also have the same
phenotype and function as M-MDSC in cancer patients (26).
We therefore assessed the transcriptional differences of the 43
genes, previously shown to demonstrate differential abundance
between monocytes and MDSC in cancer, in TB patient-derived
MDSC and TB patient-derived monocytes. Statistical analysis of
gene expression between MDSC and monocytes in PB of active
TB patients yielded differences in DCt-values in 12 genes at the
95% Bayesian highest posterior density interval (HDI) level
(Table 3, starred values). A further 9 genes (Table 3, not
starred) showed possible differential expression at the 90%
HDI level and require further investigation. Of these 21 genes,
seven showed a DDCt of at least 2, equivalent to a difference in
expression of a factor of at least 4. Of these, ARG1, CPT1,
ITGAM, IL4 and IL17A showed higher expression in MDSC
than in monocytes, whereas IFNG and FASLG expression was
Frontiers in Immunology | www.frontiersin.org 6
lower in MDSC. The changes in all 43 genes’ DCt-values can be
found in Supplementary Figure 1.

Lung-Derived MDSC and Macrophages From TB
Patients Display Differential Enrichment in Selected
Gene Transcriptional Levels
The mechanism(s) employed by MDSC to suppress T-cell
responses in TB is yet unknown and investigation into these will
improve selection of precision strategies to specifically target
MDSC. We included in our gene panel a selection of genes
known to mediate the suppressive function of tumor-derived
MDSC, to evaluate if these are enriched also in TB-derived
MDSC. Importantly, the suppressive function of MDSC is likely
to feature at the inflammation site, which in cancer is at the tumor
site, or in the case of TB, the lung infection site. MDSC and AM,
isolated from lung-derived BALF of TB patients, yielded gene
expression differences in DCt-values in 6 genes at the 95% HDI
level (Table 4, starred values). Four of these: CAV1, IL10, IL6 and
A

B

FIGURE 2 | Scaled gene expression patterns of (A) MDSC and monocytes in PB (16x pre-amplification), and (B) MDSC and AM in BALF (16x pre-amplification). Lower
expression (higher DCt-values) is indicated by blue. Hierarchical clustering of similar expression patterns across subject and genes is indicated by the dendrograms.
March 2022 | Volume 13 | Article 839747
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MIR146A, showed a difference in DCt of at least 4. In all four,
expression was lower in MDSC than in AM. Only IL1B expression
was higher inMDSC versus AM. The changes in all 43 genes’ DCt-
values can be found in Supplementary Figure 2.

Gene Expression Profiling Suggests That MDSC
Phenotype and Function Differ Depending on
Anatomical Compartments in TB Patients
The fate of circulating MDSC in pulmonary TB patients has not
been determined, but the theory is that MDSC released from the
bone marrow migrate via the blood stream to the site of infection
in the lung. How the transcriptional profile of circulating MDSC
compares to MDSC entering the disease site, remains to be
determined. Statistical analysis of gene expression between
MDSC in PB and BALF of active TB patients yielded
differences in DCt-values in 7 genes at the 95% HDI level
(Table 5, starred values). Five of these: IFNG, IL1B, OLR1,
SLC27A4 and TNF, showed a difference in DCt of at least 2 in
expression. In all five, expression was lower in PB MDSC than in
BALF MDSC. Of note is OLR1 which was lower by a factor of
180.9 in MDSC in PB compared to BALF. A further 3 genes
showed possible differential expression at the 90% HDI level
Frontiers in Immunology | www.frontiersin.org 7
(Table 5, not starred). Hierarchical cluster analysis of gene
expression levels in MDSC in PB and BALF did not
discriminate patients with active TB from those with OLD
(Figure 3). We also observed no obvious distinction between
the expression patterns of the two cell-types. As PB is a much
more accessible sample-type that BALF, we did a correlation
analysis of the gene expression levels between the two
compartments. The results showed moderate to no correlation
(Supplementary Table 1). The changes in all 43 genes’ DCt-
values can be found in Supplementary Figure 3.
DISCUSSION

The phenotype and function of MDSC in the context of TB
remains incompletely defined. Most importantly, PB blood has
long been used for measurement of soluble mediators and
immune cell profile during TB disease, as proxy for the
immunological profile at the site-of-disease (38). Previous
studies have focussed on profiling actively expressed receptors
on the surface of MDSC in the periphery during active TB and
their soluble mediators, but few have investigated the gene
TABLE 4 | Differential gene expression levels between MDSC and AM in BALF, with respect to expression levels in AM.

