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Valproic acid-induced changes of 4D nuclear 
morphology in astrocyte cells

ABSTRACT  Histone deacetylase inhibitors, such as valproic acid (VPA), have important clini-
cal therapeutic and cellular reprogramming applications. They induce chromatin reorganiza-
tion that is associated with altered cellular morphology. However, there is a lack of compre-
hensive characterization of VPA-induced changes of nuclear size and shape. Here, we 
quantify 3D nuclear morphology of primary human astrocyte cells treated with VPA over time 
(hence, 4D). We compared volumetric and surface-based representations and identified sev-
en features that jointly discriminate between normal and treated cells with 85% accuracy on 
day 7. From day 3, treated nuclei were more elongated and flattened and then continued to 
morphologically diverge from controls over time, becoming larger and more irregular. On day 
7, most of the size and shape descriptors demonstrated significant differences between 
treated and untreated cells, including a 24% increase in volume and 6% reduction in extent 
(shape regularity) for treated nuclei. Overall, we show that 4D morphometry can capture how 
chromatin reorganization modulates the size and shape of the nucleus over time. These nu-
clear structural alterations may serve as a biomarker for histone (de-)acetylation events and 
provide insights into mechanisms of astrocytes-to-neurons reprogramming.

INTRODUCTION
Multicellular organisms regulate their cell type and state by selec-
tively exposing portions of their genome for transcription through 
the spatial and temporal organization of chromatin—dubbed the 
4D nucleome (Chen et al., 2015; Cremer et al., 2015; Higgins et al., 
2015, 2017a). Structurally, 3D conformation of the genome involves 
1.65 turns of DNA wrapped onto a histone octamer, creating nu-

cleosomes linked as beads-on-a-string, which are then wrapped into 
chromatin fibers and higher-order loops, organizing into topologi-
cally associating domains (TADs). Finally, TADs collect into a diploid 
set of chromosome territories (Higgins et al., 2015, 2017a). Histones 
accommodate a range of posttranslational modifications, which are 
controlled by epigenetic proteins that ultimately regulate the tran-
scriptional state of the cell and mediate mechanical protection of 
genome by chromatin rigidity (Yang and Seto, 2007; Stephens et al., 
2019). Chemicals that target these proteins can be used to modu-
late chromatin states and the concomitant cell and nuclear morphol-
ogy changes observed in human diseases (Marchion et al., 2005; 
Stephens et al., 2019). For example, valproic acid (VPA) is a histone 
deacetylase inhibitor used clinically to treat epilepsy, bipolar disor-
ders, social phobias, and neuropathic pain (Göttlicher et al., 2001; 
Ganai et al., 2015). Mechanistically, VPA shifts the balance toward 
greater histone acetylation, DNA exposure, and chromatin decon-
densation; activating transcriptional programs that regulate cellular 
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processes related to cancer (Göttlicher et  al., 2001; Eckschlager 
et al., 2017), traumatic brain injury (Higgins et al., 2017b), ischemia 
(Pickell et  al., 2020), as well as cellular reprogramming (Huangfu 
et al., 2008). An outstanding question, however, is to characterize 
how mesoscale nuclear structures such as TADs mediate the effects 
of VPA and other epigenetic modulators on cellular morphology. 
However, limitations of the emerging technologies that can capture 
these nanoscale (histone marks) and mesoscale (nuclear architec-
ture) phenomena, including optical microscopy, ATACseq, and sin-
gle cell RNAseq, make it difficult to simultaneously monitor mac-
roscale (cellular morphology) cellular state.

Recent mechanobiology studies revealed the role of chromatin 
as a key regulator of nuclear shape (Uhler and Shivashankar, 2018; 
Stephens et al., 2019). VPA induces increased euchromatin, which 
results in weakened nuclear rigidity and morphology changes that 
occur independently of lamins (Stephens et al., 2017, 2018). Here 
we aim to leverage this effect for assessing how the epigenetic and 
mesoscale nuclear state can be characterized by the overall nuclear 
size and shape to probe VPA’s mechanism of action. Importantly, we 
show that nuclear morphology can be captured in standard micros-
copy experiments to relate epigenetic regulators with phenotypic 
measurements of a cell and its organelles.

Toward this goal, we present a detailed characterization of the 
size and shape of astrocyte nuclei in the context of VPA treatment. 
We chose astrocytes because they developmentally originate from 
the same precursor cells as neurons and proliferate in response to 
brain damage (Amamoto and Arlotta, 2014), but also can be directly 
reprogrammed into functional neurons by sets of small molecules—
often including VPA—in the lab (Cheng et al., 2015; Zhang et al., 
2015; Gao et al., 2017; Qin et al., 2017). These studies, however, are 
not always congruent. Some reports demonstrated that VPA inhibits 
(Yin et  al., 2019) or increases reprogramming efficiency (Cheng 
et al., 2015; Zhang et al., 2015), while others suggest that VPA alone 
induces astrocyte reprogramming into neurons (Cheng et al., 2015). 
The treatment protocols, concentrations, and combinations of small 
molecules differ between these studies, indicating that underlying 
mechanisms driving the transdifferentiation process are not well 
understood.

Existing studies that have focused on astrocyte-to-neuron repro-
gramming observed changes only in cellular morphology, presented 
in a qualitative manner. Others quantified VPA-induced nuclear mor-
phological changes in non-astrocyte cells, reporting time-, dose-, 
and cell type–dependent responses. Their results ranged from no 
observed changes in nuclear geometry (Ganai et al., 2015); to al-
tered nuclear shape (“blebbing”), but not size (Stephens et  al., 
2017, 2018); to increased nuclear size, either after 1 h (Felisbino 
et al., 2011, 2014, 2016) or not earlier than after 7–14 d (Kortenhorst 
et al., 2009) of VPA treatment. Moreover, these approaches were 
limited to basic 2D surrogates of geometric measures, often report-
ing few features such as cross-sectional nuclear area or maximum 
diameter. Given that chromatin is highly organized in 3D, the effects 
of chromatin remodeling on nuclear morphology can only be fully 
described in three dimensions. Supporting this assumption, there is 
growing practical evidence that 3D representations allow for more 
accurate characterizations of cell and nuclear morphology, com-
pared with 2D measures (Choi and Choi, 2007; Meyer et al., 2009; 
Depeursinge et al., 2014; Kalinin et al., 2018a; Medyukhina et al., 
2020). Because single-perspective 2D images depend on an ob-
ject’s orientation and the focal plane, they provide only a sample of 
its real geometry. For example, cell nuclei that differ in volume and 
shape can appear similarly small and circular in optically sectioned 
images, thus leading to lower discriminative performance of a 

classifier (Choi and Choi, 2007). In addition, a more comprehensive 
morphological representation of nuclei in 3D is more informative 
than resolution as a determining factor for classification perfor-
mance (Meyer et al., 2009). Our previous results also indicated that 
3D size and shape descriptors outperform their 2D counterparts in 
the task of nuclear morphological classification (Kalinin et al., 2018a).

Even when the 3D object is perfectly aligned with the focal 
plane, only the first two out of three principal axes (major, median, 
minor) can be measured from its 2D representation. This reduces 
the accuracy of shape measures computed from size features. For 
example, sphericity assesses the compactness of the object, that is, 
it measures how closely the global object shape resembles that of a 
perfect sphere, which is computed via volume and surface area or 
approximated using principal axes (Xu et al., 2009). The extent (ratio 
of the object volume to the bounding box volume) and solidity (ratio 
of the object volume to the convex hull volume) of nuclear surfaces 
are useful measures of the amount and size of concavities (or protru-
sions) in an object boundary. Other shape descriptors rely on the 
notion of the curvature that describes how bent the curve is around 
each point of a surface. They allow for measuring local shape altera-
tions that are observed on the nuclear surface and would not be 
exhibited in 2D projection. Mean curvature is an extrinsic measure 
of 3D shape that provides a balanced measure between shape mor-
phology and curvature magnitude (Tsagkrasoulis et al., 2017; Kalinin 
et al., 2018b). Gaussian curvature is an intrinsic (scale-invariant) mea-
sure of curvature that depends only on distances that are measured 
on the surface. Shape index and curvedness are morphometric de-
scriptors that can capture local shape features, independently or in 
relation to the size of an object (Koenderink and Van Doorn, 1992). 
Fractal dimension is the measure of the object’s boundary complex-
ity (Metze et al., 2019). Together, these features allow one to mea-
sure various aspects of shape and provide a detailed quantitative 
characterization of 3D object morphology.

To address the limitations of previous studies, we quantified 
VPA-induced changes in the 4D nuclear morphology of primary hu-
man astrocyte cells. Our findings show that geometric descriptors 
extracted from voxel and surface-modeled representations of 3D 
nuclear shapes enabled accurate and interpretable characterization 
of time-dependent morphological changes in VPA-treated astro-
cytes. This allowed us to distinguish between nuclear morphological 
profiles of treated and normal astrocytes over time with a time-aver-
age accuracy of 82%. We showed that VPA treatment induced a 
time-dependent increase in nuclear size and nuclear shape irregu-
larity in astrocytes over the course of treatment.