Gene Median DDCt MAD Q2.5 Q5 Q95 Q97.5 Expression Factor

CAV1 2.756* 1.199 0.587 0.926 4.720 5.081 ↓ 6.8
CD36 1.089* 0.409 0.300 0.424 1.832 2.006 ↓ 2.1
IL10 2.451* 1.151 0.649 0.912 4.785 5.266 ↓ 5.5
IL1B -0.873* 0.364 -1.628 -1.484 -0.207 -0.050 ↑ 1.8
IL6 3.528* 0.999 1.437 1.761 5.146 5.472 ↓ 11.5
MIR146A 3.339* 1.364 0.548 1.028 5.632 6.114 ↓ 10.1
Ma
rch 2022 | Volume
Only results where the 90% HDI of the DDCt estimate excluded 0 are shown. DDCt is with respect to expression levels in AM. * Indicates results where the 95% HDI of the Ct value excluded
0. MAD, Median Absolute Deviation.
TABLE 3 | Differential gene expression levels between MDSC and Monocytes from PB, with respect to expression levels in Monocytes.

Gene Median DDCt MAD Q2.5 Q5 Q95 Q97.5 Expression Factor

ARG1 -2.113* 0.627 -3.463 -3.231 -1.086 -0.866 ↑ 4.3
CD33 -0.804 0.394 -1.613 -1.460 -0.106 0.041 ↑ 1.7
CD36 -0.600 0.293 -1.187 -1.085 -0.104 0.002 ↑ 1.5
CPT1A -3.137* 0.751 -4.632 -4.375 -1.804 -1.532 ↑ 8.8
CSF2RA -2.048* 0.874 -3.798 -3.483 -0.502 -0.198 ↑ 4.1
FASLG 3.164 1.845 -0.549 0.089 6.236 6.924 ↓ 9.0
FUT4 -0.651* 0.316 -1.624 -1.380 -0.189 -0.103 ↑ 1.6
IDO1 -1.635 0.865 -3.459 -3.150 -0.149 0.190 ↑ 3.1
IFNG 4.446* 1.734 0.930 1.586 7.452 8.076 ↓ 21.8
IL17A -3.439 1.804 -7.067 -6.455 -0.407 0.169 ↑ 10.8
IL4 -3.038 1.641 -6.377 -5.808 -0.276 0.346 ↑ 8.2
ITGAM -2.795* 0.532 -4.013 -3.789 -1.926 -1.723 ↑ 6.9
ITGAX -2.353* 1.017 -4.392 -4.044 -0.623 -0.263 ↑ 5.1
MAPK14 -0.366 0.199 -0.841 -0.740 -0.001 0.068 ↑ 1.3
MIR223 -1.025* 0.379 -1.831 -1.685 -0.402 -0.263 ↑ 2.0
NOS2 -3.014 1.484 -6.065 -5.547 -0.483 0.032 ↑ 8.1
PTGS2 -0.747* 0.353 -1.415 -1.303 -0.181 -0.064 ↑ 1.7
S100A8 -1.491* 0.529 -2.556 -2.384 -0.605 -0.417 ↑ 2.8
SIRPA -2.301* 0.872 -4.016 -3.740 -0.799 -0.470 ↑ 4.9
SLC27A4 0.59 0.324 -0.058 0.056 1.150 1.263 ↓ 0.7
VEGFA -1.901* 0.845 -3.622 -3.308 -0.478 -0.157 ↑ 3.7
Only results where the 90% HDI of the DDCt value excluded 0 are shown. DDCt is with respect to expression levels in Monocytes. * Indicates results where the 95% HDI of the Ct value
excluded 0. MAD, Median Absolute Deviation.
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expression profiles of MDSC isolated from different
immunological compartments (20, 24, 39, 40). The immune
phenotype of MDSC in relation to other related immune cell
types have also not been compared between the periphery and
the lungs during active TB disease. To address these shortfalls, we
performed a pilot, observational study in which we assembled a
panel of 43 genes from pathways previously shown to contribute
to MDSC phenotype, activation, and function in tumor biology.
Since MDSC are actively targeted in immune-oncology, owing to
the comprehensive knowledge available on the role of these cells
Frontiers in Immunology | www.frontiersin.org 8
in failed host immunity to cancer cells (41), we aimed to identify
which MDSC-related pathways also applies to TB. We measured
the expression of these genes in MDSC, AM and monocytes from
BALF and PB of patients with TB, and those of patients with lung
disease other than TB, previously described to show an
upregulation in MDSC. This information is important to
inform the selection of HDT strategies in TB, specifically those
that may be repurposed from the immune-oncology field should
the gene expression profiles of MDSC in TB and cancer (OLD)
be similar.
FIGURE 3 | Scaled gene expression patterns of MDSC in BALF and PB (16x pre-amplification). Lower expression (higher DCt-values) is indicated by blue.
Hierarchical clustering of similar expression patterns across subject and genes is indicated by the dendrograms.
TABLE 5 | Differential gene expression levels between MDSC in BALF and PB, with respect to expression levels in BALF.