RESULTS AND DISCUSSION
Experiment and data
To determine how VPA-induced alterations of chromatin structure 
are reflected in 4D nuclear morphology, we treated human astro-
cyte cells with 1.5 mM of VPA at multiple time points (days 1, 3, 
and 5) and obtained volumetric images of DAPI-labeled nuclei us-
ing confocal microscopy at three time points (days 3, 5, and 7). This 
provided us with 4D images (3D + time) in the following condi-
tions: normal human astrocytes (NHAs) and cells treated with VPA 
(Figure 1A). First, we used deconvolution to correct for background 
noise and spherical aberrations in original image volumes (Supple-
mental Figure 1). Then, we segmented individual nuclei into 3D 
binary voxel masks (Figure 1B). The number of nuclei identified 
after segmentation and quality control are listed in Table 1 for each 
day and treatment condition. Higher numbers of untreated nuclei 
compared with the treated group might be due to significant inhi-
bition of astrocyte cell growth by VPA at concentrations over 1 mM 
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(Sasai et  al., 2007). Details of the deconvolution, segmentation, 
and quality control protocols can be found in the Materials and 
Methods section.

A simple approach to 3D morphometry is to extract features 
from binary object masks represented as voxel volumes (Dufour 
et al., 2015). From each voxel binary mask (Figure 1B), we computed 
the total of 11 geometric features: volume, bounding box and con-
vex hull volumes, extent, solidity, lengths of main axes, and inertia 
tensor principal components. However, voxel-based representa-
tions can be noisy and may lose fine local geometric detail or even 
misrepresent the object’s global topological structure. We have pre-
viously shown that nuclear surfaces obtained via shape modeling 
are more informative and reliable for nuclear morphometry when 
compared with alternatives (Kalinin et  al., 2018b). Here, we ex-
tended that approach by extracting 16 different size and shape de-
scriptors that can characterize morphological changes in more de-
tail, compared with just 6 in our previous study (Kalinin et al., 2018b). 
We obtained nuclear surface representations from 3D binary masks 
(Figure 1B) and measured the same descriptors as extracted from 
voxels, with the addition of bounding cylinder and sphere volumes, 
sphericity, fractal dimension, mean and Gaussian curvatures, curv-
edness, and shape index. The combined feature tensor containing 
nuclear morphological profiles (Figure 1B) was used for model and 
feature selection, statistical and machine learning–based analysis, 
and interpretation (Figure 1C).

FIGURE 1:  A schematic overview of the experiment, data collection, and analysis. (A) Sample 
preparation, treatment, and imaging. (B) 3D nuclear segmentation, shape modeling, and feature 
extraction. (C) Feature selection, and univariate statistical and machine learning analysis.

Treatment

Day

3 5 7

NHA 186 (−23) 163 (−18) 101 (−10)

VPA 128 (−18) 67 (−6) 78 (−15)

Total 314 (−41) 230 (−24) 179 (−35)

TABLE 1:  Number of segmented astrocyte nuclear 3D binary masks 
per day for each treatment condition after QC (number of nuclei 
filtered by quality control is in parentheses).

Surface modeling provided compact 
and accurate characterization of 3D 
nuclear morphology
To evaluate the utility of different represen-
tations of nuclear morphology, we asked 
how well they facilitate morphological clas-
sification of NHA versus VPA cells, using 
time point–averaged area under the receiv-
ing operator characteristic curve (AUC) as 
the performance metric. Because the per-
formance of classification algorithms varies 
across bioinformatics problems and datas-
ets (Olson et al., 2018) and not all models 
have a feature weighting mechanism, we 
compared the performance across eight 
standard classifiers that enable feature im-
portance estimation (Supplemental Figure 
S2). At each timepoint, we used random 
subsampling of the prevalent class due to 
high class imbalance (Table 1). First, be-
cause voxel and surface features have not 
been directly compared before in terms of 
nuclear morphological classification, we 
trained each model on sets of voxel-based 
(V) and surface-based features (S). As a 
baseline, we defined 2D voxel features ex-
tracted from 3D binary mask maximum in-
tensity projections (V2D). To facilitate a fairer 
comparison between V and S, we also eval-
uated the subsets Vsub and Ssub that con-
sisted of the 10 features that are captured 
by both representations (Supplemental 
Figure S2). As expected, the 2D feature set 
performed the worst (73% AUC), confirming 
that 3D measures provide more discrimina-
tive power. The performance was higher on 
the subset of voxel features (77% vs. 74% 

AUC on Vsub vs. Ssub), but not with full sets (77% AUC on V and on 
S). The best overall performance was achieved when using the com-
bination of both voxel and surface-based features (78% AUC on V + 
S). Among tested classifiers, the support vector machine (SVM) 
model (Cortes and Vapnik, 1995) outperformed other classifiers av-
eraged across all feature sets (81% AUC), so we chose to use this 
model going forward.

Clustering of the complete V + S feature set revealed two major 
groups, roughly corresponding to size and shape descriptors (Figure 
2A). To reduce redundancy and aid interpretability, we selected 
seven features (S7) from smaller subclusters that maximized SVM 
classification performance (82% AUC). These features included sur-
face-based median axis length, convex hull volume, bounding 
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sphere volume, sphericity, average mean curvature, shape index, 
and voxel-based solidity. S7 provided distinctive representations of 
nuclear morphological profiles at different time points, as shown by 
the t-distributed stochastic neighbor embedding (t-SNE; van der 
Maaten and Hinton, 2008) 2D projection in Figure 2B. The SVM clas-
sifier demonstrated robust performance with AUCs of 80%, 80%, 
and 85% on days 3, 5, and 7, respectively (Figure 2C), with classifica-
tion errors that were only slightly shifted toward false negatives at 
each day, indicating the effectiveness of the prevalent class subsam-
pling (Figure 2D). Relative feature ranking from the trained SVM 
model (Figure 2E) revealed that sphericity was the most important 
feature for day 3, followed by convex hull and bounding sphere vol-
umes. On day 5, bounding sphere volume, sphericity, and solidity 
were the top-3 important descriptors. Bounding sphere volume was 
again the most important measure on day 7, followed by average 
mean curvature, median axis length, and sphericity. Our findings 
showed that both size and shape features were important for dis-
crimination of treated and untreated nuclei, demonstrating that a 
combination of 3D descriptors aids in accurate morphological 
classification.

VPA induced increased nuclear size
We observed time-dependent alterations in astrocyte nuclear sizes 
as demonstrated by examples of NHA and VPA-treated recon-
structed nuclear surfaces shown in Figure 3A, with the latter having 
increasingly longer major axis length and higher volume. To provide 
a more detailed characterization of changes in 3D nuclear size, we 
chose six size descriptors for further study; three of which were se-
lected as a part of S7 (median axis length, convex hull, and bound-
ing sphere volumes), while major and minor axes lengths and nu-
clear volume were chosen manually for interpretability (Figure 3B). 
Measuring the three principal axes also allowed for the generation 
of inferences about the global shape of nuclei, as described in the 
next section. We reported each relative difference as the percent-
age change from the mean of the control group (NHA), along with a 
p value obtained using a two-sided Mann-Whitney U test with 
Holm–Šidák multiple testing correction, and AUC that in the case of 
the Mann-Whitney U test is equivalent to the common language 
effect size statistic (Mason and Graham, 2002).

By day 3, the average major axis length of VPA-treated nuclei 
compared with controls had increased by 10% (p < 0.0001, 70% 

FIGURE 2:  Morphological classification performance. (A) hierarchical clustering of the Pearson correlations among all 
voxel and surface features (V + S), showing representative size and shape descriptors. (B) 2D t-distributed stochastic 
neighbor embedding (t-SNE) of the selected feature space, showing corresponding conditions (NHA or VPA) at every 
time point (day 3, 5, or 7). The lines denote clusters identified by kernel density estimation. (C) Receiver operating 
characteristic (ROC) curves for the SVM classifier with S7 features on days 3, 5, and 7. (D) Average normalized confusion 
matrices for the SVM classifier on the S7 features. (E) SVM-estimated permutation importance of S7 features for 
distinguishing nuclear morphologies on each day.
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AUC), the average minor axes length had decreased by 7% (p < 
0.0001, 67% AUC), while there was no significant difference in me-
dian axis lengths (Figure 3B). Despite more subtle changes in nu-
clear (+5%, p < 0.05, 58% AUC) and convex (+4%, p > 0.05, 57% 
AUC) hull volumes, the volume of the bounding sphere was 36% 
larger (p < 0.0001, 74% AUC) in the VPA group. Between days 3 and 
5, measures of major and median axes lengths indicated intragroup 
changes for both NHA (+12%, p < 0.0001 for major; +13%, p < 
0.0001 for median) and VPA nuclei (+14%, p < 0.0001 for major; 
+13%, p < 0.001 for median), along with a slight shortening of minor 
axes. Nuclear, convex hull, and bounding sphere volumes also in-
creased in both groups, correspondingly. As a result, the treated 
nuclei differed from controls on day 5 by having a 13% longer major 
axis (p < 0.0001, 73% AUC) and a 4% shorter minor axis (p < 0.0001, 
67% AUC), along with 48% larger bounding sphere volumes (p < 
0.0001, 74% AUC).