Gene Median DDCt MAD Q2.5 Q5 Q95 Q97.5 Expression Factor

CD36 -1.925* 0.726 -4.563 -3.857 -0.739 -0.470 ↑ 3.8
FASLG 4.324 2.226 -0.326 0.503 8.153 8.941 ↓ 20.0
HADHA 0.996 0.635 -0.206 0.034 2.094 2.211 ↓ 2.0
IFNG 4.656* 2.501 0.101 0.942 8.561 9.416 ↓ 25.2
IL1B 2.146* 1.106 0.239 0.648 4.150 4.507 ↓ 4.4
MRC1 3.001 1.691 -0.396 0.226 5.800 6.411 ↓ 8.0
MTOR 1.279* 0.586 0.104 0.306 2.277 2.508 ↓ 2.4
OLR1 7.499* 2.272 2.783 3.603 11.422 12.352 ↓ 180.9
SLC27A4 2.412* 0.821 0.763 1.038 3.884 4.211 ↓ 5.3
TNF 2.604* 0.910 0.632 1.037 4.195 4.548 ↓ 6.1
Ma
rch 2022 | Volume
Only results where the 90% HDI of the DDCt estimate excluded 0 are shown. DDCt is with respect to expression levels in BALF. * Indicates results where the 95% HDI of the Ct value
excluded 0. MAD, Median Absolute Deviation.
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In this study, we measured the expression of 43 target genes
previously shown to have relevance in MDSC phenotype and
function in immune-oncology, to determine their relevance in
TB-derived MDSC. We compared these MDSC expression
signatures to those observed in control monocyte and AM
populations owing to the majority of MDSC in the blood being
of the monocyte lineage. Studies have demonstrated that M-
MDSC are the predominant subset in the periphery (20, 21, 24),
and data from immune-oncology studies have demonstrated that
M-MDSC entering the tumor are capable of differentiating into
tumor-associated macrophages (TAMs), supporting the use of
alveolar macrophages as a control population from the lung (42).

In this study we did not observe any significant differences in
gene expression in blood-derived MDSC between active TB
patients and those with OLD. We also did not measure any
significant changes in gene expression of BAL-derived MDSC
between active TB patients and those with OLD. The same was
also observed for blood- and BAL-derived monocytes between
TB patients and OLD. Although there were only two OLD
patients in the dataset, we observed a clustering capable of
distinguishing between the two groups of patients using PB.
This was true for both MDSC and monocytes which suggests that
it may be worthwhile investigating the possibility of a PB, cell
type-specific RNA diagnostic signature for TB in a larger study.
Interestingly, no such discriminating pattern was observed for
either MDSC or AM isolated from BALF. These results suggest
that there may still be value in investigating PB-specific RNA
biomarkers, specifically for the discrimination of OLD from TB
disease, and that perhaps previous studies looking at secreted
soluble mediators should rather investigate at a gene
expression level.