Between days 5 and 7, there were no significant changes in axes 
lengths in the control group, while the median axis length in the 
treated group increased by 13% (p < 0.001) and the minor increased 
by 5% (p < 0.05; Figure 3B). By day 7, VPA-treated nuclei had 15% 
larger major axes (p < 0.0001, 75% AUC) and 15% larger median 
axes (p < 0.0001, 70% AUC), while the minor axis length was com-

parable to that of the untreated nuclei. Nuclear volume and convex 
hull volume increased in both groups from day 5 to 7, but the 
change in the VPA-treated nuclei was more dramatic (+23%, p < 
0.0001 for volume; +22%, p < 0.0001 for convex hull) than in the 
NHA group (+8%, p < 0.001 for volume; +7%, p < 0.01 for convex 
hull). As a result, the treated nuclei had 24% larger volume (p < 
0.0001, 77% AUC), 25% larger convex hull (p < 0.0001, 76%), and 
64% larger bounding sphere volume (p < 0.0001, 80% AUC), when 
compared with controls on day 7.

Our findings highlight a transition point between two phases of 
morphological changes. Before day 5, nuclear sizes in both the 
VPA and the NHA groups significantly increased in all reported 
measures, except for the minor axis length. VPA-treated nuclei 
demonstrated more prominent elongation and flattening, along 
with the slightly more rapid increase of the volume, compared with 
controls. NHA nuclear volumes increased less between days 5 and 
7, while measures of VPA-treated nuclear size continued to in-
crease, mostly due to longer median axes, demonstrating biggest 
differences by the last day, as illustrated by visualizations in Figure 
3A. Finally, all individual feature AUCs were lower than those of the 
SVM model at each time point (Figure 2C), which highlighted the 
ability of a combination of 3D linear and volumetric features to 

FIGURE 3:  Visualization and univariate statistical analysis of size changes under VPA treatment. (A) Reconstructed 
surfaces of representative NHA and VPA nuclei on days 3, 5, and 7. (B) Time-dependent changes in morphometric 
measures of nuclear sizes (points show mean; error bars show SD; *, p < 0.05; **, p < 0.01; ***, p < 0.001; 
****, p < 0.0001).
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capture size alterations that are difficult to ascertain when using 
solely individual measures.

VPA induced nuclear shape irregularity
Consistent with VPA decondensing the chromatin to reduce nuclear 
rigidity (Stephens et al., 2018), we observed more globally irregular 
surface shapes (Figure 4, A and C) and occasional blebbing (Figure 
4C). As reported by the size measures (Figure 3B), VPA induced nu-
clear elongation and flattening that were reflected in more ellipsoi-
dal and less spherical shape. To quantify, by day 3, VPA-treated nu-
clei demonstrated lower sphericity (−3%, p < 0.0001, 72% AUC) and 
higher average mean curvature (+3%, p < 0.0001, 71% AUC), com-
pared with the NHA group (Figure 4B), which indicated the pres-
ence of more convex and less concave points on the surface (Figure 
4A). Average Gaussian curvature and curvedness of VPA-treated 
nuclei were slightly lower (−5%, p < 0.05, 58% AUC for Gaussian 
curvature; −5%, p < 0.01, 59% AUC for curvedness) than those of 
controls, which also corresponded to overall less spherical objects. 

Between days 3 and 5, there were similar intragroup decreases in 
sphericity, shape index, and solidity that corresponded to an in-
crease in size of both treated and untreated nuclei at the same time 
point. More subtle alterations also included a decrease in average 
Gaussian curvature in both the NHA (−1%, p < 0.05) and the VPA 
(−5%, p < 0.05) groups, along with the decrease of fractal dimension 
of the untreated nuclei (−0.2%, p < 0.01; Figure 4B). Differences 
between shape descriptors extracted from two conditions on day 5 
were similar to those from day 3. While the difference in solidity and 
shape index were not identified as “statistically significant” at the 
chosen p-value cutoffs, they contributed to the discriminative ability 
of the SVM classifier on both days 3 and 5 (Figure 2D), indicating 
their importance.

By day 7, NHA nuclei only demonstrated a 2% decrease in aver-
age mean curvature (p < 0.05) from the previous time point across 
all shape features. The VPA group exhibited an 11% decrease in 
curvedness (p < 0.0001) and a 7% decrease in average Gaussian 
curvature (p < 0.01; Figure 4B). As on days 3 and 5, treated nuclei 

FIGURE 4:  Visualization and univariate statistical analysis of shape changes under VPA treatment. (A) Reconstructed 
surfaces of a representative NHA and VPA nuclei on days 5 and 7, annotated with per-vertex mean curvature. 
(B) Time-dependent changes in morphometric measures of nuclear shapes (points show mean; error bars show SD; 
*, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001). (C) XY maximum intensity projections of VPA-treated nuclei 
with irregular shapes and blebbing.
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were still less spherical and had higher average mean curvature on 
day 7 compared with controls. However, decreases in curvedness 
(−15%, p < 0.0001, 74% AUC) and average Gaussian curvature 
(−10%, p < 0.0001, 71% AUC) were also more prominent at the last 
time point. Moreover, VPA-treated nuclei had 6% lower extent (p < 
0.01, 64% AUC), and 0.2% lower fractal dimension (p < 0.01, 66% 
AUC), which indicated an overall higher global shape irregularity 
and less intensively folded and wrinkled nuclear surfaces, 
respectively.

Overall, we showed that VPA robustly induced more elongated 
and less spherical nuclear shapes with higher mean curvature from 
day 3. Toward day 7, these nuclei demonstrated more prominent 
deformations characterized, for example, by a kidney-like form and 
blebbing (Figure 4C). At the same time, the decrease in curvedness 
and fractal dimension reflected nuclear surfaces with lower local 
border complexity that has also been suggested to be indicative of 
chromatin decondensation, reduced tumorigenesis, and neuropro-
tection (Metze et al., 2019). Combined with the size features, these 
3D shape descriptors enable more accurate characterization of 
time-dependent morphological changes than their 2D counterparts 
or any single measure used individually.

Together, our findings described the dynamics of VPA-treated 
nuclear morphological profiles characterized by the increased sizes 
and progressively more irregular, complex shapes that can be at-
tributed to altered histone modifications and chromatin deconden-
sation. These observations represent a first step to studying time-
dependent morphological effects of chromatin reorganization in the 
astrocyte-to-neuron reprogramming process and relating them to 
underlying molecular mechanisms. In future studies, this approach 
can be extended to label additional subnuclear components or or-
ganelles, such as nucleoli, chromosome territories, TADs, transcrip-
tional condensates, and other compartments using, for example, 
cell painting assay(s) for high-content morphological profiling (Bray 
et al., 2016). While tracking the overall cellular phenotype, this ex-
tension will allow us to include many other features in the models 
and assess their variability, association with cellular and nuclear 
shape morphology, disease state, and treatment conditions. All of 
this will set the stage to evaluate the effects of VPA and other small 
molecules measured with different concentrations and temporal 
sampling. Correlating these phenotypical cell and nuclear profiles 
with data from other assays, such as Hi-C (Lieberman-Aiden et al., 
2009), will likely provide useful insights into how altered functional 
properties of the genome are correlated with TAD structure, nuclear 
and cellular morphology, and whether it can be used for training 
machine learning models to more accurately predict treatment re-
sponse in model systems and in humans (Kalinin et al., 2018c).

MATERIALS AND METHODS
Request a protocol through Bio-protocol.

Sample preparation and image acquisition
Primary human astrocyte cells were purchased from ScienCell 
(human astrocytes hippocampal, catalog #1830).

Day 0:
Replace media with 50% growth media and 50% N2 media (DMEM/
F12 + 1X pen/strep, 1X N2 supplements).

Day 1:
Control samples (NHA): for 30 ml of N2 media add 36 µl dimethyl 
sulfoxide (DMSO).

VPA-treated (1.5 mM VPA): for 30 ml of N2 media add 450 µl VPA

Day 3:
Collect day 3 control and VPA samples:

1.	 Fix samples in 4% paraformaldehyde (PFA) for 10 min.

2.	 Rinse three times for 5 min each in phosphate-buffered saline 
(PBS).

3.	 Store samples in PBS at 4°.

Control samples (NHA): for 30 ml of N2 media add 187.5 µl 
DMSO.

VPA-treated (1.5 mM VPA): for 30 ml of N2 media add 450 µl 
VPA.

Day 5:
Collect day 5 control and VPA samples:

1.	 Fix samples in 4% PFA for 10 min.

2.	 Rinse three times for 5 min each in PBS.

3.	 Store samples in PBS at 4°.

Control samples (NHA): for 30 ml of N2 media add 37.5 µl 
DMSO.

VPA-treated (1.5 mM VPA): for 30 ml of N2 media add 450 µl 
VPA.

Day 7:
Collect day 7 control and VPA samples:

1.	 Fix samples in 4% PFA for 10 min.

2.	 Rinse three times for 5 min each in PBS.

3.	 Store samples in PBS at 4°.

Cells in both collections were labeled with DAPI (4′,6-diamidino-
2-phenylindole), a common stain for the nuclear DNA. 3D imaging 
employed a Zeiss LSM 710 laser scanning confocal microscope with 
a 63× PLAN/apochromat 1.4 NA DIC objective. Each original 3D 
volume was then resliced into a 1024 × 1024 × Z lattice (Z = {30,50}), 
where regional subvolumes facilitate the alignment with the native 
tile size of the microscope. For every subvolume, accompanying 
vendor metadata was extracted from the original data.