Monocytes and MDSC derived from the PB of TB patients
recruited in this study demonstrated 21 differentially expressed
genes at both the 90% and 95% Bayesian HDI level. It is interesting
to note that of the 21 differentially expressed genes betweenMDSC
and monocytes in PB, many of the genes were associated with the
PMN-MDSC subset specifically. These included FUT4, IFNG,
ITGAM, MIR223, PTGS2, VEGFA and MAPK14 to name a few.
Conventional studies using PB rely on the cryopreservation of
PBMC for batched downstream analyses which is known to result
in the loss of the majority, if not the entire, PMN-MDSC subset
(43). Because this study made use of PBMC immediately stored in
an RNA-preserving buffer, we were able to preserve PMN-MDSC-
specific RNA for differential expression analyses. It is clear from
these results that the PMN-MDSC subset is severely under-
reported in the context of active TB disease, and its functional
role has subsequently not been accounted for. It would be prudent
for future studies to identify realistic PMN-MDSC proportions in
the PB of patients with active TB disease and focus on their
immunosuppressive role.

Among the differentially expressed genes were also IFNG and
IL17A, which were 21.8 times lower and 10.8 times higher in
MDSC than in monocytes, respectively. The former finding was
not unexpected. Current knowledge suggests that, during active
TB disease, ARG1 and NOS2 play a pivotal role in the
suppression of T cell proliferation and IFN-g production,
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thereby preventing the efficient killing of intracellular
pathogens in macrophages and impairing T cell activation (21,
44–46). The 10-fold upregulation of IL17A alludes to the role of
IL-17-producing CD4+ T cells (Th17 cells) during tumor
development, which drive tumorigenesis (47). In contrast, IL-
17A is known to be protective against mycobacterial infection in
the host, and a lack thereof increases TB susceptibility (48).
Given that the main producing cell type of IL-17A remains CD4+

and CD8+ T cells, evidence suggests that TAMs (derived fromM-
MDSC) are capable of producing IL-17A and may therefore be
present in the PB of active TB patients (49). Other differentially
expressed genes of note were FASLG (9 times lower in MDSC
than monocytes), and CPT1A (8.8 times higher in MDSC than
monocytes). The expression of FASLG on the surface of MDSC is
responsible for inducing the apoptosis of T cells by binding with
T cell-expressed Fas (50, 51). Data from FASLG deficient mice
demonstrate that the lack thereof results in a significant
reduction of MDSC in the tumor microenvironment, but more
so of the PMN-MDSC subset, suggesting that the lack of FASLG
skews the remaining MDSC population to the M-MDSC, and
therefore more immunosuppressive, phenotype (52).
Considering that this 9 times reduction in MDSC compared to
monocytes occurred within the PB suggests that circulating
MDSC lack the FasL-Fas immunosuppressive mechanism,
which was supported by our data in Table 5 . This
demonstrated that the expression of FASLG on MDSC was 20
times lower in PB compared to BALF. CPT1A is a mitochondrial
enzyme involved in fatty acid metabolism, the lipid metabolic
state preferred by MDSC to which their immunosuppressive
potentials can be attributed (53, 54). The upregulation of this
gene was not unexpected as it is in line with immune-oncology
findings, but it is promising that these findings are similar
between cancer and TB.

In contrast to the abundance of differentially expressed genes
between MDSC and monocytes from PB, we identified only 6
genes that were differentially expressed between MDSC and AM
isolated from the BALF of active TB patients. These included
CAV1, CD36, IL10, IL1B, IL6, andMIR146A. Physiologically, the
suppressive function of MDSC is likely to feature most notably at
the inflammation site, which in cancer is at the tumor site, or in
the case of TB, the lung. We have demonstrated that lung-
derived MDSC and macrophages from active TB patients do
indeed display differential enrichment in selected gene
transcripts, which could inform the immunosuppressive
mechanisms of lung-derived MDSC during active TB disease.
IL-6, IL-10 and IL1-b are well known cytokines involved in the
induction/expansion of MDSC, with IL-10 also playing a role in
their effector functions at the site of disease (44, 55–58). Of
interest is the observed downregulation of CAV1 and CD36, both
of which are involved in lipid metabolism and metabolic
reprogramming of MDSC, and mycobacterial infections, and
are associated with poor clinical outcomes in malignant tumors
(59, 60). Previous mycobacterium-specific research
demonstrated that vesicular TLR2/Cav-1 signalling, while
dispensable for Mycobacterium bovis internalization
specifically, is required for T cell suppressive functions within
March 2022 | Volume 13 | Article 839747
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the MDSC milieu (61). Five out of the six genes were less
differentially expressed in the MDSC population compared to
the AM, suggesting that AM are responsible for the expression of
these genes, including IL-10, possibly to induce the expansion of
MDSC at the site of disease, while utilising CAV1/CD36-driven
lipid metabolism pathways to create a niche for mycobacterial
survival (62, 63), thereby exacerbating disease progression.