Image preprocessing and segmentation
To correct for imaging artifacts, including the effect of axial smearing 
on volumetric measures, we deconvolved the obtained images. 
Theoretical 3D point spread functions for each individual image vol-
ume were modeled using the Richards and Wolf algorithm from the 
PSFGenerator plugin for Fiji (Kirshner et al., 2013). We then used 
estimated point spread functions and imaging metadata to apply 
Lucy-Richardson deconvolution (10 iterations) to the original 3D im-
age volumes using the DeconvolutionLab2 software (Sage et  al., 
2017). Deconvolution reduced axial smearing and improved seg-
mentation and classification results (Supplemental Figure S1).

We performed the automatic 3D segmentation of nuclei from 
deconvolved images using the Nuclear Segmentation algorithm 
from the Farsight toolkit (Al-Kofahi et al., 2010; Kalinin et al., 2018a). 
The main advantage of this tool is that it was created specifically to 
segment DAPI-stained nuclei in 2D or 3D. Unlike other learning-
based segmentation algorithms, it does not require a labeled train-
ing set. It demonstrated stable results in our previous project (Kalinin 
et al., 2018a) and on these data. The algorithm implements multiple 
steps, which include a graph-cut algorithm to binarize the subvol-
umes, a multiscale Laplacian of Gaussian filter to convert the nuclei 
to blob masks, fast clustering to delineate the nuclei, and nuclear 

https://en.bio-protocol.org/cjrap.aspx?eid=10.1091/mbc.e20-08-0502


Volume 32  August 19, 2021	 VPA affects astrocyte nuclear morphology  |  1631 

contour refinement using graph cuts with α expansions (Al-Kofahi 
et al., 2010).

After segmentation of the DAPI channel subvolumes, data were 
converted to 16-bit 3D TIFF files; each segmented nucleus was rep-
resented as a binary mask, and given a unique index value. Postseg-
mentation processing of nuclear masks included 3D hole filling and 
a filtering step that removed the objects if they span the edge of a 
tile or are connected to other objects. This quality control protocol 
filtered out most of the artifacts and the remaining were removed by 
visual inspection.

3D morphometry
3D binary nuclear masks were then used for voxel-based feature 
extraction using the scikit-image Python library (van der Walt et al., 
2014), obtaining feature set V. For each binary mask, we measured 
nuclear volume, bounding box and convex hull volumes, extent, so-
lidity, lengths of principal axes, inertia tensor principal components, 
and diameter of the sphere with the same volume as the nucleus. To 
compare the performance of 2D versus 3D features, we also ex-
tracted 2D features from maximum intensity projections of binary 
masks.

First, we model the boundaries of nuclear 3D masks extracted 
from the microscopic images as genus zero two-dimensional mani-
folds that are embedded as triangulated surfaces in ℝ3 (Kalinin et al., 
2018b). 3D surface modeling uses an iterative Laplace-Beltrami ei-
genprojection and a topology-preserving boundary deformation 
algorithm (Shi et al., 2010). This algorithm performs robust recon-
struction of the objects’ surfaces from their segmented masks using 
an iterative mask filtering process. We used Mask2Mesh implemen-
tation of this algorithm from the MOCA framework (Shi et al., 2010) 
and then applied mesh simplification and subdivision to 40,000 tri-
angles, following the shape analysis protocol in Kalinin et al. (2018b). 
The next step included the extraction of geometric characteristics of 
the 3D nuclear surfaces (e.g., mesh volume, surface area, curved-
ness, shape index, and fractal dimension), implemented in Labora-
tory of Neuro Imaging Pipeline v7.0.3 (Dinov et al., 2009; Kalinin 
et al., 2018b). To provide a comprehensive morphological charac-
terization, we expanded the list of six metrics previously reported in 
Kalinin et al. (2018b). The additional surface features were extracted 
using the trimesh library (Dawson-Haggerty and GitHub open-
source software contributors, 2019) and included average mean cur-
vature, convex hull and bounding primitive (box, oriented box, cyl-
inder, sphere) volumes, convex hull surface area, inertia tensor 
eigenvalues, and principal axes lengths. Surface-based extent and 
solidity were computed from trimesh-derived measures as the ratio 
of the object volume to the bounding box volume and the ratio of 
the object volume to the convex hull volume, correspondingly. 
Sphericity of the nucleus was computed as the ratio of the surface 
area of a sphere with the same volume as the given nucleus to the 

surface area of the nucleus: V

SA

6
1

3
2

3( )
Ψ =

π , where V is the volume of 

the nucleus and SA is the surface area of the nucleus (Wadell, 1935). 
All surface descriptors were combined into the feature set S.

Both volumetric and surface features we merged by inner join on 
the per-nucleus basis, filtering out those individual cells, for which 
feature extraction failed or voxel volume measure exceeded the 
empirically estimated threshold of 150,000 voxels. Nuclei were also 
considered outliers and removed if any feature value computed 
over all cells was out of the [P5 – 1.5(P95 – P5); P95 + 1.5(P95 – P5)] 
range, where P5 and P95 are 5th and 95th percentiles, correspond-
ingly. All extracted features were aggregated into per-nucleus 

feature vectors, from which we constructed a feature table per each 
day of treatment with the labels corresponding to phenotypic con-
ditions (NHA and VPA).

Feature and model selection, and analysis
To handle multicollinear features, we performed hierarchical clus-
tering on the Spearman rank-order correlations between all fea-
tures and then used averaged SVM classification performance to 
select a threshold for defining feature clusters, while controlling for 
overfitting with fivefold statistical cross-validation repeated from 
five different random seeds. From each cluster, we selected one 
feature according to the highest value for the χ2 statistic, while 
ignoring inertia tensor eigenvalues, as they were highly correlated 
with other features that are easier to directly interpret, such as vol-
ume or minimal principal axis length. This process yielded the final 
set S7 consisting of the following seven descriptors: surface-based 
median axis length, convex hull and bounding sphere volumes, 
sphericity, average mean curvature, shape index, and voxel-based 
solidity. t-SNE embedding was generated using the scikit-learn 
library (Pedregosa et al., 2011) with PCA initialization, perplexity of 
13, and cosine distance as a metric. Clusters for each condition at 
every time point were identified using kernel density estimation in 
the seaborn library (Waskom et al., 2020) with 0.75 threshold. It 
should be noted that cluster sizes and intercluster distances should 
be interpreted with care when using t-SNE (Wattenberg et  al., 
2016).

The following sets of features were used to compare volumetric 
and surface-based shape representations: V2D, V, S, Vsub, Ssub, V+S, 
S7, where Vsub and Ssub were subsets of equivalent voxel and surface 
feature sets correspondingly (nuclear volume, convex hull and 
bounding box volumes, extent, solidity, inertia eigenvalues, and ma-
jor axis length). We assessed the classification performance of those 
classifiers with the scikit-learn library (Pedregosa et al., 2011) that pro-
vided feature weights as an output. These included Gaussian naïve 
Bayes, k-nearest neighbors, logistic regression, linear SVM, random 
forest, extremely randomized trees, AdaBoost and gradient boosting 
machine. They were trained using default hyperparameter values and 
evaluated at each time point using the AUC. AUCs, confusion matri-
ces, and feature ranking were averaged from 10 repetitions of the 
internal statistical fivefold stratified cross-validation with different ran-
dom seeds. We averaged the performance of each model over time 
points and over all feature sets. To compare feature sets, we aver-
aged the AUCs over all models and days. Random subsampling of 
the prevalent class by the total number of per-fold training samples 
from an underrepresented class at each iteration of the cross-valida-
tion procedure was used to combat class imbalance. To rank features 
by their relative importance, we employed the permutation impor-
tance strategy that reflects the decrease in a model performance 
when a single feature value is randomly shuffled (Breiman, 2001). This 
breaks the relationship between the feature and the outcome, while 
being model agnostic and can be calculated many times with differ-
ent permutations of the feature. We computed permutation impor-
tance on a held-out set on each cross-validation cycle, highlighting 
which features contribute the most to the generalization power of the 
trained model. Permutation feature importance was computed using 
the “coef” property of the trained SVM model at each time point.

Univariate statistical analysis of individual features was per-
formed using the SciPy package (Virtanen et al., 2020) with multi-
ple testing correction using statsmodels (Seabold and Perktold, 
2010). We reported each relative difference as the percentage 
change from the control group, along with a p value obtained us-
ing a two-sided Mann-Whitney U test with Holm–Šidák multiple 
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testing correction (α = 0.05), and the common language effect size 
statistic that in the case of the Mann-Whitney U test is equivalent 
to the AUC (Mason and Graham, 2002).

For all analysis tasks we used Python 3.8.3 from the Anaconda 
distribution (Continuum Analytics and others, 2020), with the numpy 
(van der Walt et al., 2011), pandas (McKinney, 2010), and iPython 
(Perez and Granger, 2007) packages. Image processing was done 
using scikit-image (van der Walt et  al., 2014). Visualizations and 
charts were built with the matplotlib (Hunter, 2007), seaborn (Was-
kom et  al., 2020), trimesh (Dawson-Haggerty and GitHub open-
source software contributors, 2019), and SOCRAT (Kalinin et  al., 
2017) libraries.

The documentation supporting the conclusions of this article to-
gether with the derived data, pipeline workflows, and underlying 
source code is made publicly available online on the project web-
page: SOCR 3D Cell Morphometry Project, https://socr.umich.edu/
projects/3d-cell-morphometry.
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