The fate of circulating MDSC in active TB patients has not
been determined, but the theory is that MDSC released from the
bone marrow migrate via the blood stream to the site of infection
in the lung. How the transcriptional profile of circulating MDSC
compares to MDSC entering the disease site, therefore remains
to be determined and is of importance to future HDT strategies.
Our comparison of gene expression levels in MDSC from PB vs.
BALF showed that, at least for the 10 genes listed in Table 5, the
gene expression pattern observed in PB does not reflect levels
seen in the lung. This was confirmed by the observation that
there was little to no correlation between the expression levels in
MDSC from the two sites for all genes (Supplementary Table 1),
as well as the high expression factor differences between the
two compartments. It is clear from this data that there may be
some phenotype and functional profile differences depending
on the anatomical compartment from which MDSC were
derived. Unfortunately, though, hierarchical cluster analysis
demonstrated that, at least during this study, the gene
expression profiles of MDSC in PB compared to BALF could
not discriminate patients with active TB from those with OLD.
Of note from this comparison is the observation of OLR1 being
lower by a factor of 180.9 in MDSC in PB compared to BALF.
OLR1 codes for the lectin-type oxidized low-density lipoprotein
receptor 1 (also known as LOX-1), and is highly expressed in
PMN-MDSC (27). With this in mind, previous studies
suggesting M-MDSC are the dominant subset of MDSC within
the PB compartment are supported, further suggesting the PMN-
MDSC subset may dominate the lung compartment, but this
needs to be validated.

A significant limitation of this study is that it was
unfortunately not possible to obtain paired BALF and PB
samples from the same patients which would have enhanced
the power of this study. Working with clinical samples is known
to be challenging in the TB field; this is especially true for the
collection of BALF samples as the bronchoscopy procedure is
more invasive and uncomfortable than venepuncture. Often,
paired blood specimens cannot be collected in tandem, and
additionally, it is likely that the inability to discriminate gene
expression profiles of MDSC between other cells or anatomical
compartments, is as a result of the small sample size available
during this study. A follow-up study is currently being conducted
by our research group making use of paired samples from a
larger number of participants to validate the findings observed
during this study. In addition, our sample size for the
comparative OLD group was incredibly small and each
individual presented with a distinct diagnosis. This is
problematic for representative sampling and should be
considered when interpreting the results obtained during
this study. Future studies may do well to focus on obtaining
Frontiers in Immunology | www.frontiersin.org 10
patient samples specifically from those with lung cancer to draw
stronger parallels between the TB and OLD group. Lastly, this
study would benefit from additional validation studies with
a particular need being the use of a larger cohort with
paired samples.

The results achieved from this study support the hypothesis
that anatomical compartments may drive compartment-specific
immunological responses, which have considerable effects on the
MDSC population and their immunosuppressive functions
specifically. The most interesting findings are that the gene
expression profiles of MDSC and/or monocytes from PB are
able to discriminate between patients with active TB disease and
OLD, and that differential gene expression in MDSC vs
monocytes is highly variable compared to differential gene
expression in MDSC vs AM, with the lung compartment
demonstrating a preferential trend to upregulate genes
involved in MDSC expansion and lipid metabolism.
Considering that the gene expression profiles of MDSC in PB
and BALF are not capable of clustering according to disease
groups (TB or OLD), it is feasible to speculate that MDSC from
TB share similar gene expression profiles with those from cancer
but needs to be validated in a larger study. These are important
observations for the TB field, possibly lending support to
repurpose and validate cancer immunotherapies as HDT for
active TB disease. This study provides a backbone upon which
future studies into MDSC-related gene expression during active
TB disease should be based, as a guide for both improvement and
targeted investigations.
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